1
|
García-Roldán A, de la Haba RR, Sánchez-Porro C, Ventosa A. 'Altruistic' cooperation among the prokaryotic community of Atlantic salterns assessed by metagenomics. Microbiol Res 2024; 288:127869. [PMID: 39154602 DOI: 10.1016/j.micres.2024.127869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Hypersaline environments are extreme habitats with a limited prokaryotic diversity, mainly restricted to halophilic or halotolerant archaeal and bacterial taxa adapted to highly saline conditions. This study attempts to analyze the taxonomic and functional diversity of the prokaryotes that inhabit a solar saltern located at the Atlantic Coast, in Isla Cristina (Huelva, Southwest Spain), and the influence of salinity on the diversity and metabolic potential of these prokaryotic communities, as well as the interactions and cooperation among the individuals within that community. Brine samples were obtained from different saltern ponds, with a salinity range between 19.5 % and 39 % (w/v). Total prokaryotic DNA was sequenced using the Illumina shotgun metagenomic strategy and the raw sequence data were analyzed using supercomputing services following the MetaWRAP and SqueezeMeta protocols. The most abundant phyla at moderate salinities (19.5-22 % [w/v]) were Methanobacteriota (formerly "Euryarchaeota"), Pseudomonadota and Bacteroidota, followed by Balneolota and Actinomycetota and Uroviricota in smaller proportions, while at high salinities (36-39 % [w/v]) the most abundant phylum was Methanobacteriota, followed by Bacteroidota. The most abundant genera at intermediate salinities were Halorubrum and the bacterial genus Spiribacter, while the haloarchaeal genera Halorubrum, Halonotius, and Haloquadratum were the main representatives at high salinities. A total of 65 MAGs were reconstructed from the metagenomic datasets and different functions and pathways were identified in them, allowing to find key taxa in the prokaryotic community able to synthesize and supply essential compounds, such as biotin, and precursors of other bioactive molecules, like β-carotene, and bacterioruberin, to other dwellers in this habitat, lacking the required enzymatic machinery to produce them. This work shed light on the ecology of aquatic hypersaline environments, such as the Atlantic Coast salterns, and on the dynamics and factors affecting the microbial populations under such extreme conditions.
Collapse
Affiliation(s)
- Alicia García-Roldán
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla 41012, Spain
| | - Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla 41012, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla 41012, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla 41012, Spain.
| |
Collapse
|
2
|
Mies US, Hervé V, Kropp T, Platt K, Sillam-Dussès D, Šobotník J, Brune A. Genome reduction and horizontal gene transfer in the evolution of Endomicrobia-rise and fall of an intracellular symbiosis with termite gut flagellates. mBio 2024; 15:e0082624. [PMID: 38742878 PMCID: PMC11257099 DOI: 10.1128/mbio.00826-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Bacterial endosymbionts of eukaryotic hosts typically experience massive genome reduction, but the underlying evolutionary processes are often obscured by the lack of free-living relatives. Endomicrobia, a family-level lineage of host-associated bacteria in the phylum Elusimicrobiota that comprises both free-living representatives and endosymbionts of termite gut flagellates, are an excellent model to study evolution of intracellular symbionts. We reconstructed 67 metagenome-assembled genomes (MAGs) of Endomicrobiaceae among more than 1,700 MAGs from the gut microbiota of a wide range of termites. Phylogenomic analysis confirmed a sister position of representatives from termites and ruminants, and allowed to propose eight new genera in the radiation of Endomicrobiaceae. Comparative genome analysis documented progressive genome erosion in the new genus Endomicrobiellum, which comprises all flagellate endosymbionts characterized to date. Massive gene losses were accompanied by the acquisition of new functions by horizontal gene transfer, which led to a shift from a glucose-based energy metabolism to one based on sugar phosphates. The breakdown of glycolysis and many anabolic pathways for amino acids and cofactors in several subgroups was compensated by the independent acquisition of new uptake systems, including an ATP/ADP antiporter, from other gut microbiota. The putative donors are mostly flagellate endosymbionts from other bacterial phyla, including several, hitherto unknown lineages of uncultured Alphaproteobacteria, documenting the importance of horizontal gene transfer in the convergent evolution of these intracellular symbioses. The loss of almost all biosynthetic capacities in some lineages of Endomicrobiellum suggests that their originally mutualistic relationship with flagellates is on its decline.IMPORTANCEUnicellular eukaryotes are frequently colonized by bacterial and archaeal symbionts. A prominent example are the cellulolytic gut flagellates of termites, which harbor diverse but host-specific bacterial symbionts that occur exclusively in termite guts. One of these lineages, the so-called Endomicrobia, comprises both free-living and endosymbiotic representatives, which offers the unique opportunity to study the evolutionary processes underpinning the transition from a free-living to an intracellular lifestyle. Our results revealed a progressive gene loss in energy metabolism and biosynthetic pathways, compensated by the acquisition of new functions via horizontal gene transfer from other gut bacteria, and suggest the eventual breakdown of an initially mutualistic symbiosis. Evidence for convergent evolution of unrelated endosymbionts reflects adaptations to the intracellular environment of termite gut flagellates.
Collapse
Affiliation(s)
- Undine S. Mies
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tom Kropp
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katja Platt
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - David Sillam-Dussès
- Laboratory of Experimental and Comparative Ethology LEEC, UR 4443, University Sorbonne Paris Nord, Villetaneuse, France
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czechia
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
3
|
Guo Q, Su J, Liao Y, Yu Y, Luo L, Weng X, Zhang W, Hu Z, Wang H, Beattie GA, Ma J. An atypical 3-ketoacyl ACP synthase III required for acyl homoserine lactone synthesis in Pseudomonas syringae pv. syringae B728a. Appl Environ Microbiol 2024; 90:e0225623. [PMID: 38415624 PMCID: PMC10952384 DOI: 10.1128/aem.02256-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/04/2024] [Indexed: 02/29/2024] Open
Abstract
The last step of the initiation phase of fatty acid biosynthesis in most bacteria is catalyzed by the 3-ketoacyl-acyl carrier protein (ACP) synthase III (FabH). Pseudomonas syringae pv. syringae strain B728a encodes two FabH homologs, Psyr_3467 and Psyr_3830, which we designated PssFabH1 and PssFabH2, respectively. Here, we explored the roles of these two 3-ketoacyl-ACP synthase (KAS) III proteins. We found that PssFabH1 is similar to the Escherichia coli FabH in using acetyl-acetyl-coenzyme A (CoA ) as a substrate in vitro, whereas PssFabH2 uses acyl-CoAs (C4-C10) or acyl-ACPs (C6-C10). Mutant analysis showed that neither KAS III protein is essential for the de novo fatty acid synthesis and cell growth. Loss of PssFabH1 reduced the production of an acyl homoserine lactone (AHL) quorum-sensing signal, and this production was partially restored by overexpressing FabH homologs from other bacteria. AHL production was also restored by inhibiting fatty acid elongation and providing exogenous butyric acid. Deletion of PssFabH1 supports the redirection of acyl-ACP toward biosurfactant synthesis, which in turn enhances swarming motility. Our study revealed that PssFabH1 is an atypical KAS III protein that represents a new KAS III clade that functions in providing a critical fatty acid precursor, butyryl-ACP, for AHL synthesis.IMPORTANCEAcyl homoserine lactones (AHLs) are important quorum-sensing compounds in Gram-negative bacteria. Although their formation requires acylated acyl carrier proteins (ACPs), how the acylated intermediate is shunted from cellular fatty acid synthesis to AHL synthesis is not known. Here, we provide in vivo evidence that Pseudomonas syringae strain B728a uses the enzyme PssFabH1 to provide the critical fatty acid precursor butyryl-ACP for AHL synthesis. Loss of PssFabH1 reduces the diversion of butyryl-ACP to AHL, enabling the accumulation of acyl-ACP for synthesis of biosurfactants that contribute to bacterial swarming motility. We report that PssFabH1 and PssFabH2 each encode a 3-ketoacyl-acyl carrier protein synthase (KAS) III in P. syringae B728a. Whereas PssFabH2 is able to function in redirecting intermediates from β-oxidation to fatty acid synthesis, PssFabH1 is an atypical KAS III protein that represents a new KAS III clade based on its sequence, non-involvement in cell growth, and novel role in AHL synthesis.
Collapse
Affiliation(s)
- Qiaoqiao Guo
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jingtong Su
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuling Liao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yin Yu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lizhen Luo
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiaoshan Weng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wenbin Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhe Hu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haihong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Gwyn A. Beattie
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Jincheng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
4
|
Li Z, Wang Q, Liu H, Wang Y, Zheng Z, Zhang Y, Tan T. Engineering Corynebacterium glutamicum for the efficient production of N-acetylglucosamine. BIORESOURCE TECHNOLOGY 2023; 390:129865. [PMID: 37832852 DOI: 10.1016/j.biortech.2023.129865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
N-acetylglucosamine (GlcNAc) is significant functional monosaccharides with diverse applications in medicine, food, and cosmetics. In this study, the GlcNAc synthesis pathway was constructed in Corynebacterium glutamicum and its reverse byproduct pathways were blocked. Simultaneously the driving force of GlcNAc synthesis was enhanced by screening key gene sources and inhibiting the GlcNAc consumption pathway. To maximize carbon flux, some competitive pathways (Pentose phosphate pathway, Glycolysis pathway and Mannose pathway) were weakened and the titer of GlcNAc reached 23.30 g/L in shake flasks. Through transcriptome analysis, it was found that dissolved oxygen was an important limiting factor, which was optimized in a 5 L bioreactor. Employing optimal fermentation conditions and feeding strategy, the titer of GlcNAc reached 138.9 g/L, with the yeild of 0.44 g/g glucose. This study significantly increased the yield and titer of GlcNAc, which lay a solid foundation for the industrial production of GlcNAc in C. glutamicum.
Collapse
Affiliation(s)
- Zemin Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Qiuting Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Hui Liu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yating Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Zhaoyi Zheng
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yang Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, 100029 Beijing, China
| |
Collapse
|
5
|
Sztain T, Corpuz JC, Bartholow TG, Hernandez JOS, Jiang Z, Mellor DA, Heberlig GW, La Clair JJ, McCammon JA, Burkart MD. Interface Engineering of Carrier-Protein-Dependent Metabolic Pathways. ACS Chem Biol 2023; 18:2014-2022. [PMID: 37671411 PMCID: PMC10807135 DOI: 10.1021/acschembio.3c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Carrier-protein-dependent metabolic pathways biosynthesize fatty acids, polyketides, and non-ribosomal peptides, producing metabolites with important pharmaceutical, environmental, and industrial properties. Recent findings demonstrate that these pathways rely on selective communication mechanisms involving protein-protein interactions (PPIs) that guide enzyme reactivity and timing. While rational design of these PPIs could enable pathway design and modification, this goal remains a challenge due to the complex nature of protein interfaces. Computational methods offer an encouraging avenue, though many score functions fail to predict experimental observables, leading to low success rates. Here, we improve upon the Rosetta score function, leveraging experimental data through iterative rounds of computational prediction and mutagenesis, to design a hybrid fatty acid-non-ribosomal peptide initiation pathway. By increasing the weight of the electrostatic score term, the computational protocol proved to be more predictive, requiring fewer rounds of iteration to identify mutants with high in vitro activity. This allowed efficient design of new PPIs between a non-ribosomal peptide synthetase adenylation domain, PltF, and a fatty acid synthase acyl carrier protein, AcpP, as validated by activity and structural studies. This method provides a promising platform for customized pathway design, establishing a standard for carrier-protein-dependent pathway engineering through PPI optimization.
