1
|
Seuffert MT, Granath T, Kasper T, Maile R, Pujales-Paradela R, Prieschl J, Wintzheimer S, Mandel K, Müller-Buschbaum K. Tuning Magnetic and Photophysical Properties of Luminomagnetic Metal-Organic Framework Composites in an Inverse Core-Satellite Structure. Chempluschem 2023; 88:e202200395. [PMID: 36563109 DOI: 10.1002/cplu.202200395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Luminomagnetic composites have been synthesized that allow for an individual tuning of luminescence intensity, chromaticity and magnetization by combination of superparamagnetic, citrate-stabilized iron oxide nanoparticles with the luminescent MOFs 3 ∞ [Ln2 (BDC)3 (H2 O)4 ] (Ln=Eu, Tb; BDC2- =terephthalate). The components are arranged to a concept of inverse structuring compared to previous luminomagnetic composites with MOF@magnetic particle (shell@core) composition so that the luminescent MOF now acts as core and is covered by magnetic nanoparticles forming the satellite shell. Thereby, the magnetic and photophysical properties are individually tuneable between high emission intensity (1.2 ⋅ 106 cps mg-1 ) plus low saturation magnetization (6 emu g-1 ) and the direct opposite (0.09 ⋅ 106 cps mg-1 ; 42 emu g-1 ) by adjusting the particle coverage of the MOF. This is not achievable with a core-shell structure having a magnetic core and a dense MOF shell. The composition of the composites and the influence of different synthesis conditions on their properties were investigated by SEM/EDX, PXRD, magnetization measurements and photoluminescence spectroscopy.
Collapse
Affiliation(s)
- Marcel T Seuffert
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Tim Granath
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Thomas Kasper
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Ruben Maile
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Rosa Pujales-Paradela
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Johannes Prieschl
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Susanne Wintzheimer
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany.,Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97082, Würzburg, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany.,Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97082, Würzburg, Germany
| | - Klaus Müller-Buschbaum
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany.,Center for Materials Research, Heinrich-Buff-Ring 16, 35392, Giessen, Germany
| |
Collapse
|
2
|
Innocenzi P. Mesoporous ordered films via self-assembly: trends and perspectives. Chem Sci 2022; 13:13264-13279. [PMID: 36507165 PMCID: PMC9682886 DOI: 10.1039/d2sc04828k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/07/2022] [Indexed: 12/15/2022] Open
Abstract
The synthesis of ordered mesoporous films via self-assembly represents one of the main accomplishments in nanoscience. In fact, controlling the complex chemical-physical phenomena that govern the process triggered by the solvent's fast evaporation during film deposition has represented a challenging task. Several years after the first articles on the subject, the research in the field entered a new stage. New advanced applications based on the peculiar properties of mesoporous films are envisaged while basic research is still going on, especially to clarify the mechanism behind self-organization in a spatially defined environment and the physics and chemistry in mesoscale porosity. This review has been dedicated to analysing the main trends in the fields and the perspective for future developments.
Collapse
Affiliation(s)
- Plinio Innocenzi
- Laboratory of Materials Science and Nanotechnology (LMNT), Department of Biomedical Sciences, CR-INSTM, University of SassariViale San Pietro 43/BSassari 07100Italy,Department of Chemistry, University of United Arab Emirates, Al Ain. United Arab EmiratesUnited Arab Emirates
| |
Collapse
|
3
|
Bharti A, Turchet A, Marmiroli B. X-Ray Lithography for Nanofabrication: Is There a Future? FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.835701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
X-ray lithography has been first proposed almost 50 years ago, and the related LIGA process around 25 years ago. It is therefore a good time to make an analysis of the technique, with its pros and cons. In this perspective article, we describe X-ray lithography’s latest advancements. First, we report the improvement in the fabrication of the high aspect ratio and high-resolution micro/nanostructures. Then, we present the radiation-assisted synthesis and processing of novel materials for the next generation of functional devices. We finally draw our conclusion on the future prospects of the technique.
