1
|
Guo C, Zhang J, Ge Y, Qiu Z, Xie Z. Asymmetric Palladium Migration for Synthesis of Chiral-at-Cage o-Carboranes. Angew Chem Int Ed Engl 2024:e202416987. [PMID: 39438633 DOI: 10.1002/anie.202416987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Metal migration strategy can offer BH functionalization of o-carboranes at different positions from where initial bond activation occurs to achieve bifunctionalized o-carboranes in one reaction. We report in this article an enantioselective 3,4-bifunctionalization of o-carboranes via asymmetric Pd migration with a high efficiency and up to 98 % ee. This asymmetric catalysis has a broad substrates scope, leading to the preparation of a class of chiral-at-cage o-carborane derivatives. The enantiocontrol model is suggested on the basis of density functional theory (DFT) results, where the chiral Trost ligand plays a crucial role in this enantioselective Pd migration from exo-alkenyl sp2 C to the cage B(4) position of o-carborane.
Collapse
Affiliation(s)
- Chenyang Guo
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jie Zhang
- Department of Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, China
| | - Yixiu Ge
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- International Joint Laboratory of Catalytic Chemistry, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
2
|
Korolyova MA, Telegina AA, Levit GL, Krasnov VP, Gruzdev DA. Theoretical study of the reaction of 7,8-dicarba-nido-undecaborane with S-nucleophiles in the presence of mercury(ii) chloride. Russ Chem Bull 2024; 73:2900-2909. [DOI: 10.1007/s11172-024-4407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 01/03/2025]
|
3
|
Zhang K, Cao K, Sun J, Jin Y, Liu J, Duttwyler S. Crystal Structure of the Monocarborane Magnesium(II) Acetylide and Its Use in the Synthesis of α,β-Unsaturated Ketones. Inorg Chem 2024; 63:16595-16599. [PMID: 39177198 DOI: 10.1021/acs.inorgchem.4c02280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
We report the first crystal structure of heteroleptic Grignard reagent 2 based on the carborane endo/exo dianion [CB11H11-12-C≡C]2-. Full characterization reveals a rare coordination pattern and affirms the bimetallic nature. Navigating the reactivity landscape, we unlock the potential of 2 in nucleophilic addition with ketones to afford propargylic alcohols 3, renowned for their synthetic versatility and potential biological activities, and unveil the Meyer-Schuster rearrangement, yielding α,β-unsaturated carbonyl compounds 4. This narrative of synthesis, characterization, and reactivity opens new horizons for carborane chemistry, offering avenues for innovation and facile functionalization of carborane scaffolds.
Collapse
Affiliation(s)
- Kang Zhang
- Shaoxing University Yuanpei College, 2799 Qunxian Road, Shaoxing 312000, China
| | - Kang Cao
- Shaoxing University Yuanpei College, 2799 Qunxian Road, Shaoxing 312000, China
| | - Jizeng Sun
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yujie Jin
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jiyong Liu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Simon Duttwyler
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
4
|
Khan AR, Ullah Z, Imran M, Malik SA, Alamoudi LM, Cancan M. Molecular temperature descriptors as a novel approach for QSPR analysis of Borophene nanosheets. PLoS One 2024; 19:e0302157. [PMID: 38889107 PMCID: PMC11185492 DOI: 10.1371/journal.pone.0302157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/26/2024] [Indexed: 06/20/2024] Open
Abstract
Borophene nanosheets appear in various sizes and shapes, ranging from simple planar structures to complicated polyhedral formations. Due to their unique chemical, optical, and electrical properties, Borophene nanosheets are theoretically and practically attractive and because of their high thermal conductivity, boron nanosheets are suitable for efficient heat transmission applications. In this paper, temperature indices of borophene nanosheets are computed and these indices are employed in QSPR analysis of attributes like Young's modulus, Shear modulus, and Poisson's ratio of borophene nanosheets and borophene β12 sheets. The regression model for the F-Temperature index is discovered to be the best fit for shear modulus, the reciprocal product connectivity temperature index is discovered to be fit for Poisson's ratio and the second hyper temperature index is discovered to be fit for Young's modulus based on the correlation coefficient.
Collapse
Affiliation(s)
- Abdul Rauf Khan
- Department of Mathematics, Faculty of Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Zafar Ullah
- Division of Science, Department of Mathematics, University of Education, Lahore, Pakistan
| | - Muhammad Imran
- Department of Mathematical Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sidra Aziz Malik
- Department of Mathematics, Faculty of Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Lamis M. Alamoudi
- Department of Statistics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Murat Cancan
- Faculty of Education, Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
5
|
Matveev EY, Dontsova OS, Avdeeva VV, Kubasov AS, Zhdanov AP, Nikiforova SE, Goeva LV, Zhizhin KY, Malinina EA, Kuznetsov NT. Synthesis and Structures of Lead(II) Complexes with Substituted Derivatives of the Closo-Decaborate Anion with a Pendant N 3 Group. Molecules 2023; 28:8073. [PMID: 38138563 PMCID: PMC10746007 DOI: 10.3390/molecules28248073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
In this work, we studied lead(II) and cobalt(II) complexation of derivatives [2-B10H9O(CH2)2O(CH2)2N3]2- and [2-B10H9O(CH2)5N3]2- of the closo-decaborate anion containing pendant azido groups in the presence of 1,10-phenanthroline and 2,2'-bipyridyl. Mononuclear [PbL2{An}] and binuclear [Pb2L4(NO3)2{An}] lead complexes (where {An} is the N3-substituted boron cluster) were isolated and studied by IR spectroscopy and elemental analysis. The mononuclear lead(II) complex [Pb(phen)2[B10H9O(CH2)2O(CH2)2N3] and the binuclear lead(II) complex [Pb2(phen)4(NO3)2[B10H9O(CH2)5)N3] were determined by single-crystal X-ray diffraction. In complex [Pb2(phen)4(NO3)2[B10H9O(CH2)5)N3], the boron cluster is coordinated by the metal atom only via the 3c2e MHB bonds. In complex [Pb(phen)2[B10H9O(CH2)2O(CH2)2N3], the coordination environment of the metal includes BH groups of the boron cluster and the oxygen atom of the exo-polyhedral substituent. When the reaction was performed in a CH3CN/water mixture, the binuclear lead(II) complex [(Pb(bipy)NO3)(Pb(bipy)2NO3)(B10H9O(CH2)2O(CH2)2N3)]·CH3CN·H2O was isolated, where the boron cluster acts as a bridging ligand between lead atoms coordinated by the boron cage via the O atoms of the substituent and/or the BH groups. In the course of cobalt(II) complexation, the starting compound (Ph4P)2[B10H9O(CH2)5N3] was isolated and its structure was also determined by X-ray diffraction. Although a number of lead(II) complexes with coordinated N3 are known from the literature, no complexes with the boron cluster coordinated by the pendant N3 group involved in the metal coordination have been isolated.