Collapse
Affiliation(s)
| | | | - Thomas G. Bartholow
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Javier O. Sanlley Hernandez
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ziran Jiang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Desirae A. Mellor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Graham W. Heberlig
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - James J. La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
6
|
Pedroletti L, Moseler A, Meyer AJ. Assembly, transfer, and fate of mitochondrial iron-sulfur clusters. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3328-3344. [PMID: 36846908 DOI: 10.1093/jxb/erad062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 06/08/2023]
Abstract
Since the discovery of an autonomous iron-sulfur cluster (Fe-S) assembly machinery in mitochondria, significant efforts to examine the nature of this process have been made. The assembly of Fe-S clusters occurs in two distinct steps with the initial synthesis of [2Fe-2S] clusters by a first machinery followed by a subsequent assembly into [4Fe-4S] clusters by a second machinery. Despite this knowledge, we still have only a rudimentary understanding of how Fe-S clusters are transferred and distributed among their respective apoproteins. In particular, demand created by continuous protein turnover and the sacrificial destruction of clusters for synthesis of biotin and lipoic acid reveal possible bottlenecks in the supply chain of Fe-S clusters. Taking available information from other species into consideration, this review explores the mitochondrial assembly machinery of Arabidopsis and provides current knowledge about the respective transfer steps to apoproteins. Furthermore, this review highlights biotin synthase and lipoyl synthase, which both utilize Fe-S clusters as a sulfur source. After extraction of sulfur atoms from these clusters, the remains of the clusters probably fall apart, releasing sulfide as a highly toxic by-product. Immediate refixation through local cysteine biosynthesis is therefore an essential salvage pathway and emphasizes the physiological need for cysteine biosynthesis in plant mitochondria.
Collapse
Affiliation(s)
- Luca Pedroletti
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| |
Collapse
|
7
|
Trotter VV, Shatsky M, Price MN, Juba TR, Zane GM, De León KB, Majumder ELW, Gui Q, Ali R, Wetmore KM, Kuehl JV, Arkin AP, Wall JD, Deutschbauer AM, Chandonia JM, Butland GP. Large-scale genetic characterization of the model sulfate-reducing bacterium, Desulfovibrio vulgaris Hildenborough. Front Microbiol 2023; 14:1095191. [PMID: 37065130 PMCID: PMC10102598 DOI: 10.3389/fmicb.2023.1095191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
Sulfate-reducing bacteria (SRB) are obligate anaerobes that can couple their growth to the reduction of sulfate. Despite the importance of SRB to global nutrient cycles and their damage to the petroleum industry, our molecular understanding of their physiology remains limited. To systematically provide new insights into SRB biology, we generated a randomly barcoded transposon mutant library in the model SRB Desulfovibrio vulgaris Hildenborough (DvH) and used this genome-wide resource to assay the importance of its genes under a range of metabolic and stress conditions. In addition to defining the essential gene set of DvH, we identified a conditional phenotype for 1,137 non-essential genes. Through examination of these conditional phenotypes, we were able to make a number of novel insights into our molecular understanding of DvH, including how this bacterium synthesizes vitamins. For example, we identified DVU0867 as an atypical L-aspartate decarboxylase required for the synthesis of pantothenic acid, provided the first experimental evidence that biotin synthesis in DvH occurs via a specialized acyl carrier protein and without methyl esters, and demonstrated that the uncharacterized dehydrogenase DVU0826:DVU0827 is necessary for the synthesis of pyridoxal phosphate. In addition, we used the mutant fitness data to identify genes involved in the assimilation of diverse nitrogen sources and gained insights into the mechanism of inhibition of chlorate and molybdate. Our large-scale fitness dataset and RB-TnSeq mutant library are community-wide resources that can be used to generate further testable hypotheses into the gene functions of this environmentally and industrially important group of bacteria.
Collapse
Affiliation(s)
- Valentine V. Trotter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Maxim Shatsky
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Morgan N. Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Thomas R. Juba
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Grant M. Zane
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Kara B. De León
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Erica L.-W. Majumder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Qin Gui
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Rida Ali
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kelly M. Wetmore
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jennifer V. Kuehl
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Judy D. Wall
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - John-Marc Chandonia
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Gareth P. Butland
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
8
|
Galisteo C, de la Haba RR, Sánchez-Porro C, Ventosa A. Biotin pathway in novel Fodinibius salsisoli sp. nov., isolated from hypersaline soils and reclassification of the genus Aliifodinibius as Fodinibius. Front Microbiol 2023; 13:1101464. [PMID: 36777031 PMCID: PMC9909488 DOI: 10.3389/fmicb.2022.1101464] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 01/27/2023] Open
Abstract
Hypersaline soils are extreme environments that have received little attention until the last few years. Their halophilic prokaryotic population seems to be more diverse than those of well-known aquatic systems. Among those inhabitants, representatives of the family Balneolaceae (phylum Balneolota) have been described to be abundant, but very few members have been isolated and characterized to date. This family comprises the genera Aliifodinibius and Fodinibius along with four others. A novel strain, designated 1BSP15-2V2T, has been isolated from hypersaline soils located in the Odiel Saltmarshes Natural Area (Southwest Spain), which appears to represent a new species related to the genus Aliifodinibius. However, comparative genomic analyses of members of the family Balneolaceae have revealed that the genera Aliifodinibius and Fodinibius belong to a single genus, hence we propose the reclassification of the species of the genus Aliifodinibius into the genus Fodinibius, which was first described. The novel strain is thus described as Fodinibius salsisoli sp. nov., with 1BSP15-2V2T (=CCM 9117T = CECT 30246T) as the designated type strain. This species and other closely related ones show abundant genomic recruitment within 80-90% identity range when searched against several hypersaline soil metagenomic databases investigated. This might suggest that there are still uncultured, yet abundant closely related representatives to this family present in these environments. In-depth in-silico analysis of the metabolism of Fodinibius showed that the biotin biosynthesis pathway was present in the genomes of strain 1BSP15-2V2T and other species of the family Balneolaceae, which could entail major implications in their community role providing this vitamin to other organisms that depend on an exogenous source of this nutrient.
Collapse
|
9
|
Shi Y, Cao Q, Sun J, Hu X, Su Z, Xu Y, Zhang H, Lan L, Feng Y. The opportunistic pathogen Pseudomonas aeruginosa exploits bacterial biotin synthesis pathway to benefit its infectivity. PLoS Pathog 2023; 19:e1011110. [PMID: 36689471 PMCID: PMC9894557 DOI: 10.1371/journal.ppat.1011110] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/02/2023] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that predominantly causes nosocomial and community-acquired lung infections. As a member of ESKAPE pathogens, carbapenem-resistant P. aeruginosa (CRPA) compromises the limited therapeutic options, raising an urgent demand for the development of lead compounds against previously-unrecognized drug targets. Biotin is an important cofactor, of which the de novo synthesis is an attractive antimicrobial target in certain recalcitrant infections. Here we report genetic and biochemical definition of P. aeruginosa BioH (PA0502) that functions as a gatekeeper enzyme allowing the product pimeloyl-ACP to exit from fatty acid synthesis cycle and to enter the late stage of biotin synthesis pathway. In relative to Escherichia coli, P. aeruginosa physiologically requires 3-fold higher level of cytosolic biotin, which can be attributed to the occurrence of multiple biotinylated enzymes. The BioH protein enables the in vitro reconstitution of biotin synthesis. The repertoire of biotin abundance is assigned to different mouse tissues and/or organ contents, and the plasma biotin level of mouse is around 6-fold higher than that of human. Removal of bioH renders P. aeruginosa biotin auxotrophic and impairs its intra-phagosome persistence. Based on a model of CD-1 mice mimicking the human environment, lung challenge combined with systemic infection suggested that BioH is necessary for the full virulence of P. aeruginosa. As expected, the biotin synthesis inhibitor MAC13772 is capable of dampening the viability of CRPA. Notably, MAC13772 interferes the production of pyocyanin, an important virulence factor of P. aeruginosa. Our data expands our understanding of P. aeruginosa biotin synthesis relevant to bacterial infectivity. In particular, this study represents the first example of an extracellular pathogen P. aeruginosa that exploits biotin cofactor as a fitness determinant, raising the possibility of biotin synthesis as an anti-CRPA target.
Collapse
Affiliation(s)
- Yu Shi
- Department of Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qin Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jingdu Sun
- Department of Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaofang Hu
- Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Zhi Su
- Department of Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yongchang Xu
- Department of Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huimin Zhang
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- * E-mail: (LL); (YF)
| | - Youjun Feng
- Department of Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
- * E-mail: (LL); (YF)
| |
Collapse
|
10
|
Belda E, Voland L, Tremaroli V, Falony G, Adriouch S, Assmann KE, Prifti E, Aron-Wisnewsky J, Debédat J, Le Roy T, Nielsen T, Amouyal C, André S, Andreelli F, Blüher M, Chakaroun R, Chilloux J, Coelho LP, Dao MC, Das P, Fellahi S, Forslund S, Galleron N, Hansen TH, Holmes B, Ji B, Krogh Pedersen H, Le P, Le Chatelier E, Lewinter C, Mannerås-Holm L, Marquet F, Myridakis A, Pelloux V, Pons N, Quinquis B, Rouault C, Roume H, Salem JE, Sokolovska N, Søndertoft NB, Touch S, Vieira-Silva S, Galan P, Holst J, Gøtze JP, Køber L, Vestergaard H, Hansen T, Hercberg S, Oppert JM, Nielsen J, Letunic I, Dumas ME, Stumvoll M, Pedersen OB, Bork P, Ehrlich SD, Zucker JD, Bäckhed F, Raes J, Clément K. Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism. Gut 2022; 71:2463-2480. [PMID: 35017197 PMCID: PMC9664128 DOI: 10.1136/gutjnl-2021-325753] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/15/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Gut microbiota is a key component in obesity and type 2 diabetes, yet mechanisms and metabolites central to this interaction remain unclear. We examined the human gut microbiome's functional composition in healthy metabolic state and the most severe states of obesity and type 2 diabetes within the MetaCardis cohort. We focused on the role of B vitamins and B7/B8 biotin for regulation of host metabolic state, as these vitamins influence both microbial function and host metabolism and inflammation. DESIGN We performed metagenomic analyses in 1545 subjects from the MetaCardis cohorts and different murine experiments, including germ-free and antibiotic treated animals, faecal microbiota transfer, bariatric surgery and supplementation with biotin and prebiotics in mice. RESULTS Severe obesity is associated with an absolute deficiency in bacterial biotin producers and transporters, whose abundances correlate with host metabolic and inflammatory phenotypes. We found suboptimal circulating biotin levels in severe obesity and altered expression of biotin-associated genes in human adipose tissue. In mice, the absence or depletion of gut microbiota by antibiotics confirmed the microbial contribution to host biotin levels. Bariatric surgery, which improves metabolism and inflammation, associates with increased bacterial biotin producers and improved host systemic biotin in humans and mice. Finally, supplementing high-fat diet-fed mice with fructo-oligosaccharides and biotin improves not only the microbiome diversity, but also the potential of bacterial production of biotin and B vitamins, while limiting weight gain and glycaemic deterioration. CONCLUSION Strategies combining biotin and prebiotic supplementation could help prevent the deterioration of metabolic states in severe obesity. TRIAL REGISTRATION NUMBER NCT02059538.