Collapse
|
4
|
Thakkar S, De Luca L, Gaspa S, Mariani A, Garroni S, Iacomini A, Stagi L, Innocenzi P, Malfatti L. Comparative Evaluation of Graphene Nanostructures in GERS Platforms for Pesticide Detection. ACS OMEGA 2022; 7:5670-5678. [PMID: 35224328 PMCID: PMC8867560 DOI: 10.1021/acsomega.1c04863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Graphene-enhanced Raman scattering (GERS) produces enhancement of the Raman signal, which is based on chemical rather than electromagnetic mechanism such as in the surface-enhanced Raman scattering. Graphene oxide, amino- and guanidine-functionalized graphene oxide, exfoliated graphene, and commercial graphene nanoplatelets have been used to investigate the GERS response with the change of graphene properties. Different graphene nanostructures have been embedded into organic-inorganic microporous films to build a platform for the fast and sensitive detection of pesticides in water. The graphene nanostructures vary in the number of layers, lateral size, degree of oxidation, and surface functionalization. The GERS performances of the graphene nanostructures cast on silicon substrates and embedded in the nanocomposite films have been comparatively evaluated. After casting a few droplets of the pesticide aqueous solution on the graphene nanostructures, the Raman band enhancements of the analytes have been measured. In the nanocomposite films, the characteristic Raman bands originating from pesticides such as paraoxon, parathion, and glyphosate could be traced at concentrations below 10-7, 10-5, and 10-4 M, respectively. The results show that the surface functionalization reduces the GERS effect because it increases the ratio between the sp3 carbon and sp2 carbon. On the other hand, the comparison among different types of graphenes shows that the monolayers are more efficient than the few-layer nanostructures in enhancing the Raman signal.
Collapse
Affiliation(s)
- Swapneel Thakkar
- LMNT,
CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale S. Pietro, 43c, 07100 Sassari SS, Italy
| | - Lidia De Luca
- Department
of Chemistry and Pharmacy, University of
Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Silvia Gaspa
- Department
of Chemistry and Pharmacy, University of
Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Alberto Mariani
- Department
of Chemistry and Pharmacy, University of
Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Sebastiano Garroni
- Department
of Chemistry and Pharmacy, University of
Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Antonio Iacomini
- Department
of Chemistry and Pharmacy, University of
Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Luigi Stagi
- LMNT,
CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale S. Pietro, 43c, 07100 Sassari SS, Italy
- Department
of Chemistry and Pharmacy, University of
Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Plinio Innocenzi
- LMNT,
CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale S. Pietro, 43c, 07100 Sassari SS, Italy
| | - Luca Malfatti
- LMNT,
CR-INSTM, Department of Biomedical Sciences, University of Sassari, Viale S. Pietro, 43c, 07100 Sassari SS, Italy
| |
Collapse
|
5
|
Thakkar SV, Malfatti L. Silica-graphene porous nanocomposites for environmental remediation: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111519. [PMID: 33113395 DOI: 10.1016/j.jenvman.2020.111519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/24/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
With the increase of industrialization, there is an urgent need for developing technologies to detect and remove toxic pollutants from water bodies. The pollutants are often released to the environment due to the consumption of raw materials that are necessary for the production of technological goods (such as chemical and pharmaceutical compounds, metals, and alloys or foods). Amongst all the remediation techniques, adsorption is considered as one of the preferred techniques, due to its fast and efficient removal of contaminants. Novel materials, which are engineered for selective and responsive water remediation, have also recently revealed a strong potential in the detection of pollutants. Here, current trends of silica-graphene (SG) porous composites for the removal of oils, organic solvents, heavy metals, and dyes are reviewed in detail. Insights on the modifications of composites to enhance their sorption performance have been highlighted. In addition, the detection of pollutants using porous SG nanocomposites is also critically reviewed. Overall, SG composites reveal a strong potential as nanostructure materials with improved efficiency for environmental-based applications.
Collapse
Affiliation(s)
- Swapneel Vijay Thakkar
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| | - Luca Malfatti
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| |
Collapse
|
6
|
|
7
|
Steinberg PY, Zalduendo MM, Giménez G, Soler-Illia GJAA, Angelomé PC. TiO 2 mesoporous thin film architecture as a tool to control Au nanoparticles growth and sensing capabilities. Phys Chem Chem Phys 2019; 21:10347-10356. [PMID: 31073574 DOI: 10.1039/c9cp01896d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this paper, a systematic study regarding the effect of the mesoporous structure over Au nanoparticles (NPs) growth inside and through the pores of mesoporous TiO2 thin films (MTTFs) is presented, and the effect of such characteristics over the composites' sensing capabilities is evaluated. Highly stable MTTFs with different pore diameters (range: 4-8 nm) and pore arrangements (body- and face-centered cubic) were synthesized and characterized. Au NPs were grown inside the pores, and it was demonstrated-through a careful physicochemical characterization-that the amount of incorporated Au and NP size depends on the pore array; being higher for bigger pore diameters and face-centered cubic structures. The same structure allows the growth of more and longer tips over Au NPs deposited at the thin film-substrate interface. Finally, to confirm the effect of the structural characteristics of the composites over their possible applications, the materials were tested as surface-enhanced Raman scattering (SERS)-based substrates. The composites with a higher amount of Au and more ramified NPs were the ones that presented better sensitivity in the detection of a probe molecule (4-nitrothiophenol). Overall, this work demonstrates that the pore size and ordering in MTTFs determine the materials' accessibility and connectivity, and therefore, have a clear impact on their potential applications.