Collapse
Affiliation(s)
- Evgenii Yu. Matveev
- Institute of Fine Chemical Technologies Named after M. V. Lomonosov, MIREA—Russian Technological University, Vernadskogo pr. 86, Moscow 119571, Russia; (E.Y.M.); (O.S.D.); (K.Y.Z.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Olga S. Dontsova
- Institute of Fine Chemical Technologies Named after M. V. Lomonosov, MIREA—Russian Technological University, Vernadskogo pr. 86, Moscow 119571, Russia; (E.Y.M.); (O.S.D.); (K.Y.Z.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Varvara V. Avdeeva
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Alexey S. Kubasov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Andrey P. Zhdanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Svetlana E. Nikiforova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Lyudmila V. Goeva
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Konstantin Yu. Zhizhin
- Institute of Fine Chemical Technologies Named after M. V. Lomonosov, MIREA—Russian Technological University, Vernadskogo pr. 86, Moscow 119571, Russia; (E.Y.M.); (O.S.D.); (K.Y.Z.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Elena A. Malinina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Nikolay T. Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| |
Collapse
|
6
|
Gruzdev DA, Telegina AA, Levit GL, Ezhikova MA, Kodess MI, Krasnov VP. Synthesis of Charge-Compensated nido-Carboranyl Derivatives of Sulfur-Containing Amino Acids and Biotin. J Org Chem 2023; 88:14022-14032. [PMID: 37737724 DOI: 10.1021/acs.joc.3c01569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
A new group of charge-compensated nido-carboranyl derivatives of sulfur-containing amino acids and biotin has been synthesized in which the boron atom in position 9 or 10 of carborane is attached to a positively charged sulfur atom. The possibilities of obtaining symmetrical B(10)-substituted and asymmetric B(9)-substituted nido-carboranes were studied. Using the example of (S)-methionine and D-biotin derivatives, water-soluble S-substituted charge-compensated nido-carboranes with free functional groups were prepared. The results obtained open up prospects for the development of potential boron delivery agents for BNCT as well as new bioactive compounds containing a negatively charged nido-carboranyl fragment bearing a positive charge on the sulfur atom associated with the boron cluster.
Collapse
Affiliation(s)
- Dmitry A Gruzdev
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| | - Angelina A Telegina
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| | - Galina L Levit
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| | - Marina A Ezhikova
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| | - Mikhail I Kodess
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| | - Victor P Krasnov
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| |
Collapse
|
7
|
Patel D, Sooraj BS, Kirakci K, Macháček J, Kučeráková M, Bould J, Dušek M, Frey M, Neumann C, Ghosh S, Turchanin A, Pradeep T, Base T. Macropolyhedral syn-B 18H 22, the "Forgotten" Isomer. J Am Chem Soc 2023; 145:17975-17986. [PMID: 37532522 PMCID: PMC10436279 DOI: 10.1021/jacs.3c05530] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 08/04/2023]
Abstract
The chemistry and physics of macropolyhedral B18H22 clusters have attracted significant attention due to the interesting photophysical properties of anti-B18H22 (blue emission, laser properties) and related potential applications. We have focused our attention on the "forgotten" syn-B18H22 isomer, which has received very little attention since its discovery compared to its anti-B18H22 isomer, presumably because numerous studies have reported this isomer as nonluminescent. In our study, we show that in crystalline form, syn-B18H22 exhibits blue fluorescence and becomes phosphorescent when substituted at various positions on the cluster, associated with peculiar microstructural-dependent effects. This work is a combined theoretical and experimental investigation that includes the synthesis, separation, structural characterization, and first elucidation of the photophysical properties of three different monothiol-substituted cluster isomers, [1-HS-syn-B18H21] 1, [3-HS-syn-B18H21] 3, and [4-HS-syn-B18H21] 4, of which isomers 1 and 4 have been proved to exist in two different polymorphic forms. All of these newly substituted macropolyhedral cluster derivatives (1, 3, and 4) have been fully characterized by NMR spectroscopy, mass spectrometry, single-crystal X-ray diffraction, IR spectroscopy, and luminescence spectroscopy. This study also presents the first report on the mechanochromic shift in the luminescence of a borane cluster and generally enriches the area of rather rare boron-based luminescent materials. In addition, we present the first results proving that they are useful constituents of carbon-free self-assembled monolayers.
Collapse
Affiliation(s)
- Deepak
Kumar Patel
- DST
Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE),
Department of Chemistry, Indian Institute
of Technology, Madras, Chennai 600036, India
- Institute
of Inorganic Chemistry, The Czech Academy
of Science, 25068 Rez, Czech Republic
| | - B. S. Sooraj
- DST
Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE),
Department of Chemistry, Indian Institute
of Technology, Madras, Chennai 600036, India
- Institute
of Inorganic Chemistry, The Czech Academy
of Science, 25068 Rez, Czech Republic
| | - Kaplan Kirakci
- Institute
of Inorganic Chemistry, The Czech Academy
of Science, 25068 Rez, Czech Republic
| | - Jan Macháček
- Institute
of Inorganic Chemistry, The Czech Academy
of Science, 25068 Rez, Czech Republic
| | - Monika Kučeráková
- Institute
of Physics, The Czech Academy of Science, 182 21 Prague 8, Czech Republic
| | - Jonathan Bould
- Institute
of Inorganic Chemistry, The Czech Academy
of Science, 25068 Rez, Czech Republic
| | - Michal Dušek
- Institute
of Physics, The Czech Academy of Science, 182 21 Prague 8, Czech Republic
| | - Martha Frey
- Institute
of Physical Chemistry Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Christof Neumann
- Institute
of Physical Chemistry Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sundargopal Ghosh
- DST
Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE),
Department of Chemistry, Indian Institute
of Technology, Madras, Chennai 600036, India
| | - Andrey Turchanin
- Institute
of Physical Chemistry Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Thalappil Pradeep
- DST
Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE),
Department of Chemistry, Indian Institute
of Technology, Madras, Chennai 600036, India
| | - Tomas Base
- Institute
of Inorganic Chemistry, The Czech Academy
of Science, 25068 Rez, Czech Republic
| |
Collapse
|
8
|
Lin C, Jin Y, Sun J, Ye Z, Chen T, Liu J, Duttwyler S. Regioselective B2-6 penta-iodination of the [CB 11H 12] - monocarborane cluster by palladium catalysis. Dalton Trans 2023; 52:11042-11046. [PMID: 37540047 DOI: 10.1039/d3dt02275g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Penta-iodination of the B2-6 positions of the {CB11} monocarborane cluster is reported. Products of the structure [2,3,4,5,6-I5-CB11H6-12-X]- (X = H, Me, Et, Ph, Br, I) were obtained and fully characterized. X-ray crystal structures of three new compounds confirm this particular substitution pattern. The synthetic method relies on palladium catalysis/B-H activation, assisted by the C1-COOH directing group. The one-pot procedure enables penta-iodination and subsequent decarboxylation under convenient conditions. The B2-6 regioselectivity is complementary to the commonly observed reactivity of {CB11} clusters, which follows the trend B12 > B7-11 > B2-6 for electrophilic substitution. Thus, for the first time upper-belt halogenation is achieved without prior modification of the lower-belt positions.
Collapse
Affiliation(s)
- Chuhao Lin
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China.
| | - Yujie Jin
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China.
| | - Jizeng Sun
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China.
| | - Zehua Ye
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China.
| | - Tao Chen
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China.
| | - Jiyong Liu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China.
| | - Simon Duttwyler
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, China.
| |
Collapse
|
9
|
Śmiałkowski K, Sardo C, Leśnikowski ZJ. Metallacarborane Synthons for Molecular Construction-Oligofunctionalization of Cobalt Bis(1,2-dicarbollide) on Boron and Carbon Atoms with Extendable Ligands. Molecules 2023; 28:molecules28104118. [PMID: 37241858 DOI: 10.3390/molecules28104118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The exploitation of metallacarboranes' potential in various fields of research and practical applications requires the availability of convenient and versatile methods for their functionalization with various functional moieties and/or linkers of different types and lengths. Herein, we report a study on cobalt bis(1,2-dicarbollide) functionalization at 8,8'-boron atoms with different hetero-bifunctional moieties possessing a protected hydroxyl function allowing further modification after deprotection. Moreover, an approach to the synthesis of three and four functionalized metallacarboranes, at boron and carbon atoms simultaneously via additional functionalization at carbon to obtain derivatives carrying three or four rationally oriented and distinct reactive surfaces, is described.