Collapse
Affiliation(s)
- Eugeni Belda
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France,Integrative Phenomics, Paris, France
| | - Lise Voland
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Goteborg, Sweden
| | - Gwen Falony
- Center for Microbiology, VIB, Leuven, Belgium,Vlaams Instituut voor Biotechnologie, VIB-KU Leuven, Heverlee, Flanders, Belgium
| | - Solia Adriouch
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Karen E Assmann
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Edi Prifti
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, Sorbonne Université, IRD, Bondy, France
| | - Judith Aron-Wisnewsky
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France,Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Jean Debédat
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Tiphaine Le Roy
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Trine Nielsen
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Chloé Amouyal
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Sébastien André
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Fabrizio Andreelli
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology - Medical Center, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology - Medical Center, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Julien Chilloux
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London Faculty of Medicine, London, UK
| | - Luis Pedro Coelho
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maria Carlota Dao
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Promi Das
- Department of Biology, Chalmers University of Technology, Goteborg, Sweden
| | - Soraya Fellahi
- Functional Unit, Biochemistry and Hormonology Department, enon Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France,Saint-Antoine Research Center, Sorbonne Université, INSERM, Paris, France
| | - Sofia Forslund
- Max Delbrück Center for Molecular Medicine, MDC, Berlin-Buch, Germany
| | - Nathalie Galleron
- MetaGenoPolis, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Tue H Hansen
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Bridget Holmes
- Centre Daniel Carasso, Global Nutrition Department, Danone Nutricia Research, Palaiseau, France
| | - Boyang Ji
- Department of Biology, Chalmers University of Technology, Goteborg, Sweden
| | - Helle Krogh Pedersen
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Phuong Le
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | | | | | - Louise Mannerås-Holm
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Goteborg, Sweden
| | - Florian Marquet
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Antonis Myridakis
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Veronique Pelloux
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Nicolas Pons
- MetaGenoPolis, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Benoit Quinquis
- MetaGenoPolis, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Christine Rouault
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Hugo Roume
- MetaGenoPolis, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Joe-Elie Salem
- Department of Pharmacology and CIC-1421, Assistance Publique-Hôpitaux de Paris, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Nataliya Sokolovska
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Nadja B Søndertoft
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Sothea Touch
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France
| | - Sara Vieira-Silva
- Center for Microbiology, VIB, Leuven, Belgium,Vlaams Instituut voor Biotechnologie, VIB-KU Leuven, Heverlee, Flanders, Belgium
| | | | - Pilar Galan
- Nutritional Epidemiology Unit, INSERM, INRAE, CNAM, Paris 13 University, Bobigny, France
| | - Jens Holst
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Jens Peter Gøtze
- Department of Clinical Biochemistry, Rigshospitalet, Kobenhavn, Denmark
| | - Lars Køber
- Department of Cardiology, Rigshospitalet, Kobenhavn, Denmark
| | - Henrik Vestergaard
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark,Steno Diabetes Center, Copenhagen, Gentofte, Denmark
| | - Torben Hansen
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark,Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Serge Hercberg
- Nutritional Epidemiology Unit, INSERM, INRAE, CNAM, Paris 13 University, Bobigny, France
| | - Jean-Michel Oppert
- Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Jens Nielsen
- Department of Biology, Chalmers University of Technology, Goteborg, Sweden
| | | | - Marc-Emmanuel Dumas
- Department of Surgery and Cancer, Section of Computational and Systems Medicine, Imperial College London, London, UK,National Heart & Lung Institute, Section of Genomic & Environmental Medicine, Imperial College London, London, UK
| | - Michael Stumvoll
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig Faculty of Medicine, Leipzig, Germany
| | - Oluf Borbye Pedersen
- Center for Basic Metabolic Research, Novo Nordisk Foundation, University of Copenhagen, Kobenhavn, Denmark
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Stanislav Dusko Ehrlich
- MetaGenoPolis, Université Paris-Saclay, INRAE, Jouy-en-Josas, France,Center for Host Microbiome Interactions, King's College London Dental Institute, London, UK
| | - Jean-Daniel Zucker
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France,Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, Sorbonne Université, IRD, Bondy, France
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Goteborg, Sweden
| | - Jeroen Raes
- Center for Microbiology, VIB, Leuven, Belgium,Vlaams Instituut voor Biotechnologie, VIB-KU Leuven, Heverlee, Flanders, Belgium
| | - Karine Clément
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne Université, INSERM, Paris, France .,Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique - Hopitaux de Paris, Paris, France
| |
Collapse
|
11
|
Abstract
Covering: up to 2022The report provides a broad approach to deciphering the evolution of coenzyme biosynthetic pathways. Here, these various pathways are analyzed with respect to the coenzymes required for this purpose. Coenzymes whose biosynthesis relies on a large number of coenzyme-mediated reactions probably appeared on the scene at a later stage of biological evolution, whereas the biosyntheses of pyridoxal phosphate (PLP) and nicotinamide (NAD+) require little additional coenzymatic support and are therefore most likely very ancient biosynthetic pathways.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| |
Collapse
|
12
|
Nazarian Z, Arab SS. Discovery of carboxylesterases via metagenomics: Putative enzymes that contribute to chemical kinetic resolution. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Richardson SM, Harrison PJ, Herrera MA, Wang M, Verez R, Ortiz GP, Campopiano DJ. BioWF: A naturally-fused, di-domain biocatalyst from biotin biosynthesis displays an unexpectedly broad substrate scope. Chembiochem 2022; 23:e202200171. [PMID: 35695820 PMCID: PMC9544090 DOI: 10.1002/cbic.202200171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/10/2022] [Indexed: 11/30/2022]
Abstract
The carbon backbone of biotin is constructed from the C7 di‐acid pimelate, which is converted to an acyl‐CoA thioester by an ATP‐dependent, pimeloyl‐CoA synthetase (PCAS, encoded by BioW). The acyl‐thioester is condensed with ʟ‐alanine in a decarboxylative, Claisen‐like reaction to form an aminoketone (8‐amino‐7‐oxononanoic acid, AON). This step is catalysed by the pyridoxal 5’‐phosphate (PLP)‐dependent enzyme (AON synthase, AONS, encoded by BioF). Distinct versions of Bacillus subtilis BioW (BsBioW) and E. coli BioF (EcBioF) display strict substrate specificity. In contrast, a BioW‐BioF fusion from Corynebacterium amycolatum (CaBioWF) accepts a wider range of mono‐ and di‐fatty acids. Analysis of the active site of the BsBioW : pimeloyl‐adenylate complex suggested a key role for a Phe (F192) residue in the CaBioW domain; a F192Y mutant restored the substrate specificity to pimelate. This surprising substrate flexibility also extends to the CaBioF domain, which accepts ʟ‐alanine, ʟ‐serine and glycine. Structural models of the CaBioWF fusion provide insight into how both domains interact with each other and suggest the presence of an intra‐domain tunnel. The CaBioWF fusion catalyses conversion of various fatty acids and amino acids to a range of AON derivatives. Such unexpected, natural broad substrate scope suggests that the CaBioWF fusion is a versatile biocatalyst that can be used to prepare a number of aminoketone analogues.
Collapse
Affiliation(s)
- Shona M Richardson
- The University of Edinburgh School of Chemistry, Chemistry, David Brewster Road, EH9 3FJ, Edinburgh, UNITED KINGDOM
| | - Peter J Harrison
- The University of Edinburgh School of Chemistry, Chemistry, UNITED KINGDOM
| | - Michael A Herrera
- The University of Edinburgh School of Chemistry, Chemistry, UNITED KINGDOM
| | - Menglu Wang
- The University of Edinburgh School of Chemistry, Chemistry, UNITED KINGDOM
| | - Rebecca Verez
- The University of Edinburgh School of Chemistry, Chemistry, UNITED KINGDOM
| | | | - Dominic James Campopiano
- The Joseph Black Chemistry Building The King's Buildings, School of Chemistry, EastChem, David Brewster Road, EH9 3FJ, Edinburgh, UNITED KINGDOM
| |
Collapse
|
14
|
Chu Y, Gong J, Wu P, Liu Y, Du Y, Ma L, Fu D, Zhu H, Qu G, Zhu B. Deciphering Precise Gene Transcriptional Expression Using gwINTACT in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:852206. [PMID: 35498641 PMCID: PMC9048029 DOI: 10.3389/fpls.2022.852206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Functional gene transcription mainly occurs in the nucleus and has a significant role in plant physiology. The isolation of nuclei tagged in specific cell type (INTACT) technique provides an efficient and stable nucleus purification method to investigate the dynamic changes of nuclear gene transcriptional expression. However, the application of traditional INTACT in plants is still limited to seedlings or root cells because of severe chloroplast pollution. In this study, we proposed a newly designed and simplified INTACT based on mas-enhanced GFP (eGFP)-SlWIP2 (gwINTACT) for nuclear purification in tomato (Solanum lycopersicum) leaves, flowers, and fruits for the first time. The yield of the nucleus purified using gwINTACT from transgenic tomato leaves was doubled compared with using a traditional INTACT procedure, accompanied by more than 95% removal of chloroplasts. Relative gene expression of ethylene-related genes with ethylene treatment was reevaluated in gwINTACT leaves to reveal more different results from the traditional gene expression assay based on total RNA. Therefore, establishing the gwINTACT system in this study facilitates the precise deciphering of the transcriptional status in various tomato tissues, which lays the foundation for the further experimental study of nucleus-related molecular regulation on fruit ripening, such as ChIP-seq and ATAC-seq.
Collapse
|
15
|
Bao Q, Zhi R, Zhou S, Zhao Y, Mao Y, Li G, Deng YU. Claisen condensation reaction mediated pimelate biosynthesis via the reverse adipate-degradation pathway and its isoenzymes. Chembiochem 2022; 23:e202200098. [PMID: 35352865 DOI: 10.1002/cbic.202200098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Indexed: 11/11/2022]
Abstract
Pimelic acid is an important seven-carbon dicarboxylic acid, which is broadly applied in various fields. The industrial production of pimelic acid is mainly through chemical method, which is complicated and environment unfriendly. Herein, we found that pimelic acid could be biosynthesized by the reverse adipate-degradation pathway (RADP), a typical Claisen condensation reaction that could be applied to the arrangement of C-C bond. In order to strengthen the supply of glutaryl-CoA precursor, PA5530 protein was used to transport glutaric acid. Subsequently, we discovered that the enzymes in the BIOZ pathway was isoenzymes with the RADP. By combining the isoenzymes of the two pathways, the titer of pimelic acid reached 36.7 mg·L -1 under the optimal combination, which was increased by 382.9% compared with the control strain B-3. It was also the highest titer of pimelic acid biosynthesized by Claisen condensation reaction, laying foundations for further pimelic acid and its derivatives production.