Collapse
Affiliation(s)
- Paula Y Steinberg
- Gerencia Química & INN, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
8
|
Innocenzi P, Malfatti L. Mesoporous materials as platforms for surface-enhanced Raman scattering. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Jiang Y, Carboni D, Malfatti L, Innocenzi P. Graphene Oxide-Silver Nanoparticles in Molecularly-Imprinted Hybrid Films Enabling SERS Selective Sensing. MATERIALS 2018; 11:ma11091674. [PMID: 30201868 PMCID: PMC6163847 DOI: 10.3390/ma11091674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/23/2018] [Accepted: 09/03/2018] [Indexed: 11/16/2022]
Abstract
A highly sensitive and selective Raman sensor has been developed by combining molecularly imprinted cavities, silver nanoparticles, and graphene oxide into a hybrid organic-inorganic film. The molecular imprinted nanocomposite material is an advanced platform that exhibits Graphene-mediated Surface-Enhanced Raman Scattering. The sensing layers have been prepared via sol-gel process and imprinted with rhodamine 6G to obtain selective dye recognition. Graphene oxide sheets decorated with silver nanoparticles have been incorporated into the matrix to enhance the Raman scattering signal. The template molecule can be easily removed from the films by ultrasonication in ethanol. A 712-fold Raman enhancement has been observed, which corresponds to a 2.15 × 1013 count·μmol−1 signal enhancement per molecular cavity. Besides Raman enhancement, the sensing platform has shown an excellent selectivity toward the test molecule with respect to similar dyes. In addition, the material can be reused at least 10 times without any loss of performance.
Collapse
Affiliation(s)
- Yu Jiang
- Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT), Dipartimento di Chimica e Farmacia, Università di Sassari, CR-INSTM, Via Vienna 2, 07041 Sassari, Italy.
| | - Davide Carboni
- Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT), Dipartimento di Chimica e Farmacia, Università di Sassari, CR-INSTM, Via Vienna 2, 07041 Sassari, Italy.
| | - Luca Malfatti
- Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT), Dipartimento di Chimica e Farmacia, Università di Sassari, CR-INSTM, Via Vienna 2, 07041 Sassari, Italy.
| | - Plinio Innocenzi
- Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT), Dipartimento di Chimica e Farmacia, Università di Sassari, CR-INSTM, Via Vienna 2, 07041 Sassari, Italy.
| |
Collapse
|
10
|
Eremina OE, Semenova AA, Sergeeva EA, Brazhe NA, Maksimov GV, Shekhovtsova TN, Goodilin EA, Veselova IA. Surface-enhanced Raman spectroscopy in modern chemical analysis: advances and prospects. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4804] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Jiang Y, Carboni D, Pinna A, Marmiroli B, Malfatti L, Innocenzi P. Hard X-rays for processing hybrid organic-inorganic thick films. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:267-273. [PMID: 26698073 DOI: 10.1107/s1600577515018597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
Hard X-rays, deriving from a synchrotron light source, have been used as an effective tool for processing hybrid organic-inorganic films and thick coatings up to several micrometres. These coatings could be directly modified, in terms of composition and properties, by controlled exposure to X-rays. The physico-chemical properties of the coatings, such as hardness, refractive index and fluorescence, can be properly tuned using the interaction of hard X-rays with the sol-gel hybrid films. The changes in the microstructure have been correlated especially with the modification of the optical and the mechanical properties. A relationship between the degradation rate of the organic groups and the rise of fluorescence from the hybrid material has been observed; nanoindentation analysis of the coatings as a function of the X-ray doses has shown a not linear dependence between thickness and film hardness.