Collapse
Affiliation(s)
- Krzysztof Śmiałkowski
- Laboratory of Medicinal Chemistry, Institute of Medical Biology Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
- Lodz Institutes of the Polish Academy of Science, The Bio-Med-Chem Doctoral School, University of Lodz, 90-237 Lodz, Poland
| | - Carla Sardo
- Laboratory of Medicinal Chemistry, Institute of Medical Biology Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Zbigniew J Leśnikowski
- Laboratory of Medicinal Chemistry, Institute of Medical Biology Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| |
Collapse
|
10
|
Harmgarth N, Liebing P, Lorenz V, Engelhardt F, Hilfert L, Busse S, Goldhahn R, Edelmann FT. Synthesis and Structural Characterization of p-Carboranylamidine Derivatives. Molecules 2023; 28:molecules28093837. [PMID: 37175246 PMCID: PMC10179778 DOI: 10.3390/molecules28093837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
In this contribution, the first amidinate and amidine derivatives of p-carborane are described. Double lithiation of p-carborane (1) with n-butyllithium followed by treatment with 1,3-diorganocarbodiimides, R-N=C=N-R (R = iPr, Cy (= cyclohexyl)), in DME or THF afforded the new p-carboranylamidinate salts p-C2H10B10[C(NiPr)2Li(DME)]2 (2) and p-C2H10B10[C(NCy)2Li(THF)2]2 (3). Subsequent treatment of 2 and 3 with 2 equiv. of chlorotrimethylsilane (Me3SiCl) provided the silylated neutral bis(amidine) derivatives p-C2H10B10[C{iPrN(SiMe3)}(=NiPr)]2 (4) and p-C2H10B10[C{CyN(SiMe3)}(=NCy)]2 (5). The new compounds 3 and 4 have been structurally characterized by single-crystal X-ray diffraction. The lithium carboranylamidinate 3 comprises a rare trigonal planar coordination geometry around the lithium ions.
Collapse
Affiliation(s)
- Nicole Harmgarth
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Phil Liebing
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Volker Lorenz
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Felix Engelhardt
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Liane Hilfert
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Sabine Busse
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Rüdiger Goldhahn
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Frank T Edelmann
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
11
|
Wu Z, Liu F, Yang S, Zhang X, Zhang Z, Yang H. Long-term Atomic Oxygen Resistant Polyimide Films Containing Carborane Nanocage Structure in the Main Chains. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Schilling C, Bauer A, Knöller JA, Schulz F, Zens A, Laschat S. Tailoring boron liquid crystals: Mesomorphic properties of iminodiacetic acid boronates. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Makarenkov AV, Kiselev SS, Kononova EG, Dolgushin FM, Peregudov AS, Borisov YA, Ol’shevskaya VA. Synthesis, Characterization and DFT Study of a New Family of High-Energy Compounds Based on s-Triazine, Carborane and Tetrazoles. Molecules 2022; 27:7484. [PMID: 36364313 PMCID: PMC9656522 DOI: 10.3390/molecules27217484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/21/2024] Open
Abstract
An efficient one-pot synthesis of carborane-containing high-energy compounds was developed via the exploration of carbon-halogen bond functionalization strategies in commercially available 2,4,6-trichloro-1,3,5-triazine. The synthetic pathway first included the substitution of two chlorine atoms in s-triazine with 5-R-tetrazoles (R = H, Me, Et) units to form disubstituted tetrazolyl 1,3,5-triazines followed by the sequential substitution of the remaining chlorine atom in 1,3,5-triazine with carborane N- or S-nucleophiles. All new compounds were characterized by IR- and NMR spectroscopy. The structure of four new compounds was confirmed by single crystal X-ray diffraction analysis. The density functional theory method (DFT B3LYP/6-311 + G*) was used to study the geometrical structures, enthalpies of formation (EOFs), energetic properties and highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO) energies and the detonation properties of synthesized compounds. The DFT calculation revealed compounds processing the maximum value of the detonation velocity or the maximum value of the detonation pressure. Theoretical terahertz frequencies for potential high-energy density materials (HEDMs) were computed, which allow the opportunity for the remote detection of these compounds.
Collapse
Affiliation(s)
- Anton V. Makarenkov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Sergey S. Kiselev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Elena G. Kononova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Fedor M. Dolgushin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prosp., 119071 Moscow, Russia
| | - Alexander S. Peregudov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Yurii A. Borisov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Valentina A. Ol’shevskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| |
Collapse
|
14
|
Anderson KP, Djurovich PI, Rubio VP, Liang A, Spokoyny AM. Metal-Catalyzed and Metal-Free Nucleophilic Substitution of 7-I-B 18H 21. Inorg Chem 2022; 61:15051-15057. [PMID: 36098984 DOI: 10.1021/acs.inorgchem.2c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, two pathways of reactivity are investigated to generate site-specific substitutions at the B7 vertex of the luminescent boron cluster, anti-B18H22. First, a palladium-catalyzed cross-coupling reaction utilizing the precursor 7-I-B18H21 and a series of model nucleophiles was developed, ultimately producing several B-N- and B-O-substituted species. Interestingly, the B-I bond in this cluster can also be substituted in an uncatalyzed fashion, leading to the formation of various B-N, B-O, and B-S products. This work highlights intricate differences corresponding to these two reaction pathways and analyzes the role of solvents and additives on product distributions. As a result of our synthetic studies, seven new B18-based clusters were synthesized, isolated, and characterized by mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. The photoluminescence properties of two structurally similar ether and thioether products were further investigated, with both exhibiting blue fluorescence in solution at 298 K and long-lived green or yellow phosphorescence at 77 K. Overall, this work shows, for the first time, the ability to perform substitution of a boron-halogen bond with nucleophiles in a B18-based cluster, resulting in the formation of photoluminescent molecules.