Collapse
Affiliation(s)
- Qingqing Bao
- Jiangnan University, National Engineering Laboratory for Cereal Fermentation Technology (NELCF), CHINA
| | - Rui Zhi
- Jiangnan University, National Engineering Laboratory for Cereal Fermentation Technology (NELCF), CHINA
| | - Shenghu Zhou
- Jiangnan University, National Engineering Laboratory for Cereal Fermentation Technology (NELCF), CHINA
| | - Yunying Zhao
- Jiangnan University, National Engineering Laboratory for Cereal Fermentation Technology (NELCF), CHINA
| | - Yin Mao
- Jiangnan University, National Engineering Laboratory for Cereal Fermentation Technology (NELCF), CHINA
| | - Guohui Li
- Jiangnan University, National Engineering Laboratory for Cereal Fermentation Technology (NELCF), CHINA
| | - Y U Deng
- Jiangnan University, School of biotechnology, 1800 LIHU AVENUE, 214122, WUXI, CHINA
| |
Collapse
|
16
|
Abstract
Purpose The reference values for biotin intake for Germany, Austria and Switzerland lead back to a report in 2000. Following a timely update process, they were revised in 2020. Methods For infants aged 0 to < 4 months, adequate biotin supply via human milk was assumed and in consequence the reference value reflects the amount of biotin delivered by human milk. For infants aged 4 to < 12 months, biotin intake was extrapolated from the reference value for younger infants. Due to missing data on average requirement, the reference values for biotin intake for children, adolescents and adults were derived based on observed intake levels. The reference value for lactating women considered in addition biotin losses via human milk. Results The reference value for biotin intake for infants aged 0 to < 4 months was set at 4 µg/day and for infants aged 4 to < 12 months at 6 µg/day. In children and adolescents, the reference values for biotin intake ranged from 20 µg/day in children 1 to < 4 years to 40 µg/day in youths 15 to < 19 years. For adults including pregnant women, 40 µg/day was derived as reference value for biotin intake. For lactating women, this value was set at 45 µg/day. Conclusions As deficiency symptoms of biotin do not occur with a usual mixed diet and the average requirement cannot be determined, reference values for an adequate biotin intake for populations from Germany, Austria and Switzerland were derived from biotin intake levels assessed in population-based nutrition surveys. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02756-0.
Collapse
|
17
|
Wei W, Lan F, Liu Y, Wu L, Hassan BH, Wang S. Characterization of the Bifunctional Enzyme BioDA Involved in Biotin Synthesis and Pathogenicity in Aspergillus flavus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11971-11981. [PMID: 34591470 DOI: 10.1021/acs.jafc.1c03248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biotin is an important enzyme cofactor that plays a key role in all three domains. The classical bifunctional enzyme BioDA in eukaryotes (such as Aspergillus flavus and Arabidopsis thaliana) is involved in the antepenultimate and penultimate steps of biotin biosynthesis. In this study, we identified a A. flavus bifunctional gene bioDA which could complement both Escherichia coli ΔEcbioD and ΔEcbioA mutants. Interestingly, the separated domain of AfBioD and AfBioA could, respectively, fuse with EcBioA and EcBioD well and work together. What is more, we found that BioDA was almost localized to the mitochondria in A. flavus, as shown by N-terminal red fluorescent protein tag fusion. Noteworthy, the subcellular localization of AfBioDA is never affected by common environmental stresses (such as hyperosmotic stress or oxidative stress). The knockout strategy demonstrated that the deletion of AfbioDA gene from the chromosome impaired the biotin de novo synthesis pathway in A. flavus. Importantly, this A. flavus mutant blocked biotin production and decreased its pathogenicity to infect peanuts. Based on the structural comparison, we found that two inhibitors (amiclenomycin and gemcitabine) could be candidates for antifungal drugs. Taken together, our findings identified the bifunctional AfbioDA gene and shed light on biotin biosynthesis in A. flavus.
Collapse
Affiliation(s)
- Wenhui Wei
- School of Life Sciences, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Faxiu Lan
- School of Life Sciences, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yinghang Liu
- School of Life Sciences, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianghuan Wu
- School of Life Sciences, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bachar H Hassan
- Health Sciences Center, Stony Brook University, Stony Brook, New York, New York 11794, United States
| | - Shihua Wang
- School of Life Sciences, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
18
|
Mishra A, Gupta J, Kumari T, Pal R, Thakur IS. Unravelling the attributes of novel cyanobacteria Jacksonvillea sp. ISTCYN1 by draft genome sequencing. BIORESOURCE TECHNOLOGY 2021; 337:125473. [PMID: 34320753 DOI: 10.1016/j.biortech.2021.125473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Filamentous cyanobacteria, Jacksonvillea sp. ISTCYN1 was isolated from agriculture field and cultured in BG-11 medium. This study, report the genome sequence of cyanobacteria Jacksonvillea thatto the best of our knowledgeis the firstgenome sequenceof thisgenus. The 5.7 MB draft genome sequence of this cyanobacterium contains 5134 protein-coding genes. The phylogenetic tree was constructed based on genome and Desertifilum sp. IPPAS B-1220 validated the closest relationship with Jacksonvillea sp. ISTCYN1. The growth of strain ISTCYN1 has been reported in the presence of different types of plastic when used as a sole carbon source. SEM analysis revealed biofilm formation by cyanobacterial strain ISTCYN1 on the surface of high and low-density polyethylene and polypropylene. In the presence of these plastics, EPS production has also been reported by this strain. Whole genome sequence analysis reveals the presence of many genes involved in biofilm formation. The presence of key enzymes responsible for plastic degradation laccase, esterase, lipase, thioesterase, and peroxidase have been predicted in the genome analysis. Genome analysis also provides insight into the genes involved in biotin biosynthetic pathways. Furthermore, the presence of many selenoproteins reveals the selenium acquisition by this cyanobacterium.
Collapse
Affiliation(s)
- Arti Mishra
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Sector-125, Noida 201303, India
| | - Juhi Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Taruna Kumari
- Department of Statistics, University of Delhi, New Delhi 110007, India
| | - Ruchita Pal
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi 110067, India
| | - I S Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India.
| |
Collapse
|
19
|
Das M, Dewan A, Shee S, Singh A. The Multifaceted Bacterial Cysteine Desulfurases: From Metabolism to Pathogenesis. Antioxidants (Basel) 2021; 10:997. [PMID: 34201508 PMCID: PMC8300815 DOI: 10.3390/antiox10070997] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 12/02/2022] Open
Abstract
Living cells have developed a relay system to efficiently transfer sulfur (S) from cysteine to various thio-cofactors (iron-sulfur (Fe-S) clusters, thiamine, molybdopterin, lipoic acid, and biotin) and thiolated tRNA. The presence of such a transit route involves multiple protein components that allow the flux of S to be precisely regulated as a function of environmental cues to avoid the unnecessary accumulation of toxic concentrations of soluble sulfide (S2-). The first enzyme in this relay system is cysteine desulfurase (CSD). CSD catalyzes the release of sulfane S from L-cysteine by converting it to L-alanine by forming an enzyme-linked persulfide intermediate on its conserved cysteine residue. The persulfide S is then transferred to diverse acceptor proteins for its incorporation into the thio-cofactors. The thio-cofactor binding-proteins participate in essential and diverse cellular processes, including DNA repair, respiration, intermediary metabolism, gene regulation, and redox sensing. Additionally, CSD modulates pathogenesis, antibiotic susceptibility, metabolism, and survival of several pathogenic microbes within their hosts. In this review, we aim to comprehensively illustrate the impact of CSD on bacterial core metabolic processes and its requirement to combat redox stresses and antibiotics. Targeting CSD in human pathogens can be a potential therapy for better treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Amit Singh
- Centre for Infectious Disease Research, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; (M.D.); (A.D.); (S.S.)
| |
Collapse
|
20
|
Wang Y, Liu L, Jin Z, Zhang D. Microbial Cell Factories for Green Production of Vitamins. Front Bioeng Biotechnol 2021; 9:661562. [PMID: 34222212 PMCID: PMC8247775 DOI: 10.3389/fbioe.2021.661562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Vitamins are a group of essential nutrients that are necessary to maintain normal metabolic activities and optimal health. There are wide applications of different vitamins in food, cosmetics, feed, medicine, and other areas. The increase in the global demand for vitamins has inspired great interest in novel production strategies. Chemical synthesis methods often require high temperatures or pressurized reactors and use non-renewable chemicals or toxic solvents that cause product safety concerns, pollution, and hazardous waste. Microbial cell factories for the production of vitamins are green and sustainable from both environmental and economic standpoints. In this review, we summarized the vitamins which can potentially be produced using microbial cell factories or are already being produced in commercial fermentation processes. They include water-soluble vitamins (vitamin B complex and vitamin C) as well as fat-soluble vitamins (vitamin A/D/E and vitamin K). Furthermore, metabolic engineering is discussed to provide a reference for the construction of microbial cell factories. We also highlight the current state and problems encountered in the fermentative production of vitamins.
Collapse
Affiliation(s)
- Yanyan Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Linxia Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Zhaoxia Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Dawei Zhang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Biochemical and structural characterization of the BioZ enzyme engaged in bacterial biotin synthesis pathway. Nat Commun 2021; 12:2056. [PMID: 33824341 PMCID: PMC8024396 DOI: 10.1038/s41467-021-22360-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/12/2021] [Indexed: 01/07/2023] Open
Abstract
Biotin is an essential micro-nutrient across the three domains of life. The paradigm earlier step of biotin synthesis denotes "BioC-BioH" pathway in Escherichia coli. Here we report that BioZ bypasses the canonical route to begin biotin synthesis. In addition to its origin of Rhizobiales, protein phylogeny infers that BioZ is domesticated to gain an atypical role of β-ketoacyl-ACP synthase III. Genetic and biochemical characterization demonstrates that BioZ catalyzes the condensation of glutaryl-CoA (or ACP) with malonyl-ACP to give 5'-keto-pimeloyl ACP. This intermediate proceeds via type II fatty acid synthesis (FAS II) pathway, to initiate the formation of pimeloyl-ACP, a precursor of biotin synthesis. To further explore molecular basis of BioZ activity, we determine the crystal structure of Agrobacterium tumefaciens BioZ at 1.99 Å, of which the catalytic triad and the substrate-loading tunnel are functionally defined. In particular, we localize that three residues (S84, R147, and S287) at the distant bottom of the tunnel might neutralize the charge of free C-carboxyl group of the primer glutaryl-CoA. Taken together, this study provides molecular insights into the BioZ biotin synthesis pathway.
Collapse
|
22
|
Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci Rep 2021; 40:222317. [PMID: 32149336 PMCID: PMC7133116 DOI: 10.1042/bsr20193325] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Cyanobacteria are key organisms in the global ecosystem, useful models for studying metabolic and physiological processes conserved in photosynthetic organisms, and potential renewable platforms for production of chemicals. Characterizing cyanobacterial metabolism and physiology is key to understanding their role in the environment and unlocking their potential for biotechnology applications. Many aspects of cyanobacterial biology differ from heterotrophic bacteria. For example, most cyanobacteria incorporate a series of internal thylakoid membranes where both oxygenic photosynthesis and respiration occur, while CO2 fixation takes place in specialized compartments termed carboxysomes. In this review, we provide a comprehensive summary of our knowledge on cyanobacterial physiology and the pathways in Synechocystis sp. PCC 6803 (Synechocystis) involved in biosynthesis of sugar-based metabolites, amino acids, nucleotides, lipids, cofactors, vitamins, isoprenoids, pigments and cell wall components, in addition to the proteins involved in metabolite transport. While some pathways are conserved between model cyanobacteria, such as Synechocystis, and model heterotrophic bacteria like Escherichia coli, many enzymes and/or pathways involved in the biosynthesis of key metabolites in cyanobacteria have not been completely characterized. These include pathways required for biosynthesis of chorismate and membrane lipids, nucleotides, several amino acids, vitamins and cofactors, and isoprenoids such as plastoquinone, carotenoids, and tocopherols. Moreover, our understanding of photorespiration, lipopolysaccharide assembly and transport, and degradation of lipids, sucrose, most vitamins and amino acids, and haem, is incomplete. We discuss tools that may aid our understanding of cyanobacterial metabolism, notably CyanoSource, a barcoded library of targeted Synechocystis mutants, which will significantly accelerate characterization of individual proteins.