Collapse
Affiliation(s)
- Yu Jiang
- Laboratorio di Scienza dei Materiali e Nanotecnologie, DADU, Università di Sassari, CR-INSTM, Palazzo Pou Salit, Piazza Duomo 6, 07041 Alghero (Sassari), Italy
| | - Davide Carboni
- Laboratorio di Scienza dei Materiali e Nanotecnologie, DADU, Università di Sassari, CR-INSTM, Palazzo Pou Salit, Piazza Duomo 6, 07041 Alghero (Sassari), Italy
| | - Alessandra Pinna
- Laboratorio di Scienza dei Materiali e Nanotecnologie, DADU, Università di Sassari, CR-INSTM, Palazzo Pou Salit, Piazza Duomo 6, 07041 Alghero (Sassari), Italy
| | - Benedetta Marmiroli
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/IV, 8010 Graz, Austria
| | - Luca Malfatti
- Laboratorio di Scienza dei Materiali e Nanotecnologie, DADU, Università di Sassari, CR-INSTM, Palazzo Pou Salit, Piazza Duomo 6, 07041 Alghero (Sassari), Italy
| | - Plinio Innocenzi
- Laboratorio di Scienza dei Materiali e Nanotecnologie, DADU, Università di Sassari, CR-INSTM, Palazzo Pou Salit, Piazza Duomo 6, 07041 Alghero (Sassari), Italy
| |
Collapse
|
12
|
Ye M, Wei Z, Hu F, Wang J, Ge G, Hu Z, Shao M, Lee ST, Liu J. Fast assembling microarrays of superparamagnetic Fe3O4@Au nanoparticle clusters as reproducible substrates for surface-enhanced Raman scattering. NANOSCALE 2015; 7:13427-13437. [PMID: 26079311 DOI: 10.1039/c5nr02491a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
It is currently a very active research area to develop new types of substrates which integrate various nanomaterials for surface-enhanced Raman scattering (SERS) techniques. Here we report a unique approach to prepare SERS substrates with reproducible performance. It features silicon mold-assisted magnetic assembling of superparamagnetic Fe3O4@Au nanoparticle clusters (NCs) into arrayed microstructures on a wafer scale. This approach enables the fabrication of both silicon-based and hydrogel-based substrates in a sequential manner. We have demonstrated that strong SERS signals can be harvested from these substrates due to an efficient coupling effect between Fe3O4@Au NCs, with enhancement factors >10(6). These substrates have been confirmed to provide reproducible SERS signals, with low variations in different locations or batches of samples. We investigate the spatial distributions of electromagnetic field enhancement around Fe3O4@Au NCs assemblies using finite-difference-time-domain (FDTD) simulations. The procedure to prepare the substrates is straightforward and fast. The silicon mold can be easily cleaned out and refilled with Fe3O4@Au NCs assisted by a magnet, therefore being re-useable for many cycles. Our approach has integrated microarray technologies and provided a platform for thousands of independently addressable SERS detection, in order to meet the requirements of a rapid, robust, and high throughput performance.
Collapse
Affiliation(s)
- Min Ye
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu Province 215123, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Innocenzi P, Malfatti L, Carboni D. Graphene and carbon nanodots in mesoporous materials: an interactive platform for functional applications. NANOSCALE 2015; 7:12759-72. [PMID: 26177068 DOI: 10.1039/c5nr03773e] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The present review is focused on a specific class of nanocomposites obtained through integration of graphene or carbon-based nanomaterials (such as carbon nanodots) with mesoporous inorganic or hybrid materials, obtained via template assisted self-assembly. The task of integrating graphene and carbon nanodots with a self-assembly process is still very challenging and this review shows some of the solutions which have been envisaged so far. These nanocomposite materials are an ideal interactive platform for developing innovative functional applications; they have a high capability of undergoing integration into advanced devices, which well exploits the advantage of tuning the wide properties and flexibility of the soft-chemistry route. A wide range of applications have been developed so far which span from sensing to electronics up to optics and biomedicine. Even though a large number of proof-of-concepts have been reported to date, an even greater expansion of applications in the field is expected to happen in the near future.