Collapse
Affiliation(s)
- Kierstyn P Anderson
- Department of Chemistry and Biochemistry and California NanoSystem Institute (CNSI), University of California, Los Angeles, California 90095, United States
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Victoria P Rubio
- Department of Chemistry and Biochemistry and California NanoSystem Institute (CNSI), University of California, Los Angeles, California 90095, United States
| | - Aimee Liang
- Department of Chemistry and Biochemistry and California NanoSystem Institute (CNSI), University of California, Los Angeles, California 90095, United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry and California NanoSystem Institute (CNSI), University of California, Los Angeles, California 90095, United States
| |
Collapse
|
15
|
Zhang J, Xie Z. N-Ligand-Enabled Aromatic Nucleophilic Amination of 1,2-Diaryl-o-Carboranes with (R 2 N) 2 Mg for Selective Synthesis of 4-R 2 N-o-Carboranes and 2-R 2 N-m-Carboranes. Angew Chem Int Ed Engl 2022; 61:e202202675. [PMID: 35579912 DOI: 10.1002/anie.202202675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Indexed: 11/08/2022]
Abstract
The nucleophilic aromatic BH substitution reaction of carboranes is uncommon, compared to the electrophilic one. This work reported a pyridine-enabled transition-metal-free regioselective nucleophilic aromatic cage B(4)-H amination of 1,2-diaryl-o-carboranes with magnesium bisamides, giving a series of B(4)-aminated o-carboranes. DFT calculations showcased a stepwise B-N formation/B-H cleavage process, in which Mg-H formation/cage closure is the rate-determining step. Unprecedentedly, in the presence of 4,4'-di-tert-butyl-2,2'-dipyridyl (dtbpy), a tandem B(4)-amination/cage isomerization reaction of o-carboranes was discovered for the facile preparation of B(2)-aminated m-carboranes. Control experiments indicated that magnesium complex, bidentate ligand (dtbpy) and reaction temperature were crucial in the cage isomerization process. This direct nucleophilic aromatic cage B-H amination reaction offers an alternative strategy for selective amination of o- and m-carboranes.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
16
|
Zhang J, Xie Z. N‐Ligand‐Enabled Aromatic Nucleophilic Amination of 1,2‐Diaryl‐
o
‐Carboranes with (R
2
N)
2
Mg for Selective Synthesis of 4‐R
2
N‐
o
‐Carboranes and 2‐R
2
N‐
m
‐Carboranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The Chinese University of Hong Kong Shatin, New Territories, Hong Kong China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The Chinese University of Hong Kong Shatin, New Territories, Hong Kong China
| |
Collapse
|
17
|
Li Z, Núñez R, Light ME, Ruiz E, Teixidor F, Viñas C, Ruiz-Molina D, Roscini C, Planas JG. Water-Stable Carborane-Based Eu 3+/Tb 3+ Metal-Organic Frameworks for Tunable Time-Dependent Emission Color and Their Application in Anticounterfeiting Bar-Coding. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:4795-4808. [PMID: 35637791 PMCID: PMC9136944 DOI: 10.1021/acs.chemmater.2c00323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/19/2022] [Indexed: 05/27/2023]
Abstract
Luminescent lanthanide metal-organic frameworks (Ln-MOFs) have been shown to exhibit relevant optical properties of interest for practical applications, though their implementation still remains a challenge. To be suitable for practical applications, Ln-MOFs must be not only water stable but also printable, easy to prepare, and produced in high yields. Herein, we design and synthesize a series of m CB-Eu y Tb 1-y (y = 0-1) MOFs using a highly hydrophobic ligand mCBL1: 1,7-di(4-carboxyphenyl)-1,7-dicarba-closo-dodecaborane. The new materials are stable in water and at high temperature. Tunable emission from green to red, energy transfer (ET) from Tb3+ to Eu3+, and time-dependent emission of the series of mixed-metal m CB-Eu y Tb 1-y MOFs are reported. An outstanding increase in the quantum yield (QY) of 239% of mCB-Eu (20.5%) in the mixed mCB-Eu0.1Tb0.9 (69.2%) is achieved, along with an increased and tunable lifetime luminescence (from about 0.5 to 10 000 μs), all of these promoted by a highly effective ET process. The observed time-dependent emission (and color), in addition to the high QY, provides a simple method for designing high-security anticounterfeiting materials. We report a convenient method to prepare mixed-metal Eu/Tb coordination polymers (CPs) that are printable from water inks for potential applications, among which anticounterfeiting and bar-coding have been selected as a proof-of-concept.
Collapse
Affiliation(s)
- Zhen Li
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Rosario Núñez
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Mark E. Light
- Department
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Eliseo Ruiz
- Departament
de Química Inorgànica i Orgànica and Institut
de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Francesc Teixidor
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Clara Viñas
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Daniel Ruiz-Molina
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Claudio Roscini
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - José Giner Planas
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| |
Collapse
|
18
|
Szwetkowski C, Slebodnick C, Santos WL. Regio- and stereoselective copper-catalyzed α,β-protoboration of allenoates: access to Z-β,γ-unsaturated β-boryl esters. Org Biomol Chem 2022; 20:3287-3291. [PMID: 35383802 DOI: 10.1039/d2ob00423b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A highly efficient regio- and stereoselective method for allenoate borylation has been developed. Using CuCl and bis(pinacolato)diboron in methanol, a variety of allenoates underwent β-boration and α-protonation to afford the corresponding Z-β,γ-unsaturated β-boryl esters under mild conditions with up to 81% yields.
Collapse
Affiliation(s)
- Connor Szwetkowski
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, 24060, USA.
| | - Carla Slebodnick
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, 24060, USA.
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, 24060, USA.
| |
Collapse
|
19
|
Gruzdev DA, Telegina AA, Levit GL, Krasnov VP. N-Aminoacyl-3-amino- nido-carboranes as a Group of Boron-Containing Derivatives of Natural Amino Acids. J Org Chem 2022; 87:5437-5441. [PMID: 35377641 DOI: 10.1021/acs.joc.2c00151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new group of nido-carboranyl derivatives of natural (S)-amino acids containing from 9 to 18 boron atoms was obtained in good yields as a result of acylation of 3-amino-1,2-dicarba-closo-dodecaborane followed by deboronation. The proposed approach is convenient and based on the use of readily available reagents and is suitable for the synthesis of enantiopure nido-carboranyl derivatives of amino acids with various side chains, including water-soluble boron-containing amino acids (17 examples).
Collapse
Affiliation(s)
- Dmitry A Gruzdev
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy Street, Ekaterinburg 620108, Russia
| | - Angelina A Telegina
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy Street, Ekaterinburg 620108, Russia
| | - Galina L Levit
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy Street, Ekaterinburg 620108, Russia
| | - Victor P Krasnov
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy Street, Ekaterinburg 620108, Russia
| |
Collapse
|
20
|
Haridas A, Bedajna S, Ghosh S. Substitution at B-H vertices of group 5 metallaborane clusters. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Marei T, Al-Joumhawy MK, Alnajjar MA, Nau WM, Assaf KI, Gabel D. Binding affinity of aniline-substituted dodecaborates to cyclodextrins. Chem Commun (Camb) 2022; 58:2363-2366. [PMID: 35080530 DOI: 10.1039/d1cc06524f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new set of hybrid guest molecules bearing organic and inorganic residues have been studied for their recognition by cyclodextrins in aqueous solution. The guest molecules consist of nitroanilines linked through their amino group to the dodecahydrido-closo-dodecaborate cluster B12H122-, which serves as an anchor group. They show sizable affinity to cyclodextrins, and unexpected photophysical properties, with a very strong and low-energy charge-transfer band. The dodecaborate cluster increases the pKa of the anilines by 5.0 to 5.7 pH units, and the deprotonated forms of the o- and p-nitroaniline derivatives show strong charge transfer absorption bands in the visible part of the spectrum.
Collapse
Affiliation(s)
- Tarek Marei
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen D-28759, Germany.
| | - Mahmoud K Al-Joumhawy
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen D-28759, Germany.
| | - Mohammad A Alnajjar
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen D-28759, Germany.
| | - Werner M Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen D-28759, Germany.
| | - Khaleel I Assaf
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Detlef Gabel
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen D-28759, Germany.
| |
Collapse
|
22
|
Zhu M, Zhou Q, Cheng H, Meng Z, Xiang L, Sha Y, Yan H, Li X. Color-tuning and manipulation of aggregation-induced emission efficiency of o-carborane–tetraphenylethylene dyads through substituted o-carboranes. NEW J CHEM 2022. [DOI: 10.1039/d2nj01920e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new carborane-containing tetraphenylethylene derivatives (1 and 2) were designed and synthesized. Together with our previously published compounds (3–5), we studied structure–activity relationships in detail. Results showed that compounds 1...
Collapse
|
23
|
Anderson KP, Hua AS, Plumley JB, Ready AD, Rheingold AL, Peng TL, Djurovich PI, Kerestes C, Snyder NA, Andrews A, Caram JR, Spokoyny A. Benchmarking the dynamic luminescent properties and UV stability of B18H22-based materials. Dalton Trans 2022; 51:9223-9228. [DOI: 10.1039/d2dt01225a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamic photoluminescent properties, and potential quenching mechanisms, of anti-B18H22, 4,4’-Br2-anti-B18H20, and 4,4’-I2-anti-B18H20 are investigated in solution and polymer films. UV stability studies of the neat powders show no decomposition...