Collapse
|
23
|
Abstract
The evolution of coenzymes, or their impact on the origin of life, is fundamental for understanding our own existence. Having established reasonable hypotheses about the emergence of prebiotic chemical building blocks, which were probably created under palaeogeochemical conditions, and surmising that these smaller compounds must have become integrated to afford complex macromolecules such as RNA, the question of coenzyme origin and its relation to the evolution of functional biochemistry should gain new impetus. Many coenzymes have a simple chemical structure and are often nucleotide-derived, which suggests that they may have coexisted with the emergence of RNA and may have played a pivotal role in early metabolism. Based on current theories of prebiotic evolution, which attempt to explain the emergence of privileged organic building blocks, this Review discusses plausible hypotheses on the prebiotic formation of key elements within selected extant coenzymes. In combination with prebiotic RNA, coenzymes may have dramatically broadened early protometabolic networks and the catalytic scope of RNA during the evolution of life.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| |
Collapse
|
24
|
Elucidating Essential Genes in Plant-Associated Pseudomonas protegens Pf-5 Using Transposon Insertion Sequencing. J Bacteriol 2021; 203:JB.00432-20. [PMID: 33257523 DOI: 10.1128/jb.00432-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
Gene essentiality studies have been performed on numerous bacterial pathogens, but essential gene sets have been determined for only a few plant-associated bacteria. Pseudomonas protegens Pf-5 is a plant-commensal, biocontrol bacterium that can control disease-causing pathogens on a wide range of crops. Work on Pf-5 has mostly focused on secondary metabolism and biocontrol genes, but genome-wide approaches such as high-throughput transposon mutagenesis have not yet been used for this species. In this study, we generated a dense P. protegens Pf-5 transposon mutant library and used transposon-directed insertion site sequencing (TraDIS) to identify 446 genes essential for growth on rich media. Genes required for fundamental cellular machinery were enriched in the essential gene set, while genes related to nutrient biosynthesis, stress responses, and transport were underrepresented. The majority of Pf-5 essential genes were part of the P. protegens core genome. Comparison of the essential gene set of Pf-5 with those of two plant-associated pseudomonads, P. simiae and P. syringae, and the well-studied opportunistic human pathogen P. aeruginosa PA14 showed that the four species share a large number of essential genes, but each species also had uniquely essential genes. Comparison of the Pf-5 in silico-predicted and in vitro-determined essential gene sets highlighted the essential cellular functions that are over- and underestimated by each method. Expanding essentiality studies into bacteria with a range of lifestyles may improve our understanding of the biological processes important for bacterial survival and growth.IMPORTANCE Essential genes are those crucial for survival or normal growth rates in an organism. Essential gene sets have been identified in numerous bacterial pathogens but only a few plant-associated bacteria. Employing genome-wide approaches, such as transposon insertion sequencing, allows for the concurrent analyses of all genes of a bacterial species and rapid determination of essential gene sets. We have used transposon insertion sequencing to systematically analyze thousands of Pseudomonas protegens Pf-5 genes and gain insights into gene functions and interactions that are not readily available using traditional methods. Comparing Pf-5 essential genes with those of three other pseudomonads highlights how gene essentiality varies between closely related species.
Collapse
|
25
|
Wei PP, Zhu FC, Chen CW, Li GS. Engineering a heterologous synthetic pathway in Escherichia coli for efficient production of biotin. Biotechnol Lett 2021; 43:1221-1228. [PMID: 33666816 DOI: 10.1007/s10529-021-03108-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To enhance biotin production in Escherichia coli by engineering a heterologous biotin synthetic pathway. RESULTS Biotin operon genes from Pseudomonas putida, which consisted of a bioBFHCD cluster and a bioA gene, was engineered into Escherichia coli for biotin production. The introduction of bioW gene from Bacillus subtilis, encoding pimeloyl-CoA synthetase and sam2 gene from Saccharomyces cerevisiae, encoding S-adenosyl-L-methionine (SAM) synthetase contributed to the heterologous production of biotin in recombinant E. coli. Furthermore, biotin production was efficiently enhanced by optimization of the fermentation compositions, especially pimelic acid and L-methionine, the precursor related to the pimeloyl-CoA and SAM synthesis, respectively. The combination of overexpression of the heterologous biotin operon genes and enhanced supply of key intermediate pimeloyl-CoA and SAM increased biotin production in E. coli by more than 121-fold. With bioprocess engineering efforts, biotin was produced at a final titer of 92.6 mg/L in a shake flask and 208.7 mg/L in a fed-batch fermenter. CONCLUSION Through introduction of heterologous biotin synthetic pathway, increasing the supply of precursor pimeloyl-CoA and cofactor SAM can significantly enhance biotin production in E. coli.
Collapse
Affiliation(s)
- Pei-Pei Wei
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, Anhui, People's Republic of China
| | - Fu-Cheng Zhu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, Anhui, People's Republic of China
| | - Cun-Wu Chen
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, Anhui, People's Republic of China
| | - Guo-Si Li
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, Anhui, People's Republic of China.
| |
Collapse
|
26
|
Sirithanakorn C, Cronan JE. Biotin, a universal and essential cofactor: Synthesis, ligation and regulation. FEMS Microbiol Rev 2021; 45:6081095. [PMID: 33428728 DOI: 10.1093/femsre/fuab003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Biotin is a covalently attached enzyme cofactor required for intermediary metabolism in all three domains of life. Several important human pathogens (e.g. Mycobacterium tuberculosis) require biotin synthesis for pathogenesis. Humans lack a biotin synthetic pathway hence bacterial biotin synthesis is a prime target for new therapeutic agents. The biotin synthetic pathway is readily divided into early and late segments. Although pimelate, a seven carbon α,ω-dicarboxylic acid that contributes seven of the ten biotin carbons atoms, was long known to be a biotin precursor, its biosynthetic pathway was a mystery until the E. coli pathway was discovered in 2010. Since then, diverse bacteria encode evolutionarily distinct enzymes that replace enzymes in the E. coli pathway. Two new bacterial pimelate synthesis pathways have been elucidated. In contrast to the early pathway the late pathway, assembly of the fused rings of the cofactor, was long thought settled. However, a new enzyme that bypasses a canonical enzyme was recently discovered as well as homologs of another canonical enzyme that functions in synthesis of another protein-bound coenzyme, lipoic acid. Most bacteria tightly regulate transcription of the biotin synthetic genes in a biotin-responsive manner. The bifunctional biotin ligases which catalyze attachment of biotin to its cognate enzymes and repress biotin gene transcription are best understood regulatory system.
Collapse
Affiliation(s)
- Chaiyos Sirithanakorn
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA.,Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
27
|
Driscoll TP, Verhoeve VI, Brockway C, Shrewsberry DL, Plumer M, Sevdalis SE, Beckmann JF, Krueger LM, Macaluso KR, Azad AF, Gillespie JJ. Evolution of Wolbachia mutualism and reproductive parasitism: insight from two novel strains that co-infect cat fleas. PeerJ 2020; 8:e10646. [PMID: 33362982 PMCID: PMC7750005 DOI: 10.7717/peerj.10646] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022] Open
Abstract
Wolbachiae are obligate intracellular bacteria that infect arthropods and certain nematodes. Usually maternally inherited, they may provision nutrients to (mutualism) or alter sexual biology of (reproductive parasitism) their invertebrate hosts. We report the assembly of closed genomes for two novel wolbachiae, wCfeT and wCfeJ, found co-infecting cat fleas (Ctenocephalides felis) of the Elward Laboratory colony (Soquel, CA, USA). wCfeT is basal to nearly all described Wolbachia supergroups, while wCfeJ is related to supergroups C, D and F. Both genomes contain laterally transferred genes that inform on the evolution of Wolbachia host associations. wCfeT carries the Biotin synthesis Operon of Obligate intracellular Microbes (BOOM); our analyses reveal five independent acquisitions of BOOM across the Wolbachia tree, indicating parallel evolution towards mutualism. Alternately, wCfeJ harbors a toxin-antidote operon analogous to the wPip cinAB operon recently characterized as an inducer of cytoplasmic incompatibility (CI) in flies. wCfeJ cinB and three adjacent genes are collectively similar to large modular toxins encoded in CI-like operons of certain Wolbachia strains and Rickettsia species, signifying that CI toxins streamline by fission of large modular toxins. Remarkably, the C. felis genome itself contains two CI-like antidote genes, divergent from wCfeJ cinA, revealing episodic reproductive parasitism in cat fleas and evidencing mobility of CI loci independent of WO-phage. Additional screening revealed predominant co-infection (wCfeT/wCfeJ) amongst C. felis colonies, though fleas in wild populations mostly harbor wCfeT alone. Collectively, genomes of wCfeT, wCfeJ, and their cat flea host supply instances of lateral gene transfers that could drive transitions between parasitism and mutualism.
Collapse
Affiliation(s)
| | - Victoria I Verhoeve
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | | | | | - Mariah Plumer
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Spiridon E Sevdalis
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | - John F Beckmann
- Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Laura M Krueger
- Orange County Mosquito and Vector Control District, Garden Grove, CA, USA
| | - Kevin R Macaluso
- Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - Abdu F Azad
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Joseph J Gillespie
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| |
Collapse
|
28
|
Hu Y, Cronan JE. α-proteobacteria synthesize biotin precursor pimeloyl-ACP using BioZ 3-ketoacyl-ACP synthase and lysine catabolism. Nat Commun 2020; 11:5598. [PMID: 33154364 PMCID: PMC7645780 DOI: 10.1038/s41467-020-19251-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/28/2020] [Indexed: 11/09/2022] Open
Abstract
Pimelic acid, a seven carbon α,ω-dicarboxylic acid (heptanedioic acid), is known to provide seven of the ten biotin carbon atoms including all those of the valeryl side chain. Distinct pimelate synthesis pathways were recently elucidated in Escherichia coli and Bacillus subtilis where fatty acid synthesis plus dedicated biotin enzymes produce the pimelate moiety. In contrast, the α-proteobacteria which include important plant and mammalian pathogens plus plant symbionts, lack all of the known pimelate synthesis genes and instead encode bioZ genes. Here we report a pathway in which BioZ proteins catalyze a 3-ketoacyl-acyl carrier protein (ACP) synthase III-like reaction to produce pimeloyl-ACP with five of the seven pimelate carbon atoms being derived from glutaryl-CoA, an intermediate in lysine degradation. Agrobacterium tumefaciens strains either deleted for bioZ or which encode a BioZ active site mutant are biotin auxotrophs, as are strains defective in CaiB which catalyzes glutaryl-CoA synthesis from glutarate and succinyl-CoA.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
29
|
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Deutschland
| |
Collapse
|
30
|
Bockman MR, Mishra N, Aldrich CC. The Biotin Biosynthetic Pathway in Mycobacterium tuberculosis is a Validated Target for the Development of Antibacterial Agents. Curr Med Chem 2020; 27:4194-4232. [PMID: 30663561 DOI: 10.2174/0929867326666190119161551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/14/2018] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
Abstract
Mycobacterium tuberculosis, responsible for Tuberculosis (TB), remains the leading cause of mortality among infectious diseases worldwide from a single infectious agent, with an estimated 1.7 million deaths in 2016. Biotin is an essential cofactor in M. tuberculosis that is required for lipid biosynthesis and gluconeogenesis. M. tuberculosis relies on de novo biotin biosynthesis to obtain this vital cofactor since it cannot scavenge sufficient biotin from a mammalian host. The biotin biosynthetic pathway in M. tuberculosis has been well studied and rigorously genetically validated providing a solid foundation for medicinal chemistry efforts. This review examines the mechanism and structure of the enzymes involved in biotin biosynthesis and ligation, summarizes the reported genetic validation studies of the pathway, and then analyzes the most promising inhibitors and natural products obtained from structure-based drug design and phenotypic screening.