Collapse
Affiliation(s)
- Plinio Innocenzi
- Laboratorio di Scienza dei Materiali e Nanotecnologie, CR-INSTM, DADU, Università di Sassari, Palazzo Pou Salid, Piazza Duomo 6, 07041 Alghero (SS), Italy.
| | | | | |
Collapse
|
14
|
Li C, Dag Ö, Dao TD, Nagao T, Sakamoto Y, Kimura T, Terasaki O, Yamauchi Y. Electrochemical synthesis of mesoporous gold films toward mesospace-stimulated optical properties. Nat Commun 2015; 6:6608. [PMID: 25799072 PMCID: PMC4382992 DOI: 10.1038/ncomms7608] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 02/11/2015] [Indexed: 12/25/2022] Open
Abstract
Mesoporous gold (Au) films with tunable pores are expected to provide fascinating optical properties stimulated by the mesospaces, but they have not been realized yet because of the difficulty of controlling the Au crystal growth. Here, we report a reliable soft-templating method to fabricate mesoporous Au films using stable micelles of diblock copolymers, with electrochemical deposition advantageous for precise control of Au crystal growth. Strong field enhancement takes place around the center of the uniform mesopores as well as on the walls between the pores, leading to the enhanced light scattering as well as surface-enhanced Raman scattering (SERS), which is understandable, for example, from Babinet principles applied for the reverse system of nanoparticle ensembles.
Collapse
Affiliation(s)
- Cuiling Li
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ömer Dag
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Thang Duy Dao
- 1] World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan [2] PRESTO and CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan [3] Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tadaaki Nagao
- 1] World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan [2] PRESTO and CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yasuhiro Sakamoto
- 1] PRESTO and CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan [2] Department of Physics, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Tatsuo Kimura
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Shimoshidami, Moriyama, Nagoya 463-8560, Japan
| | - Osamu Terasaki
- 1] Graduate School of EEWS (BK21Plus), KAIST, Daejeon 305-701, Korea [2] Department of Materials and Environmental Chemistry, EXSELENT, Stockholm University, 10691 Stockholm, Sweden
| | - Yusuke Yamauchi
- 1] World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan [2] Department of Nanoscience and Nanoengineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
15
|
Carboni D, Lasio B, Alzari V, Mariani A, Loche D, Casula MF, Malfatti L, Innocenzi P. Graphene-mediated surface enhanced Raman scattering in silica mesoporous nanocomposite films. Phys Chem Chem Phys 2014; 16:25809-18. [PMID: 25278085 DOI: 10.1039/c4cp03582h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Silica mesoporous nanocomposite films containing graphene nanosheets and gold nanoparticles have been prepared via a one-pot synthesis using silicon tetrachloride, gold(III) chloride tetrahydrate, a 1-N-vinyl-2-pyrrolidone dispersion of exfoliated graphene and Pluronic F127 as a structuring agent. The composite films have shown graphene-mediated surface-enhanced Raman scattering (G-SERS). Graphene has been introduced as dispersed bilayer sheets while gold has been thermally reduced in situ to form nanoparticles of around 6 nm which preferentially nucleate on the surface of the graphene nanosheets. The presence of graphene and gold nanoparticles does not interfere with the self-assembly process and the formation of silica mesoporous films ordered as 2D hexagonal structures. The material has shown a remarkable analytical enhancement factor ranging from 80 up to 136 using rhodamine 6G as a Raman probe. The films have been characterised by grazing incidence X-ray diffraction, FTIR and UV-vis spectroscopy studies; transmission electron microscopy and spectroscopic ellipsometry have been used to study the morphology, thickness and porosities of the samples. Raman spectroscopy has been employed to characterise the graphene nanosheets embedded into the mesoporous films and the enhanced Raman scattering.
Collapse
Affiliation(s)
- Davide Carboni
- Laboratorio di Scienza dei Materiali e Nanotecnologie, CR-INSTM, DADU, Università di Sassari, Palazzo Pou Salid, Piazza Duomo 6, 07041 Alghero (SS), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wolosiuk A, Tognalli NG, Martínez ED, Granada M, Fuertes MC, Troiani H, Bilmes SA, Fainstein A, Soler-Illia GJAA. Silver nanoparticle-mesoporous oxide nanocomposite thin films: a platform for spatially homogeneous SERS-active substrates with enhanced stability. ACS APPLIED MATERIALS & INTERFACES 2014; 6:5263-5272. [PMID: 24621107 DOI: 10.1021/am500631f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We introduce a nanoparticle-mesoporous oxide thin film composite (NP-MOTF) as low-cost and straightforward sensing platforms for surface-enhanced Raman Spectroscopy (SERS). Titania, zirconia, and silica mesoporous matrices templated with Pluronics F-127 were synthesized via evaporation-induced self-assembly and loaded with homogeneously dispersed Ag nanoparticles by soft reduction or photoreduction. Both methods give rise to uniform and reproducible Raman signals using 4-mercaptopyridine as a probe molecule. Details on stability and reproducibility of the Raman enhancement are discussed. Extensions in the design of these composite structures were explored including detection of nonthiolated molecules, such as rhodamine 6-G or salicylic acid, patterning techniques for locating the enhancement regions and bilayered mesoporous structures to provide additional control on the environment, and potential size-selective filtration. These inorganic oxide-metal composites stand as extremely simple, reproducible, and versatile platforms for Raman spectroscopy analysis.