Collapse
|
24
|
Abi-Ghaida F. The serendipitous integration of small boron-embedded molecules into medicinal chemistry. FUNDAMENTALS AND APPLICATIONS OF BORON CHEMISTRY 2022:321-410. [DOI: 10.1016/b978-0-12-822127-3.00006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Gruzdev DA, Telegina AA, Chulakov EN, Levit GL, Krasnov VP. (7,8-Dicarba- nido-undecaboran-7-yl)acetic acid: synthesis of individual enantiomers and the first example of the determination of the absolute configuration of chiral monosubstituted nido-carborane. NEW J CHEM 2022. [DOI: 10.1039/d2nj02994d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Starting from achiral closo-carborane and using natural amino acid as chiral auxiliary, individual (RP)- and (SP)-enantiomers of C-monosubstituted nido-carboranes were obtained.
Collapse
Affiliation(s)
- Dmitry A. Gruzdev
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, Ekaterinburg, 620108, Russia
| | - Angelina A. Telegina
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, Ekaterinburg, 620108, Russia
| | - Evgeny N. Chulakov
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, Ekaterinburg, 620108, Russia
| | - Galina L. Levit
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, Ekaterinburg, 620108, Russia
| | - Victor P. Krasnov
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, Ekaterinburg, 620108, Russia
| |
Collapse
|
26
|
Minyaylo EO, Kudryavtseva AI, Zubova VY, Anisimov AA, Zaitsev AV, Ol'shevskaya VA, Dolgushin FM, Peregudov AS, Muzafarov AM. Synthesis of mono- and polyfunctional organosilicon derivatives of polyhedral carboranes for the preparation of hybrid polymer materials. NEW J CHEM 2022. [DOI: 10.1039/d2nj01266a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of mono- and polyfunctional carborane organosilicon derivatives were prepared with good yields based on the hydrosilylation reactions of allylcarboranes with hydride-containing organosilicon compounds such as tetramethyldisiloxane, decamethylpentasiloxane and triethoxysilane in the presence of Karstedt's catalyst.
Collapse
Affiliation(s)
- E. O. Minyaylo
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - A. I. Kudryavtseva
- D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - V. Y. Zubova
- D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - A. A. Anisimov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - A. V. Zaitsev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - V. A. Ol'shevskaya
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - F. M. Dolgushin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A. S. Peregudov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - A. M. Muzafarov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
27
|
Duttwyler S, Liu F, Chen T, Zhang K, Jiang T, Liu J. Sonogashira Coupling of the Ethynyl Monocarborane [CB11H11-12-CCH]–. Dalton Trans 2022; 51:10880-10886. [DOI: 10.1039/d2dt01048h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Sonogashira cross coupling between the monocarborane cluster 12-ethynylmonocarba-closo-dodecaborate [CB11H11-12-CCH]– and bromoarenes under Pd catalysis has been developed, providing access to aryl carboranyl alkynes in yields of 42–95%. The transformations...
Collapse
|
28
|
Ready AD, Becwar S, Jung D, Kallistova A, Schueller E, Anderson KP, Kubena R, Seshadri R, Chmelka BF, Spokoyny A. Synthesis and structural properties of a 2D Zn(II) dodecahydroxy-closo-dodecaborate coordination polymer. Dalton Trans 2022; 51:11547-11557. [DOI: 10.1039/d2dt01292h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we discuss the synthesis and characterization of a 2D coordination polymer composed of a dianionic perhydroxylated boron cluster, [B12(OH)12]2-, coordinated to Zn(II)—the first example of a transition...
Collapse
|
29
|
Al-Joumhawy MK, Marei T, Shmalko A, Cendoya P, La Borde J, Gabel D. B-N bond formation through palladium-catalyzed, microwave-assisted cross-coupling of nitrogen compounds with iodo-dodecaborate. Chem Commun (Camb) 2021; 57:10007-10010. [PMID: 34549744 DOI: 10.1039/d1cc03215a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Substituted undecahydrido-closo-dodecaborates [B12H11NR2]2- have potential use in materials and drugs, but have presented a synthetic challenge. Microwave-assisted palladium-catalyzed amination of iodo-dodecaborate [B12H11I]2- allows mild and reproducible formation of B-N bonds with aromatic amines, HN-containing heteroaromatics, and amides. The reaction allows general access to amides, reproducible reactions to dodecaborate-substituted anilines, and, for the first time, the substitution of dodecaborate with HN-containing heterocycles.
Collapse
Affiliation(s)
- Mahmoud K Al-Joumhawy
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | - Tarek Marei
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | - Akim Shmalko
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany. .,A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia
| | - Paula Cendoya
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | - Jair La Borde
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | - Detlef Gabel
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
30
|
Li B, Zhang X, Stauber JM, Miller TF, Spokoyny AM. Electronic Structure of Superoxidized Radical Cationic Dodecaborate-Based Clusters. J Phys Chem A 2021; 125:6141-6150. [PMID: 34240867 DOI: 10.1021/acs.jpca.1c03927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expanding field of boron clusters has attracted continuous theoretical efforts to understand their diverse structures and unique bonding. We recently discovered a new reversible redox event of B12(O-3-methylbutyl)12 in which the superoxidized radical cationic form [B12(O-3-methylbutyl)12]•+ was identified and isolated for the first time. Herein, comprehensive (TD-)DFT studies in tandem with electrochemical experiments were employed to demonstrate the generality of the reported behavior across perfunctionalized B12(OR)12 clusters (R = aryl or alkyl). While the spin density of radical cationic clusters is delocalized in the core region, the oxidation brings about notable gains of positive partial charges on the supporting groups whose electronics can readily tune the redox potential of the 0/•+ couple. The underlying changes of frontier orbitals were elucidated, and the resulting [B12(OR)12]•+ species manifest a general diagnostic absorption as a consequence of mixed local/charge-transfer excitations.
Collapse
Affiliation(s)
- Bo Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Xinglong Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Julia M Stauber
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Thomas F Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
31
|
Krebs J, Haehnel M, Krummenacher I, Friedrich A, Braunschweig H, Finze M, Ji L, Marder TB. Synthesis and Structure of an o-Carboranyl-Substituted Three-Coordinate Borane Radical Anion. Chemistry 2021; 27:8159-8167. [PMID: 33769625 PMCID: PMC8252506 DOI: 10.1002/chem.202100938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Bis(1-(4-tolyl)-carboran-2-yl)-(4-tolyl)-borane [(1-(4-MeC6 H4 )-closo-1,2-C2 B10 H10 -2-)2 (4-MeC6 H4 )B] (1), a new bis(o-carboranyl)-(R)-borane was synthesised by lithiation of the o-carboranyl precursor and subsequent salt metathesis reaction with (4-tolyl)BBr2 . Cyclic voltammetry experiments on 1 show multiple distinct reduction events with a one-electron first reduction. In a selective reduction experiment the corresponding paramagnetic radical anion 1.- was isolated and characterized. Single-crystal structure analyses allow an in-depth comparison of 1, 1.- , their calculated geometries, and the S1 excited state of 1. Photophysical studies of 1 show a charge transfer (CT) emission with low quantum yield in solution but a strong increase in the solid state. TD-DFT calculations were used to identify transition-relevant orbitals.