Collapse
Affiliation(s)
- Matthew R Bockman
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Neeraj Mishra
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
31
|
Multi-level metabolic engineering of Pseudomonas mutabilis ATCC31014 for efficient production of biotin. Metab Eng 2020; 61:406-415. [DOI: 10.1016/j.ymben.2019.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/10/2019] [Accepted: 05/06/2019] [Indexed: 01/04/2023]
|
32
|
Wu PC, Chen CW, Choo CYL, Chen YK, Yago JI, Chung KR. Biotin biosynthesis affected by the NADPH oxidase and lipid metabolism is required for growth, sporulation and infectivity in the citrus fungal pathogen Alternaria alternata. Microbiol Res 2020; 241:126566. [PMID: 33032167 DOI: 10.1016/j.micres.2020.126566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/30/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
The tangerine pathotype of Alternaria alternata affects many citrus cultivars, resulting in yield losses. The capability to produce the host-selective toxin and cell-wall-degrading enzymes and to mitigate toxic reactive oxygen species is crucial for A. alternata pathogenesis to citrus. Little is known about nutrient availability within citrus tissues to the fungal pathogen. In the present study, we assess the infectivity of a biotin deficiency mutant (ΔbioB) and a complementation strain (CP36) on citrus leaves to determine how biotin impacts A. alternata pathogenesis. Growth and sporulation of ΔbioB are highly dependent on biotin. ΔbioB retains its ability to acquire and transport biotin from the surrounding environment. Growth deficiency of ΔbioB can also be partially restored by the presence of oleic acid or Tween 20, suggesting the requirement of biotin in lipid metabolism. Experimental evidence indicates that de novo biotin biosynthesis is regulated by the NADPH oxidase, implicating in the production of H2O2, and is affected by the function of peroxisomes. Three genes involved in the biosynthesis of biotin are clustered and co-regulated by biotin indicating a transcriptional feedback loop activation. Infectivity assays using fungal mycelium reveal that ΔbioB cultured on medium without biotin fails to infect citrus leaves; co-inoculation with biotin fully restores infectivity. The CP36 strain re-expressing a functional copy of bioB displays wild-type growth, sporulation and virulence. Taken together, we conclude that the attainability or accessibility of biotin is extremely restricted in citrus cells. A. alternata must be able to synthesize biotin in order to utilize nutrients for growth, colonization and development within the host.
Collapse
Affiliation(s)
- Pei-Ching Wu
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chia-Wen Chen
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Celine Yen Ling Choo
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yu-Kun Chen
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Jonar I Yago
- Plant Science Department, College of Agriculture, Nueva Vizcaya State University, Bayombong, Nueva Vizcaya, 3700, Philippines
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
33
|
Hillman ET, Kozik AJ, Hooker CA, Burnett JL, Heo Y, Kiesel VA, Nevins CJ, Oshiro JM, Robins MM, Thakkar RD, Wu ST, Lindemann SR. Comparative genomics of the genus Roseburia reveals divergent biosynthetic pathways that may influence colonic competition among species. Microb Genom 2020; 6:mgen000399. [PMID: 32589566 PMCID: PMC7478625 DOI: 10.1099/mgen.0.000399] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Roseburia species are important denizens of the human gut microbiome that ferment complex polysaccharides to butyrate as a terminal fermentation product, which influences human physiology and serves as an energy source for colonocytes. Previous comparative genomics analyses of the genus Roseburia have examined polysaccharide degradation genes. Here, we characterize the core and pangenomes of the genus Roseburia with respect to central carbon and energy metabolism, as well as biosynthesis of amino acids and B vitamins using orthology-based methods, uncovering significant differences among species in their biosynthetic capacities. Variation in gene content among Roseburia species and strains was most significant for cofactor biosynthesis. Unlike all other species of Roseburia that we analysed, Roseburia inulinivorans strains lacked biosynthetic genes for riboflavin or pantothenate but possessed folate biosynthesis genes. Differences in gene content for B vitamin synthesis were matched with differences in putative salvage and synthesis strategies among species. For example, we observed extended biotin salvage capabilities in R. intestinalis strains, which further suggest that B vitamin acquisition strategies may impact fitness in the gut ecosystem. As differences in the functional potential to synthesize components of biomass (e.g. amino acids, vitamins) can drive interspecies interactions, variation in auxotrophies of the Roseburia spp. genomes may influence in vivo gut ecology. This study serves to advance our understanding of the potential metabolic interactions that influence the ecology of Roseburia spp. and, ultimately, may provide a basis for rational strategies to manipulate the abundances of these species.
Collapse
Affiliation(s)
- Ethan T. Hillman
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
| | - Ariangela J. Kozik
- Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Present address: Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Casey A. Hooker
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - John L. Burnett
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yoojung Heo
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Violet A. Kiesel
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Clayton J. Nevins
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
- Present address: Department of Soil and Water Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Jordan M.K.I. Oshiro
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Melissa M. Robins
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Riya D. Thakkar
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN 47907, USA
| | - Sophie Tongyu Wu
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Stephen R. Lindemann
- Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
34
|
Montaser R, Kelleher NL. Discovery of the Biosynthetic Machinery for Stravidins, Biotin Antimetabolites. ACS Chem Biol 2020; 15:1134-1140. [PMID: 31887014 DOI: 10.1021/acschembio.9b00890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stravidins are peptide antibiotics produced by Streptomyces spp. Their antibacterial activity derives from an unusual amiclenomycin monomer, the warhead that inhibits biotin biosynthesis. Despite being discovered over five decades ago, stravidin biosynthesis has remained a mystery. Using our "metabologenomics" platform, we discover new stravidin analogues and identify the novel biosynthetic machinery responsible for their production. Analysis of the newly identified biosynthetic gene cluster (BGC) indicates the unusual amiclenomycin warhead is derived from chorismic acid, with initial steps similar to those involved in p-amino phenylalanine biosynthesis. However, a distinctive decarboxylation retains the nonaromatic character of a key ring and precedes a one-carbon extension to afford the warhead in its bioactive, untriggered state. Strikingly, we also identified two streptavidin genes flanking the new stravidin BGC reported here. This aligns with the known synergistic activity between the biotin-binding activity of streptavidin and the stravidins to antagonize both biotin biogenesis and bacterial growth.
Collapse
Affiliation(s)
- Rana Montaser
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L. Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
- Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
35
|
Zeng Q, Yang Q, Jia J, Bi H. A Moraxella Virulence Factor Catalyzes an Essential Esterase Reaction of Biotin Biosynthesis. Front Microbiol 2020; 11:148. [PMID: 32117167 PMCID: PMC7026016 DOI: 10.3389/fmicb.2020.00148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/22/2020] [Indexed: 11/13/2022] Open
Abstract
Pimeloyl-acyl carrier protein (ACP) methyl ester esterase catalyzes the last biosynthetic step of the pimelate moiety of biotin, a key intermediate in biotin biosynthesis. The paradigm pimeloyl-ACP methyl ester esterase is the BioH protein of Escherichia coli that hydrolyses the ester bond of pimeloyl-ACP methyl ester. Biotin synthesis in E. coli also requires the function of the malonyl-ACP methyltransferase gene (bioC) to employ a methylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. However, bioinformatics analyses of the extant bacterial genomes showed that bioH is absent in many bioC-containing bacteria. The genome of the Gram-negative bacterium, Moraxella catarrhalis lacks a gene encoding a homolog of any of the six known pimeloyl-ACP methyl ester esterase isozymes suggesting that this organism encodes a novel pimeloyl-ACP methyl ester esterase isoform. We report that this is the case. The gene encoding the new isoform, called btsA, was isolated by complementation of an E. coli bioH deletion strain. The requirement of BtsA for the biotin biosynthesis in M. catarrhalis was confirmed by a biotin auxotrophic phenotype caused by deletion of btsA in vivo and a reconstituted in vitro desthiobiotin synthesis system. Purified BtsA was shown to cleave the physiological substrate pimeloyl-ACP methyl ester to pimeloyl-ACP by use of a Ser117-His254-Asp287 catalytic triad. The lack of sequence alignment with other isozymes together with phylogenetic analyses revealed BtsA as a new class of pimeloyl-ACP methyl ester esterase. The involvement of BtsA in M. catarrhalis virulence was confirmed by the defect of bacterial invasion to lung epithelial cells and survival within macrophages in the ΔbtsA strains. Identification of the new esterase gene btsA exclusive in Moraxella species that links biotin biosynthesis to bacterial virulence, can reveal a new valuable target for development of drugs against M. catarrhalis.
Collapse
Affiliation(s)
- Qi Zeng
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Qi Yang
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jia Jia
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Hongkai Bi
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Sakaki K, Ohishi K, Shimizu T, Kobayashi I, Mori N, Matsuda K, Tomita T, Watanabe H, Tanaka K, Kuzuyama T, Nishiyama M. A suicide enzyme catalyzes multiple reactions for biotin biosynthesis in cyanobacteria. Nat Chem Biol 2020; 16:415-422. [DOI: 10.1038/s41589-019-0461-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/20/2019] [Indexed: 11/09/2022]
|
37
|
Wang L, Chen Y, Shang F, Liu W, Lan J, Gao P, Ha NC, Nam KH, Dong Y, Quan C, Xu Y. Structural insight into the carboxylesterase BioH from Klebsiella pneumoniae. Biochem Biophys Res Commun 2019; 520:538-543. [PMID: 31615653 DOI: 10.1016/j.bbrc.2019.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022]
Abstract
The BioH carboxylesterase which is a typical α/β-hydrolase enzyme involved in biotin synthetic pathway in most bacteria. BioH acts as a gatekeeper and blocks the further elongation of its substrate. In the pathogen Klebsiella pneumoniae, BioH plays a critical role in the biosynthesis of biotin. To better understand the molecular function of BioH, we determined the crystal structure of BioH from K. pneumoniae at 2.26 Å resolution using X-ray crystallography. The structure of KpBioH consists of an α-β-α sandwich domain and a cap domain. B-factor analysis revealed that the α-β-α sandwich domain is a rigid structure, while the loops in the cap domain shows the structural flexibility. The active site of KpBioH contains the catalytic triad (Ser82-Asp207-His235) on the interface of the α-β-α sandwich domain, which is surrounded by the cap domain. Size exclusion chromatography shows that KpBioH prefers the monomeric state in solution, whereas two-fold symmetric dimeric formation of KpBioH was observed in the asymmetric unit, the conserved Cys31-based disulfide bonds can maintain the irreversible dimeric formation of KpBioH. Our study provides important structural insight for understanding the molecular mechanisms of KpBioH and its homologous proteins.
Collapse
Affiliation(s)
- Lulu Wang
- School of Life Science and Biotechnology, Dalian University of Technology, No 2 Linggong Road, Dalian, 116024, Liaoning, China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Yuanyuan Chen
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Fei Shang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Wei Liu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Jing Lan
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Peng Gao
- Clinical Laboratory, Dalian Sixth People's Hospital, Dalian, 116001, Liaoning, China
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ki Hyun Nam
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Yuesheng Dong
- School of Life Science and Biotechnology, Dalian University of Technology, No 2 Linggong Road, Dalian, 116024, Liaoning, China.
| | - Chunshan Quan
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China.