Collapse
Affiliation(s)
- Alejandro Wolosiuk
- Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (CNEA) , Av. Gral Paz 1499 B1650KNA San Martín, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Malfatti L, Falcaro P, Pinna A, Lasio B, Casula MF, Loche D, Falqui A, Marmiroli B, Amenitsch H, Sanna R, Mariani A, Innocenzi P. Exfoliated graphene into highly ordered mesoporous titania films: highly performing nanocomposites from integrated processing. ACS APPLIED MATERIALS & INTERFACES 2014; 6:795-802. [PMID: 24256457 DOI: 10.1021/am4027407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To fully exploit the potential of self-assembly in a single step, we have designed an integrated process to obtain mesoporous graphene nanocomposite films. The synthesis allows incorporating graphene sheets with a small number of defects into highly ordered and transparent mesoporous titania films. The careful design of the porous matrix at the mesoscale ensures the highest diffusivity in the films. These exhibit an enhanced photocatalytic efficiency, while the high order of the mesoporosity is not affected by the insertion of the graphene sheets and is well-preserved after a controlled thermal treatment. In addition, we have proven that the nanocomposite films can be easily processed by deep X-ray lithography to produce functional arrays.
Collapse
Affiliation(s)
- Luca Malfatti
- Laboratorio di Scienza dei Materiali e Nanotecnologie, CR-INSTM, Università di Sassari , Palazzo Pou Salid, Piazza Duomo 6, 07041 Alghero (SS), Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen G, Wang Y, Wang H, Cong M, Chen L, Yang Y, Geng Y, Li H, Xu S, Xu W. A highly sensitive microfluidics system for multiplexed surface-enhanced Raman scattering (SERS) detection based on Ag nanodot arrays. RSC Adv 2014. [DOI: 10.1039/c4ra09251a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We present a microfluidics system with Ag nanodot arrays as the enhancement substrate for multiplexed SERS detection of low-concentration mixtures of thiram and adenine.
Collapse
Affiliation(s)
- Gang Chen
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun, People's Republic of China
- College of Chemistry
| | - Yuyang Wang
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun, People's Republic of China
| | - Hailong Wang
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun, People's Republic of China
| | - Ming Cong
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun, People's Republic of China
| | - Lei Chen
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun, People's Republic of China
- College of Physics
| | - Yongan Yang
- Department of Physics and Electronic Science
- Chu Xiong Normal University
- Chuxiong 675000, People's Republic of China
| | - Yijia Geng
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun, People's Republic of China
- College of Physics
| | - Haibo Li
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun, People's Republic of China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun, People's Republic of China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun, People's Republic of China
| |
Collapse
|
19
|
Qi J, Motwani P, Gheewala M, Brennan C, Wolfe JC, Shih WC. Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates. NANOSCALE 2013; 5:4105-9. [PMID: 23334234 DOI: 10.1039/c2nr33242f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Monolithic hierarchical nanoporous gold disks, 500 nm in diameter, 75 nm in thickness and 3.5 nm in pore radius, have been fabricated by hybrid processes. A surface-enhanced Raman scattering enhancement factor of at least 10(8) has been obtained on individual disks using benzenethiol self-assembled monolayer with 785 nm laser excitation.