Collapse
Affiliation(s)
- Johannes Krebs
- Institute for Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Martin Haehnel
- Institute for Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute for Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute for Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute for Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Maik Finze
- Institute for Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Lei Ji
- Frontiers Science Center for Flexible Electronics (FSCFE)Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University127 West Youyi Road710072Xi'anP. R. China
| | - Todd B. Marder
- Institute for Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
32
|
Gruzdev DA, Levit GL, Krasnov VP, Charushin VN. Carborane-containing amino acids and peptides: Synthesis, properties and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Yao ZJ, Jin YX, Deng W, Liu ZJ. Synthesis and Optoelectronic Properties of Cationic Iridium(III) Complexes with o-Carborane-Based 2-Phenyl Benzothiazole Ligands. Inorg Chem 2021; 60:2756-2763. [PMID: 33480675 DOI: 10.1021/acs.inorgchem.0c03625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of cationic cyclometalated iridium(III) complexes with o-carborane cage on the main ligand of 2-phenylbenzothiazole were synthesized. The prepared iridium complexes (C1-C6) were fully characterized by UV-vis, NMR, and FT-IR spectra. The exact molecular structure of complex C1 was further studied by single crystal X-ray diffraction analysis. The different substitution position of o-carborane on the 2-phenylbenzothiazole ring lead to obvious differences in the emission properties of the synthesized complexes. The o-carboranyl unit results in a bathochromic shift of 10 nm in the fluorescence emission spectrum of C2. In addition, the presence of an o-carborane fragment promoted the strong fluorescence intensity of C1 and C4, which can be used as a tool to effectively boost the intensity of fluorescence properties. The emission fluorescent behavior of iridium(III) complexes can be facilely tuned by structural variations in the main ligands of these materials.
Collapse
Affiliation(s)
- Zi-Jian Yao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.,Key Lab of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yong-Xu Jin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Zhen-Jiang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| |
Collapse
|
34
|
Parejo L, Chaari M, Santiago S, Guirado G, Teixidor F, Núñez R, Hernando J. Reversibly Switchable Fluorescent Molecular Systems Based on Metallacarborane-Perylenediimide Conjugates. Chemistry 2021; 27:270-280. [PMID: 32648595 DOI: 10.1002/chem.202002419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Indexed: 12/31/2022]
Abstract
Icosahedral metallacarboranes are θ-shaped anionic molecules in which two icosahedra share one vertex that is a metal center. The most remarkable of these compounds is the anionic cobalt-based metallacarborane [Co(C2 B9 H11 )2 ]- , whose oxidation-reduction processes occur via an outer sphere electron process. This, along with its low density negative charge, makes [Co(C2 B9 H11 )2 ]- very appealing to participate in electron-transfer processes. In this work, [Co(C2 B9 H11 )2 ]- is tethered to a perylenediimide dye to produce the first examples of switchable luminescent molecules and materials based on metallacarboranes. In particular, the electronic communication of [Co(C2 B9 H11 )2 ]- with the appended chromophore unit in these compounds can be regulated upon application of redox stimuli, which allows the reversible modulation of the emitted fluorescence. As such, they behave as electrochemically-controlled fluorescent molecular switches in solution, which surpass the performance of previous systems based on conjugates of perylendiimides with ferrocene. Remarkably, they can form gels by treatment with appropriate mixtures of organic solvents, which result from the self-assembly of the cobaltabisdicarbollide-perylendiimide conjugates into 1D nanostructures. The interplay between dye π-stacking and metallacarborane electronic and steric interactions ultimately governs the supramolecular arrangement in these materials, which for one of the compounds prepared allows preserving the luminescent behavior in the gel state.
Collapse
Affiliation(s)
- Laura Parejo
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Mahdi Chaari
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193, Barcelona, Spain
| | - Sara Santiago
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Gonzalo Guirado
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Francesc Teixidor
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193, Barcelona, Spain
| | - Rosario Núñez
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193, Barcelona, Spain
| | - Jordi Hernando
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| |
Collapse
|
35
|
Ol'shevskaya VA, Alpatova VM, Makarenkov AV, Kononova EG, Smol’yakov AF, Peregudov AS, Rys EG. Synthesis of maleimide-functionalized carboranes and their utility in Michael addition reactions. NEW J CHEM 2021. [DOI: 10.1039/d1nj02499j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Carboranyl maleimides were obtained and their reactivity with S- and N-nucleophiles was demonstrated.
Collapse
Affiliation(s)
- Valentina A. Ol'shevskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Victoria M. Alpatova
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Anton V. Makarenkov
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Elena G. Kononova
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Alexander F. Smol’yakov
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Alexander S. Peregudov
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Evgeny G. Rys
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| |
Collapse
|
36
|
Zhou Q, Zhu M, Chen W, Qin N, Liu Y, Zhang W, Li X, Sha Y, Yan H. Configuration-controllable synthesis of Z/ E isomers based on o-carborane-functionalized tetraphenylethene. NEW J CHEM 2021. [DOI: 10.1039/d1nj02029c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Two Z/E isomers, namely, Z-TPE-2Car and E-TPE-2Car, with clear configuration were synthesized using an effective route and have high solid-state fluorescence quantum yields, reaching 99% and 90%, respectively.
Collapse
Affiliation(s)
- Qin Zhou
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Miao Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Wei Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Na Qin
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Yujie Liu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Xiang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Ye Sha
- Department of Chemistry and Material Science
- College of Science
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| |
Collapse
|
37
|
Li X, Zhou Q, Zhu M, Chen W, Wang B, Sha Y, Yan H. Synthesis and photophysical properties of a new tetraphenylethylene-o-carborane-based star-shaped molecule. NEW J CHEM 2021. [DOI: 10.1039/d1nj01207j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel TPE-o-carborane-based star-shaped molecule with a triphenylamine core was synthesized. In the solid state, the absolute luminescent quantum yield of this dendrimer can be improved to 62%.
Collapse
Affiliation(s)
- Xiang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Science
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Qin Zhou
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Science
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Miao Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Science
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Wei Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Science
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Beibei Wang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Science
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Ye Sha
- Department of Chemistry and Material Science
- College of Science
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| |
Collapse
|
38
|
Fanfrlík J, Pecina A, Řezáč J, Lepšík M, Sárosi MB, Hnyk D, Hobza P. Benchmark Data Sets of Boron Cluster Dihydrogen Bonding for the Validation of Approximate Computational Methods. Chemphyschem 2020; 21:2599-2604. [PMID: 33179424 DOI: 10.1002/cphc.202000729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Indexed: 12/31/2022]
Abstract
The success of approximate computational methods, such as molecular mechanics, or dispersion-corrected density functional theory, in the description of non-covalent interactions relies on accurate parameterizations. Benchmark data sets are thus required. This area is well developed for organic molecules and biomolecules but practically non-existent for boron clusters, which have been gaining in importance in modern drug as well as material design. To fill this gap, we have introduced two data sets featuring the most common non-covalent interaction of boron clusters, the dihydrogen bond, and calculated reference interaction energies at the "golden standard" CCSD(T)/CBS level. The boron clusters studied interact with formamide, methanol, water and methane at various distances and in two geometrical arrangements. The performance of the tested approximate methods is variable and recommendations for further use are given.