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China.
| |
Collapse
|
38
|
Kwon KM, Bekal S, Domier LL, Lambert KN. Active and inactive forms of biotin synthase occur in Heterodera glycines. J Nematol 2019; 51:e2019-69. [PMID: 34179812 PMCID: PMC6909392 DOI: 10.21307/jofnem-2019-069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 11/11/2022] Open
Abstract
Heterodera glycines, the soybean cyst nematode (SCN), is a plant-parasitic nematode capable of manipulating host plant biochemistry and development. Many studies have suggested that the nematode has acquired genes from bacteria via horizontal gene transfer events (HGTs) that have the potential to enhance nematode parasitism. A recent allelic imbalance analysis identified two candidate virulence genes, which also appear to have entered the SCN genome through HGTs. One of the candidate genes, H. glycines biotin synthase (HgBioB), contained sequence polymorphisms between avirulent and virulent inbred SCN strains. To test the function of these HgBioB alleles, a complementation experiment using biotin synthase-deficient Escherichia coli was conducted. Here, we report that avirulent nematodes produce an active biotin synthase while virulent ones contain an inactive form of the enzyme. Moreover, sequencing analysis of HgBioB genes from SCN field populations indicates the presence of diverse mixture of HgBioB alleles with the virulent form being the most prevalent. We hypothesize that the mutations in the inactive HgBioB allele within the virulent SCN could result in a change in protein function that in some unknown way bolster its parasitic lifestyle.
Collapse
Affiliation(s)
- Khee Man Kwon
- Department of Crop Sciences, University of Illinois, Urbana, IL.,Department of Plant Pathology and Center for Applied Genetic Technologies, University of Georgia, Athens, GA
| | - Sadia Bekal
- Department of Agricultural and Biological Engineering, University of Illinois, Urbana, IL
| | - Leslie L Domier
- Department of Crop Sciences, University of Illinois, Urbana, IL.,United States Department of Agriculture - Agricultural Research Service, Urbana, IL
| | - Kris N Lambert
- Department of Crop Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
39
|
Molecular Basis of BioJ, a Unique Gatekeeper in Bacterial Biotin Synthesis. iScience 2019; 19:796-808. [PMID: 31494495 PMCID: PMC6733898 DOI: 10.1016/j.isci.2019.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/28/2019] [Accepted: 08/19/2019] [Indexed: 11/24/2022] Open
Abstract
Biotin is an indispensable cofactor in the three domains of life. The unusual virulence factor BioJ of Francisella catalyzes the formation of pimeloyl-ACP, an intermediate in biotin synthesis. Here, we report the 1.58 Å crystal structure of BioJ, the enzymatic activity of which is determined with the in vitro reconstituted reaction and biotin bioassay in vivo. Unlike the paradigm BioH, BioJ displays an atypical α/β-hydrolase fold. A structurally conserved catalytic triad (S151, D248, and H278) of BioJ is functionally defined. A proposed model for BioJ catalysis involves two basic residues-rich cavities, of which cavity-1, rather than cavity-2, binds to the ACP moiety of its physiological substrate, pimeloyl-ACP methyl ester. In summary, this finding provides molecular insights into the BioJ gatekeeper of biotin synthesis.
Collapse
|
40
|
Wu X, Yang S, Yu H, Ye L, Su B, Shao Z. Improved enantioselectivity of E. coli BioH in kinetic resolution of methyl ( S)-3-cyclohexene-1-carboxylate by combinatorial modulation of steric and aromatic interactions. Biosci Biotechnol Biochem 2019; 83:1263-1269. [PMID: 30938230 DOI: 10.1080/09168451.2019.1597620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As a chiral precursor for the important anticoagulant Edoxaban, enantioselective synthesis of (S)-3-cyclohexene-1-carboxylic acid is of great significance. The complicated procedures and generation of massive solid waste discourage its chemical synthesis, and the alternative biocatalysis route calls for an enzyme capable of asymmetric hydrolysis of racemic methyl-3-cyclohexene-1-carboxylate. To this end, we engineered the E. coli esterase BioH for improved S-enantioselectivity via rational design. By combinatorial modulation of steric and aromatic interactions, a positive mutant Mu3 (L24A/W81A/L209A) with relatively high S-selectivity in hydrolyzing racemic methyl-3-cyclohexene-1-carboxylate was obtained, improving the enantiomeric excess from 32.3% (the wild type) to 70.9%. Molecular dynamics simulation was conducted for both (R)- or (S)- complexes of the wild type and Mu3 to provide hints for the mechanism behind the increased S-selectivity. Moreover, the reaction conditions of Mu3 in methyl-3-cyclohexene-1-carboxylate hydrolysis was optimized to improve the conversion rate to 2 folds.
Collapse
Affiliation(s)
- Xiafen Wu
- a College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou , PR China
| | - Shengli Yang
- a College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou , PR China
| | - Hongwei Yu
- b Institute of Bioengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , PR China
| | - Lidan Ye
- b Institute of Bioengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , PR China
| | - Bingmei Su
- c Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering , Fuzhou University , Fuzhou , PR China
| | - Zehui Shao
- a College of Pharmaceutical Science , Zhejiang University of Technology , Hangzhou , PR China
| |
Collapse
|
41
|
Functional Replacement of the BioC and BioH Proteins of Escherichia coli Biotin Precursor Biosynthesis by Ehrlichia chaffeensis Novel Proteins. Curr Microbiol 2019; 76:626-636. [PMID: 30915508 DOI: 10.1007/s00284-019-01669-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/05/2019] [Indexed: 01/22/2023]
Abstract
The biosynthesis of the pimelate moiety of biotin in Escherichia coli requires two specialized proteins, BioC and BioH. However, the enzymes that have BioC- or BioH-like activities show remarkable sequence diversity among biotin-producing bacteria. Here, we report that the intracellular rickettsial pathogen Ehrlichia chaffeensis encodes two novel proteins, BioT and BioU, which functionally replace the E. coli BioC and BioH proteins, respectively. The desthiobiotin assays demonstrated that these two proteins make pimeloyl-acyl carrier protein (ACP) from the substrate malonyl-ACP with the aid of the FAS II pathway, through the expected pimeloyl-ACP methyl ester intermediate. BioT and BioU homologues seem restricted to the species of Ehrlichia and its close relative, Anaplasma. Taken together, the synthesis of the biotin precursor in E. chaffeensis appears to be catalyzed by two novel BioC- and BioH-like proteins.
Collapse
|
42
|
Bousis S, Setyawati I, Diamanti E, Slotboom DJ, Hirsch AKH. Energy-Coupling Factor Transporters as Novel Antimicrobial Targets. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Spyridon Bousis
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI); Department of Drug Design and Optimization; Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 7 9747AG Groningen The Netherlands
- Department of Pharmacy; Saarland University; Saarbrücken, Campus Building E8.1 66123 Saarbrücken Germany
| | - Inda Setyawati
- Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747AG Groningen The Netherlands
- Department of Biochemistry; Bogor Agricultural University; Dramaga 16680 Bogor Indonesia
| | - Eleonora Diamanti
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI); Department of Drug Design and Optimization; Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 7 9747AG Groningen The Netherlands
| | - Dirk J. Slotboom
- Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Nijenborgh 4 9747AG Groningen The Netherlands
- Department of Biochemistry; Bogor Agricultural University; Dramaga 16680 Bogor Indonesia
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI); Department of Drug Design and Optimization; Campus Building E8.1 66123 Saarbrücken Germany
- Stratingh Institute for Chemistry; University of Groningen; Nijenborgh 7 9747AG Groningen The Netherlands
- Department of Pharmacy; Saarland University; Saarbrücken, Campus Building E8.1 66123 Saarbrücken Germany
| |
Collapse
|
43
|
Cronan JE. Advances in synthesis of biotin and assembly of lipoic acid. Curr Opin Chem Biol 2018; 47:60-66. [PMID: 30236800 PMCID: PMC6289770 DOI: 10.1016/j.cbpa.2018.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/07/2018] [Indexed: 11/27/2022]
Abstract
Although biotin and lipoic acid are two universally conserved cofactors essential for intermediary metabolism, their synthetic pathways have become known only in recent years. Both pathways have unusual features. Biotin synthesis in Escherichia coli requires a methylation that is later removed whereas lipoic acid is assembled on the enzymes where it is required for activity by two different pathways.
Collapse
Affiliation(s)
- John E Cronan
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
44
|
Microbial cell factories for the sustainable manufacturing of B vitamins. Curr Opin Biotechnol 2018; 56:18-29. [PMID: 30138794 DOI: 10.1016/j.copbio.2018.07.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022]
Abstract
Vitamins are essential compounds in human and animal diets. Their demand is increasing globally in food, feed, cosmetics, chemical and pharmaceutical industries. Most current production methods are unsustainable because they use non-renewable sources and often generate hazardous waste. Many microorganisms produce vitamins naturally, but their corresponding metabolic pathways are tightly regulated since vitamins are needed only in catalytic amounts. Metabolic engineering is accelerating the development of microbial cell factories for vitamins that could compete with chemical methods that have been optimized over decades, but scientific hurdles remain. Additional technological and regulatory issues need to be overcome for innovative bioprocesses to reach the market. Here, we review the current state of development and challenges for fermentative processes for the B vitamin group.
Collapse
|
45
|
Yan L, Tang Q, Guan Z, Pei K, Zou T, He J. Structural insights into operator recognition by BioQ in the Mycobacterium smegmatis biotin synthesis pathway. Biochim Biophys Acta Gen Subj 2018; 1862:1843-1851. [PMID: 29852200 DOI: 10.1016/j.bbagen.2018.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/18/2018] [Accepted: 05/19/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND Biotin is an essential cofactor in living organisms. The TetR family transcriptional regulator (TFTR) BioQ is the main regulator of biotin synthesis in Mycobacterium smegmatis. BioQ represses the expression of its target genes by binding to a conserved palindromic DNA sequence (the BioQ operator). However, the mechanism by which BioQ recognizes this DNA element has not yet been fully elucidated. METHODS/RESULTS We solved the crystal structures of the BioQ homodimer in its apo-form and in complex with its specific operator at 2.26 Å and 2.69 Å resolution, respectively. BioQ inserts the N-terminal recognition helix of each protomer into the corresponding major grooves of its operator and stabilizes the formation of the complex via electrostatic interactions and hydrogen bonding to induce conformational changes in both the DNA and BioQ. The DNA interface of BioQ is rich in positively charged residues, which help BioQ stabilize DNA binding. We elucidated the structural basis of DNA recognition by BioQ for the first time and identified the amino acid residues responsible for DNA binding via further site-directed mutagenesis. GENERAL SIGNIFICANCE Our findings clearly elucidate the mechanism by which BioQ recognizes its operator in the biotin synthesis pathway and reveal the unique structural characteristics of BioQ that are distinct from other TFTR members.