Collapse
Affiliation(s)
- Ji Qi
- Department of Electrical and Computer Engineering, University of Houston, 4800 Calhoun Road, Houston, Texas 77204, USA
| | | | | | | | | | | |
Collapse
|
20
|
Pinna A, Lasio B, Piccinini M, Marmiroli B, Amenitsch H, Falcaro P, Tokudome Y, Malfatti L, Innocenzi P. Combining top-down and bottom-up routes for fabrication of mesoporous titania films containing ceria nanoparticles for free radical scavenging. ACS APPLIED MATERIALS & INTERFACES 2013; 5:3168-3175. [PMID: 23484882 DOI: 10.1021/am4001024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nanocomposite thin films formed by mesoporous titania layers loaded with ceria nanoparticles have been obtained by combining bottom-up self-assembly synthesis of a titania matrix with top-down hard X-ray lithography of nanocrystalline cerium oxide. At first the titania mesopores have been impregnated with the ceria precursor solution and then exposed to hard X-rays, which triggered the formation of crystalline cerium oxides within the pores inducing the in situ growth of nanoparticles with average size of 4 nm. It has been observed that the type of coordinating agent in the solution plays a primary role in the formation of nanoparticles. Different patterns have been also produced through deep X-ray lithography by spatially controlling the nanoparticle growth on the micrometer scale. The radical scavenging role of the nanocomposite films has been tested using as a benchmark the UV photodegradation of rhodamine 6G. After impregnation with a rhodamine 6G solution, samples with and without ceria have shown a remarkably different response upon exposure to UV light. The dye photodegradation on the surface of nanocomposite films appears strongly slowed down because of the antioxidation effect of ceria nanoparticles.
Collapse
Affiliation(s)
- Alessandra Pinna
- Laboratorio di Scienza dei Materiali e Nanotecnologie, LMNT-D.A.D.U., Università di Sassari and CR-INSTM, Palazzo Pou Salit, Piazza Duomo 6, 07041 Alghero, Sassari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Innocenzi P, Malfatti L. Mesoporous thin films: properties and applications. Chem Soc Rev 2013; 42:4198-216. [PMID: 23396534 DOI: 10.1039/c3cs35377j] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Plinio Innocenzi
- Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT), D.A.D.U., CR-INSTM, Università di Sassari, Palazzo Pou Salid, Piazza Duomo 6, 07041 Alghero (SS), Italy.
| | | |
Collapse
|
22
|
Marmiroli B, Amenitsch H. X-ray lithography and small-angle X-ray scattering: a combination of techniques merging biology and materials science. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:851-61. [PMID: 22854870 DOI: 10.1007/s00249-012-0843-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/30/2012] [Accepted: 07/10/2012] [Indexed: 11/28/2022]
Abstract
The advent of micro/nanotechnology has blurred the border between biology and materials science. Miniaturization of chemical and biological assays, performed by use of micro/nanofluidics, requires both careful selection of the methods of fabrication and the development of materials designed for specific applications. This, in turn, increases the need for interdisciplinary combination of suitable microfabrication and characterisation techniques. In this review, the advantages of combining X-ray lithography, as fabrication technique, with small-angle X-ray scattering measurements will be discussed. X-ray lithography enables the limitations of small-angle X-ray scattering, specifically time resolution and sample environment, to be overcome. Small-angle X-ray scattering, on the other hand, enables investigation and, consequently, adjustment of the nanostructural morphology of microstructures and materials fabricated by X-ray lithography. Moreover, the effect of X-ray irradiation on novel materials can be determined by use of small-angle X-ray scattering. The combination of top-down and bottom-up methods to develop new functional materials and structures with potential in biology will be reported.
Collapse
Affiliation(s)
- B Marmiroli
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Schmiedlstr. 6, 8042, Graz, Austria
| | | |
Collapse
|
23
|
Zhu X, Zhang C, Liu X, Hansen O, Xiao S, Mortensen NA, Zi J. Evaporation of water droplets on "lock-and-key" structures with nanoscale features. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:9201-9205. [PMID: 22662879 DOI: 10.1021/la301867q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Highly ordered poly(dimethylsiloxane) microbowl arrays (MBAs) and microcap arrays (MCAs) with "lock-and-key" properties are successfully fabricated by self-assembly and electrochemical deposition. The wetting properties and evaporation dynamics of water droplets for both cases have been investigated. For the MBAs case, the wetting radius of the droplets remains unchanged until the portion of the droplet completely dries out at the end of the evaporation process. The pinning state extends for more than 99.5% of the total evaporation time, and the pinning-shrinking transition is essentially prevented whereas in the case of the MCAs the contact radius exhibits distinct stages during evaporation and the contact line retreats significantly in the middle of the evaporation process. We explain the phenomenon by a qualitative energy balance argument based on the different shrinkage types of the nanoscale-folded contact line.
Collapse
Affiliation(s)
- Xiaolong Zhu
- Department of Physics, Key Laboratory of Micro- and Nano-Photonic Structures, Ministry of Education, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|