Collapse
Affiliation(s)
- Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Adam Pecina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Current address: Istituto Italiano di Tecnologia, Molecular Modeling and Drug Discovery, Via Morego 30, 161 63, Genoa, Italy
| | - Jan Řezáč
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Menyhárt B Sárosi
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Drahomír Hnyk
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 25068, Husinec-Řež, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 77146, Olomouc, Czech Republic
| |
Collapse
|
39
|
Minyaylo EO, Anisimov AA, Zaitsev AV, Ol'shevskaya VA, Peregudov AS, Kononova EG, Shchegolikhina OI, Muzafarov AM, Möller M. Synthesis of new carboranyl organosilicon derivatives – precursors for the preparation of hybrid organo-inorganic materials. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
|
41
|
Jena BB, Jena SR, Swain BR, Mahanta CS, Samanta L, Dash BP, Satapathy R. Triazine‐cored dendritic molecules containing multiple
o
‐carborane clusters. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Biswa Ranjan Swain
- Department of ChemistryRavenshaw University Cuttack Odisha 753 003 India
| | | | - Luna Samanta
- Department of ZoologyRavenshaw University Cuttack Odisha 753 003 India
| | - Barada P. Dash
- Department of ChemistrySiksha 'O' Anusandhan (Deemed to be University) Bhubaneswar Odisha 751 030 India
| | | |
Collapse
|
42
|
Stauber JM, Schwan J, Zhang X, Axtell JC, Jung D, McNicholas BJ, Oyala PH, Martinolich AJ, Winkler JR, See KA, Miller TF, Gray HB, Spokoyny AM. A Super-Oxidized Radical Cationic Icosahedral Boron Cluster. J Am Chem Soc 2020; 142:12948-12953. [PMID: 32646209 DOI: 10.1021/jacs.0c06159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While the icosahedral closo-[B12H12]2- cluster does not display reversible electrochemical behavior, perfunctionalization of this species via substitution of all 12 B-H vertices with alkoxy or benzyloxy (OR) substituents engenders reversible redox chemistry, providing access to clusters in the dianionic, monoanionic, and neutral forms. Here, we evaluated the electrochemical behavior of the electron-rich B12(O-3-methylbutyl)12 (1) cluster and discovered that a new reversible redox event that gives rise to a fourth electronic state is accessible through one-electron oxidation of the neutral species. Chemical oxidation of 1 with [N(2,4-Br2C6H3)3]•+ afforded the isolable [1]•+ cluster, which is the first example of an open-shell cationic B12 cluster in which the unpaired electron is proposed to be delocalized throughout the boron cluster core. The oxidation of 1 is also chemically reversible, where treatment of [1]•+ with ferrocene resulted in its reduction back to 1. The identity of [1]•+ is supported by EPR, UV-vis, multinuclear NMR (1H, 11B), and X-ray photoelectron spectroscopic characterization.
Collapse
Affiliation(s)
- Julia M Stauber
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Josef Schwan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Xinglong Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Jonathan C Axtell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Dahee Jung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Brendon J McNicholas
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Andrew J Martinolich
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Jay R Winkler
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Kimberly A See
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Thomas F Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Harry B Gray
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
43
|
Prakash R, Halet JF, Ghosh S. Polyhedral [M 2B 5] Metallaborane Clusters and Derivatives: An Overview of Their Structural Features and Chemical Bonding. Molecules 2020; 25:E3179. [PMID: 32664614 PMCID: PMC7397089 DOI: 10.3390/molecules25143179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022] Open
Abstract
A large number of metallaborane clusters and their derivatives with various structural arrangements are known. Among them, M2B5 clusters and derivatives constitute a significant class. Transition metals present in these species span from group 4 to group 7. Their structure can vary from oblatonido, oblatoarachno, to arachno type open structures. Many of these clusters appear to be hypoelectronic and are often considered as 'rule breakers' with respect to the classical Wade-Mingos electron counting rules. This is due to their unique highly oblate (flattened) deltahedral structures featuring a cross-cluster M-M interaction. Many theoretical calculations were performed to elucidate their electronic structure and chemical bonding properties. In this review, the synthesis, structure, and electronic aspects of the transition metal M2B5 clusters known in the literature are discussed. The chosen examples illustrate how, in synergy with experiments, computational results can provide additional valuable information to better understand the electronic properties and electronic requirements which govern their architecture and thermodynamic stability.
Collapse
Affiliation(s)
- Rini Prakash
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India;
| | - Jean-François Halet
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, F-35000 Rennes, France
| | - Sundargopal Ghosh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India;
| |
Collapse
|
44
|
Bakardjiev M, El Anwar S, Bavol D, Růžičková Z, Grűner B. Focus on Chemistry of the 10-Dioxane- nido-7,8-dicarba-undecahydrido Undecaborate Zwitterion; Exceptionally Easy Abstraction of Hydrogen Bridge and Double-Action Pathways Observed in Ring Cleavage Reactions with OH - as Nucleophile. Molecules 2020; 25:E814. [PMID: 32069968 PMCID: PMC7070711 DOI: 10.3390/molecules25040814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/25/2022] Open
Abstract
Ring cleavage of cyclic ether substituents attached to a boron cage via an oxonium oxygen atom are amongst the most versatile methods for conjoining boron closo-cages with organic functional groups. Here we focus on much less tackled chemistry of the 11-vertex zwitterionic compound [10-(O-(CH2-CH2)2O)-nido-7,8-C2B9H11] (1), which is the only known representative of cyclic ether substitution at nido-cages, and explore the scope for the use of this zwitterion 1 in reactions with various types of nucleophiles including bifunctional ones. Most of the nitrogen, oxygen, halogen, and sulphur nucleophiles studied react via nucleophilic substitution at the C1 atom of the dioxane ring, followed by its cleavage that produces six atom chain between the cage and the respective organic moiety. We also report the differences in reactivity of this nido-cage system with the simplest oxygen nucleophile, i.e., OH-. With compound 1, reaction proceeds in two possible directions, either via typical ring cleavage, or by replacement of the whole dioxane ring with -OH at higher temperatures. Furthermore, an easy deprotonation of the hydrogen bridge in 1 was observed that proceeds even in diluted aqueous KOH. We believe this knowledge can be further applied in the design of functional molecules, materials, and drugs.
Collapse
Affiliation(s)
- Mário Bakardjiev
- Institute of Inorganic Chemistry of Czech Academy of Sciences, 25068 Řež, Czech Republic; (M.B.); (S.E.A.); (D.B.)
| | - Suzan El Anwar
- Institute of Inorganic Chemistry of Czech Academy of Sciences, 25068 Řež, Czech Republic; (M.B.); (S.E.A.); (D.B.)
| | - Dmytro Bavol
- Institute of Inorganic Chemistry of Czech Academy of Sciences, 25068 Řež, Czech Republic; (M.B.); (S.E.A.); (D.B.)
| | - Zdeňka Růžičková
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 53210 Pardubice, Czech Republic;
| | - Bohumír Grűner
- Institute of Inorganic Chemistry of Czech Academy of Sciences, 25068 Řež, Czech Republic; (M.B.); (S.E.A.); (D.B.)
| |
Collapse
|
45
|
Kawahata M, Tominaga M, Komatsu R, Hyodo T, Yamaguchi K. Inclusion crystals of V-shaped host molecules having trialkoxybenzene moieties with a carborane or benzoquinone derivative. CrystEngComm 2020. [DOI: 10.1039/d0ce01107j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystallization of an o-carborane or benzoquinone derivative with adamantane-based molecules possessing pyrogallol derivatives resulted in the formation of inclusion crystals through CH⋯O or lone pair⋯π interactions.