Collapse
Affiliation(s)
- Ling Yan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qing Tang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zeyuan Guan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kai Pei
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tingting Zou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Jin He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
46
|
Manandhar M, Cronan JE. A Canonical Biotin Synthesis Enzyme, 8-Amino-7-Oxononanoate Synthase (BioF), Utilizes Different Acyl Chain Donors in Bacillus subtilis and Escherichia coli. Appl Environ Microbiol 2018; 84:e02084-17. [PMID: 29054876 PMCID: PMC5734022 DOI: 10.1128/aem.02084-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/15/2017] [Indexed: 12/24/2022] Open
Abstract
BioF (8-amino-7-oxononanoate synthase) is a strictly conserved enzyme that catalyzes the first step in assembly of the fused heterocyclic rings of biotin. The BioF acyl chain donor has long been thought to be pimeloyl-CoA. Indeed, in vitro the Escherichia coli and Bacillus sphaericus enzymes have been shown to condense pimeloyl-CoA with l-alanine in a pyridoxal 5'-phosphate-dependent reaction with concomitant CoA release and decarboxylation of l-alanine. However, recent in vivo studies of E. coli and Bacillus subtilis suggested that the BioF proteins of the two bacteria could have different specificities for pimelate thioesters in that E. coli BioF may utilize either pimeloyl coenzyme A (CoA) or the pimelate thioester of the acyl carrier protein (ACP) of fatty acid synthesis. In contrast, B. subtilis BioF seemed likely to be specific for pimeloyl-CoA and unable to utilize pimeloyl-ACP. We now report genetic and in vitro data demonstrating that B. subtilis BioF specifically utilizes pimeloyl-CoA.IMPORTANCE Biotin is an essential vitamin required by mammals and birds because, unlike bacteria, plants, and some fungi, these organisms cannot make biotin. Currently, the biotin included in vitamin tablets and animal feeds is made by chemical synthesis. This is partly because the biosynthetic pathways in bacteria are incompletely understood. This paper defines an enzyme of the Bacillus subtilis pathway and shows that it differs from that of Escherichia coli in the ability to utilize specific precursors. These bacteria have been used in biotin production and these data may aid in making biotin produced by biotechnology commercially competitive with that produced by chemical synthesis.
Collapse
Affiliation(s)
- Miglena Manandhar
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
47
|
Lazar N, Fay A, Nandakumar M, Boyle KE, Xavier J, Rhee K, Glickman MS. Control of biotin biosynthesis in mycobacteria by a pyruvate carboxylase dependent metabolic signal. Mol Microbiol 2017; 106:1018-1031. [PMID: 29052269 PMCID: PMC5916780 DOI: 10.1111/mmi.13865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2017] [Indexed: 01/15/2023]
Abstract
Biotin is an essential cofactor utilized by all domains of life, but only synthesized by bacteria, fungi and plants, making biotin biosynthesis a target for antimicrobial development. To understand biotin biosynthesis in mycobacteria, we executed a genetic screen in Mycobacterium smegmatis for biotin auxotrophs and identified pyruvate carboxylase (Pyc) as required for biotin biosynthesis. The biotin auxotrophy of the pyc::tn strain is due to failure to transcriptionally induce late stage biotin biosynthetic genes in low biotin conditions. Loss of bioQ, the repressor of biotin biosynthesis, in the pyc::tn strain reverted biotin auxotrophy, as did reconstituting the last step of the pathway through heterologous expression of BioB and provision of its substrate DTB. The role of Pyc in biotin regulation required its catalytic activities and could be supported by M. tuberculosis Pyc. Quantitation of the kinetics of depletion of biotinylated proteins after biotin withdrawal revealed that Pyc is the most rapidly depleted biotinylated protein and metabolomics revealed a broad metabolic shift in wild type cells upon biotin withdrawal which was blunted in cell lacking Pyc. Our data indicate that mycobacterial cells monitor biotin sufficiency through a metabolic signal generated by dysfunction of a biotinylated protein of central metabolism.
Collapse
Affiliation(s)
- Nathaniel Lazar
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Program in Immunology and Microbial Pathogenesis, Weill-Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Allison Fay
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Kerry E. Boyle
- Program in Immunology and Microbial Pathogenesis, Weill-Cornell Graduate School of Medical Sciences, New York, New York, USA
- Program in Computational Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Joao Xavier
- Program in Computational Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kyu Rhee
- Program in Immunology and Microbial Pathogenesis, Weill-Cornell Graduate School of Medical Sciences, New York, New York, USA
- Weill-Cornell Medical College, New York, New York, USA
| | - Michael S. Glickman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Program in Immunology and Microbial Pathogenesis, Weill-Cornell Graduate School of Medical Sciences, New York, New York, USA
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
48
|
Rosa LT, Dix SR, Rafferty JB, Kelly DJ. Structural basis for high-affinity adipate binding to AdpC (RPA4515), an orphan periplasmic-binding protein from the tripartite tricarboxylate transporter (TTT) family in Rhodopseudomonas palustris. FEBS J 2017; 284:4262-4277. [PMID: 29082669 DOI: 10.1111/febs.14304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/27/2017] [Accepted: 10/19/2017] [Indexed: 01/24/2023]
Abstract
The tripartite tricarboxylate transporter (TTT) family is a poorly characterised group of prokaryotic secondary solute transport systems, which employ a periplasmic substrate-binding protein (SBP) for initial ligand recognition. The substrates of only a small number of TTT systems are known and very few SBP structures have been solved, so the mechanisms of SBP-ligand interactions in this family are not well understood. The SBP RPA4515 (AdpC) from Rhodopseudomonas palustris was found by differential scanning fluorescence and isothermal titration calorimetry to bind aliphatic dicarboxylates of a chain length of six to nine carbons, with KD values in the μm range. The highest affinity was found for the C6-dicarboxylate adipate (1,6-hexanedioate). Crystal structures of AdpC, either adipate or 2-oxoadipate bound, revealed a lack of positively charged amino acids in the binding pocket and showed that water molecules are involved in bridging hydrogen bonds to the substrate, a conserved feature in the TTT SBP family that is distinct from other types of SBP. In AdpC, both of the ligand carboxylate groups and a linear chain conformation are needed for coordination in the binding pocket. RT-PCR showed that adpC expression is upregulated by low environmental adipate concentrations, suggesting adipate is a physiologically relevant substrate but as adpC is not genetically linked to any TTT membrane transport genes, the role of AdpC may be in signalling rather than transport. Our data expand the known ligands for TTT systems and identify a novel high-affinity binding protein for adipate, an important industrial chemical intermediate and food additive. DATABASES Protein structure co-ordinates are available in the PDB under the accession numbers 5OEI and 5OKU.
Collapse
Affiliation(s)
- Leonardo T Rosa
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | - Samuel R Dix
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | - John B Rafferty
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| |
Collapse
|
49
|
In Vivo Roles of Fatty Acid Biosynthesis Enzymes in Biosynthesis of Biotin and α-Lipoic Acid in Corynebacterium glutamicum. Appl Environ Microbiol 2017; 83:AEM.01322-17. [PMID: 28754705 DOI: 10.1128/aem.01322-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/21/2017] [Indexed: 02/02/2023] Open
Abstract
For fatty acid biosynthesis, Corynebacterium glutamicum uses two type I fatty acid synthases (FAS-I), FasA and FasB, in addition to acetyl-coenzyme A (CoA) carboxylase (ACC) consisting of AccBC, AccD1, and AccE. The in vivo roles of the enzymes in supplying precursors for biotin and α-lipoic acid remain unclear. Here, we report genetic evidence demonstrating that the biosynthesis of these cofactors is linked to fatty acid biosynthesis through the FAS-I pathway. For this study, we used wild-type C. glutamicum and its derived biotin vitamer producer BFI-5, which was engineered to express Escherichia coli bioBF and Bacillus subtilis bioI Disruption of either fasA or fasB in strain BFI-5 led to decreased production of biotin vitamers, whereas its amplification contributed to increased production, with a larger impact of fasA in both cases. Double disruptions of fasA and fasB resulted in no biotin vitamer production. The acc genes showed a positive effect on production when amplified simultaneously. Augmented fatty acid biosynthesis was also reflected in pimelic acid production when carbon flow was blocked at the BioF reaction. These results indicate that carbon flow down the FAS-I pathway is destined for channeling into the biotin biosynthesis pathway, and that FasA in particular has a significant impact on precursor supply. In contrast, fasB disruption resulted in auxotrophy for lipoic acid or its precursor octanoic acid in both wild-type and BFI-5 strains. The phenotypes were fully complemented by plasmid-mediated expression of fasB but not fasA These results reveal that FasB plays a specific physiological role in lipoic acid biosynthesis in C. glutamicumIMPORTANCE For the de novo biosynthesis of fatty acids, C. glutamicum exceptionally uses a eukaryotic multifunctional type I fatty acid synthase (FAS-I) system comprising FasA and FasB, in contrast to most bacteria, such as E. coli and B. subtilis, which use an individual nonaggregating type II fatty acid synthase (FAS-II) system. In this study, we reported genetic evidence demonstrating that the FAS-I system is the source of the biotin precursor in vivo in the engineered biotin-prototrophic C. glutamicum strain. This study also uncovered the important physiological role of FasB in lipoic acid biosynthesis. Here, we present an FAS-I enzyme that functions in supplying the lipoic acid precursor, although its biosynthesis has been believed to exclusively depend on FAS-II in organisms. The findings obtained here provide new insights into the metabolic engineering of this industrially important microorganism to produce these compounds effectively.
Collapse
|
50
|
Laboratory Evolution of a Biotin-Requiring Saccharomyces cerevisiae Strain for Full Biotin Prototrophy and Identification of Causal Mutations. Appl Environ Microbiol 2017; 83:AEM.00892-17. [PMID: 28600311 DOI: 10.1128/aem.00892-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/01/2017] [Indexed: 11/20/2022] Open
Abstract
Biotin prototrophy is a rare, incompletely understood, and industrially relevant characteristic of Saccharomyces cerevisiae strains. The genome of the haploid laboratory strain CEN.PK113-7D contains a full complement of biotin biosynthesis genes, but its growth in biotin-free synthetic medium is extremely slow (specific growth rate [μ] ≈ 0.01 h-1). Four independent evolution experiments in repeated batch cultures and accelerostats yielded strains whose growth rates (μ ≤ 0.36 h-1) in biotin-free and biotin-supplemented media were similar. Whole-genome resequencing of these evolved strains revealed up to 40-fold amplification of BIO1, which encodes pimeloyl-coenzyme A (CoA) synthetase. The additional copies of BIO1 were found on different chromosomes, and its amplification coincided with substantial chromosomal rearrangements. A key role of this gene amplification was confirmed by overexpression of BIO1 in strain CEN.PK113-7D, which enabled growth in biotin-free medium (μ = 0.15 h-1). Mutations in the membrane transporter genes TPO1 and/or PDR12 were found in several of the evolved strains. Deletion of TPO1 and PDR12 in a BIO1-overexpressing strain increased its specific growth rate to 0.25 h-1 The effects of null mutations in these genes, which have not been previously associated with biotin metabolism, were nonadditive. This study demonstrates that S. cerevisiae strains that carry the basic genetic information for biotin synthesis can be evolved for full biotin prototrophy and identifies new targets for engineering biotin prototrophy into laboratory and industrial strains of this yeast.IMPORTANCE Although biotin (vitamin H) plays essential roles in all organisms, not all organisms can synthesize this vitamin. Many strains of baker's yeast, an important microorganism in industrial biotechnology, contain at least some of the genes required for biotin synthesis. However, most of these strains cannot synthesize biotin at all or do so at rates that are insufficient to sustain fast growth and product formation. Consequently, this expensive vitamin is routinely added to baker's yeast cultures. In this study, laboratory evolution in biotin-free growth medium yielded new strains that grew as fast in the absence of biotin as in its presence. By analyzing the DNA sequences of evolved biotin-independent strains, mutations were identified that contributed to this ability. This work demonstrates full biotin independence of an industrially relevant yeast and identifies mutations whose introduction into other yeast strains may reduce or eliminate their biotin requirements.
Collapse
|