Collapse
Affiliation(s)
| | - Masahide Tominaga
- Faculty of Pharmaceutical Sciences at Kagawa Campus
- Tokushima Bunri University
- Sanuki
- Japan
| | - Ryota Komatsu
- Faculty of Pharmaceutical Sciences at Kagawa Campus
- Tokushima Bunri University
- Sanuki
- Japan
| | - Tadashi Hyodo
- Faculty of Pharmaceutical Sciences at Kagawa Campus
- Tokushima Bunri University
- Sanuki
- Japan
| | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus
- Tokushima Bunri University
- Sanuki
- Japan
| |
Collapse
|
46
|
Liu F, Fang G, Yang H, Yang S, Zhang X, Zhang Z. Carborane-Containing Aromatic Polyimide Films with Ultrahigh Thermo-Oxidative Stability. Polymers (Basel) 2019; 11:polym11121930. [PMID: 31771122 PMCID: PMC6960542 DOI: 10.3390/polym11121930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/03/2022] Open
Abstract
Carborane-containing aromatic polyimide (CPI) films with ultrahigh thermo-oxidative stability at 700 °C have been prepared by casting poly(amic acid) (PAA) resin solution on a glass surface, followed by thermal imidization at elevated temperatures. The PAA solution was prepared by copolymerization of an aromatic dianhydride and an aromatic diamine mixture, including carborane-containing aromatic diamine in an aprotic solvent. The CPI films showed excellent thermo-oxidative stability at 700 °C due to the multilayered protection layers formed on the film surface by thermal conversion of the carborane group into boron oxides. The boron oxide layer enhanced the degradation activation energy and suppressed the direct contact of inner polymer materials with oxygen molecules in a high-temperature environment, acting as a “self-healing” skin layer on the polyimide materials. The CPI-50 film was still flexible and maintained 50% retention of mechanical strength even after thermo-oxidative aging at 700 °C/5 min. The mechanism of thermo-oxidative degradation was proposed.
Collapse
Affiliation(s)
- Fulin Liu
- Laboratory of Advanced Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (F.L.)
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangqiang Fang
- Shanghai Institute of Aerospace Systems Engineering, Shanghai 201108, China
| | - Haixia Yang
- Laboratory of Advanced Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (F.L.)
- Correspondence: (H.Y.); (S.Y.)
| | - Shiyong Yang
- Laboratory of Advanced Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (F.L.)
- Correspondence: (H.Y.); (S.Y.)
| | - Xuezhong Zhang
- Laboratory of Advanced Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (F.L.)
| | - Zhijie Zhang
- Laboratory of Advanced Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (F.L.)
| |
Collapse
|
47
|
Li X, Sun L, Zhang Q, Li S, Wang Y, Wei D, Zhang W, Lan Y. Mechanism and Substituent Effects of Benzene Arylation via a Phenyl Cation Strategy: A Density Functional Theory Study. ChemCatChem 2019. [DOI: 10.1002/cctc.201901120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiaoyan Li
- College of ChemistryZhengzhou University 100 Science Avenue Zhengzhou, Henan Province 450001 P.R. China
| | - Ling Sun
- Basic Teaching DepartmentHuanghe Jiaotong University Jiaozuo, Henan Province 454950 P. R. China
| | - Qiaochu Zhang
- College of ChemistryZhengzhou University 100 Science Avenue Zhengzhou, Henan Province 450001 P.R. China
| | - Shijun Li
- College of ChemistryZhengzhou University 100 Science Avenue Zhengzhou, Henan Province 450001 P.R. China
| | - Yang Wang
- Department of Material and Chemical EngineeringZhengzhou University of Light Industry 136 Science Avenue Zhengzhou, Henan Province 450002 P.R. China
| | - Donghui Wei
- College of ChemistryZhengzhou University 100 Science Avenue Zhengzhou, Henan Province 450001 P.R. China
| | - Wenjing Zhang
- College of ChemistryZhengzhou University 100 Science Avenue Zhengzhou, Henan Province 450001 P.R. China
| | - Yu Lan
- College of ChemistryZhengzhou University 100 Science Avenue Zhengzhou, Henan Province 450001 P.R. China
| |
Collapse
|
48
|
Diab M, Floquet S, Haouas M, Abramov PA, López X, Landy D, Damond A, Falaise C, Guérineau V, Touboul D, Naoufal D, Cadot E. Encapsulation of Chaotropic
closo
‐Decahydrodecaborate Clusters Within Cyclodextrins: Synthesis, Solution Studies, and DFT Calculations. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manal Diab
- Institut Lavoisier de Versailles, CNRS, UVSQ Université Paris‐Saclay 45 av. des Etats‐Unis 78035 Versailles France
- Laboratory of Organometallic and Coordination Chemistry, LCIO Lebanese University, Faculty of Sciences I Hadath Lebanon
| | - Sébastien Floquet
- Institut Lavoisier de Versailles, CNRS, UVSQ Université Paris‐Saclay 45 av. des Etats‐Unis 78035 Versailles France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, CNRS, UVSQ Université Paris‐Saclay 45 av. des Etats‐Unis 78035 Versailles France
| | - Pavel A. Abramov
- Nikolaiev Institute of Inorganic Chemistry SB RAS 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - Xavier López
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili Marcel.lí Domingo 1 43007 Tarragona Spain
| | - David Landy
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, EA 4492), ULCO Dunkerque France
| | - Aurélie Damond
- Institut Lavoisier de Versailles, CNRS, UVSQ Université Paris‐Saclay 45 av. des Etats‐Unis 78035 Versailles France
| | - Clément Falaise
- Institut Lavoisier de Versailles, CNRS, UVSQ Université Paris‐Saclay 45 av. des Etats‐Unis 78035 Versailles France
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles CNRS UPR2301 Université Paris‐Sud, Université Paris‐Saclay Avenue de la Terrasse 91198 Gif‐sur‐Yvette Cedex France
| | - David Touboul
- Institut de Chimie des Substances Naturelles CNRS UPR2301 Université Paris‐Sud, Université Paris‐Saclay Avenue de la Terrasse 91198 Gif‐sur‐Yvette Cedex France
| | - Daoud Naoufal
- Laboratory of Organometallic and Coordination Chemistry, LCIO Lebanese University, Faculty of Sciences I Hadath Lebanon
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, CNRS, UVSQ Université Paris‐Saclay 45 av. des Etats‐Unis 78035 Versailles France
| |
Collapse
|
49
|
Londesborough MGS, Dolanský J, Bould J, Braborec J, Kirakci K, Lang K, Císařová I, Kubát P, Roca-Sanjuán D, Francés-Monerris A, Slušná L, Noskovičová E, Lorenc D. Effect of Iodination on the Photophysics of the Laser Borane anti-B18H22: Generation of Efficient Photosensitizers of Oxygen. Inorg Chem 2019; 58:10248-10259. [DOI: 10.1021/acs.inorgchem.9b01358] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Jiří Dolanský
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
| | - Jonathan Bould
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
| | - Jakub Braborec
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
| | - Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
| | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Charles University in Prague, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
| | - Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Praha 8, Czech Republic
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, ES-46071, València, Spain
| | | | - Lenka Slušná
- Department of Physical, Theoretical and Computational Chemistry, Mlynská dolina, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Eva Noskovičová
- Department of Physical, Theoretical and Computational Chemistry, Mlynská dolina, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Dušan Lorenc
- International Laser Centre, Ilkovicova 3, 84104, Bratislava, Slovak Republic
| |
Collapse
|
50
|
Assaf KI, Begaj B, Frank A, Nilam M, Mougharbel AS, Kortz U, Nekvinda J, Grüner B, Gabel D, Nau WM. High-Affinity Binding of Metallacarborane Cobalt Bis(dicarbollide) Anions to Cyclodextrins and Application to Membrane Translocation. J Org Chem 2019; 84:11790-11798. [DOI: 10.1021/acs.joc.9b01688] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Khaleel I. Assaf
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Barbara Begaj
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Angelina Frank
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Mohamed Nilam
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Ali S. Mougharbel
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Jan Nekvinda
- Institute of Inorganic Chemistry, Czech Academy of Sciences, v.v.i., Hlavní 1001, CZ-250 68 Řež, Czech Republic
| | - Bohumír Grüner
- Institute of Inorganic Chemistry, Czech Academy of Sciences, v.v.i., Hlavní 1001, CZ-250 68 Řež, Czech Republic
| | - Detlef Gabel
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| | - Werner M. Nau
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany
| |
Collapse
|