1
|
Darling WTP, Wieske LHE, Cook DT, Aliev AE, Caron L, Humphrys EJ, Figueiredo AM, Hansen DF, Erdélyi M, Tabor AB. The Influence of Disulfide, Thioacetal and Lanthionine-Bridges on the Conformation of a Macrocyclic Peptide. Chemistry 2024; 30:e202401654. [PMID: 38953277 DOI: 10.1002/chem.202401654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Cyclisation of peptides by forming thioether (lanthionine), disulfide (cystine) or methylene thioacetal bridges between side chains is established as an important tool to stabilise a given structure, enhance metabolic stability and optimise both potency and selectivity. However, a systematic comparative study of the effects of differing bridging modalities on peptide conformation has not previously been carried out. In this paper, we have used the NMR deconvolution algorithm, NAMFIS, to determine the conformational ensembles, in aqueous solution, of three cyclic analogues of angiotensin(1-7), incorporating either disulfide, or non-reducible thioether or methylene thioacetal bridges. We demonstrate that the major solution conformations are conserved between the different bridged peptides, but the distribution of conformations differs appreciably. This suggests that subtle differences in ring size and bridging structure can be exploited to fine-tune the conformational properties of cyclic peptides, which may modulate their bioactivities.
Collapse
Affiliation(s)
- William T P Darling
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Lianne H E Wieske
- Department of Chemistry-BMC, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Declan T Cook
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Abil E Aliev
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| | - Laurent Caron
- Biosynth Laboratories Ltd (formerly Cambridge Research Biochemicals Ltd), 17-18 Belasis Court, Belasis Hall Technology Park, Billingham, TS23 4AZ, UK
| | - Emily J Humphrys
- Biosynth Laboratories Ltd (formerly Cambridge Research Biochemicals Ltd), 17-18 Belasis Court, Belasis Hall Technology Park, Billingham, TS23 4AZ, UK
| | - Angelo Miguel Figueiredo
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, UCL Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, UCL Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Máté Erdélyi
- Department of Chemistry-BMC, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Alethea B Tabor
- Department of Chemistry, University College London, 20, Gordon Street, London, WC1H 0AJ, UK
| |
Collapse
|
2
|
Sengupta S, Pabbaraja S, Mehta G. Natural products from the human microbiome: an emergent frontier in organic synthesis and drug discovery. Org Biomol Chem 2024; 22:4006-4030. [PMID: 38669195 DOI: 10.1039/d4ob00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Often referred to as the "second genome", the human microbiome is at the epicenter of complex inter-habitat biochemical networks like the "gut-brain axis", which has emerged as a significant determinant of cognition, overall health and well-being, as well as resistance to antibiotics and susceptibility to diseases. As part of a broader understanding of the nexus between the human microbiome, diseases and microbial interactions, whether encoded secondary metabolites (natural products) play crucial signalling roles has been the subject of intense scrutiny in the recent past. A major focus of these activities involves harvesting the genomic potential of the human microbiome via bioinformatics guided genome mining and culturomics. Through these efforts, an impressive number of structurally intriguing antibiotics, with enhanced chemical diversity vis-à-vis conventional antibiotics have been isolated from human commensal bacteria, thereby generating considerable interest in their total synthesis and expanding their therapeutic space for drug discovery. These developments augur well for the discovery of new drugs and antibiotics, particularly in the context of challenges posed by mycobacterial resistance and emerging new diseases. The current landscape of various synthetic campaigns and drug discovery initiatives on antibacterial natural products from the human microbiome is captured in this review with an intent to stimulate further activities in this interdisciplinary arena among the new generation.
Collapse
Affiliation(s)
- Saumitra Sengupta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
3
|
Mazo N, Rahman IR, Navo CD, Peregrina JM, Busto JH, van der Donk WA, Jiménez-Osés G. Synthesis of Fluorescent Lanthipeptide Cytolysin S Analogues by Late-Stage Sulfamidate Ring Opening. Org Lett 2023; 25:1431-1435. [PMID: 36849130 PMCID: PMC10012263 DOI: 10.1021/acs.orglett.3c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 03/01/2023]
Abstract
Nucleophilic ring opening of cyclic sulfamidates derived from amino acids is a common strategy for the synthesis of lanthionine derivatives. In this work, we report the regio-, chemo-, and stereoselective intramolecular S-alkylation of a cysteine residue with N-sulfonyl sulfamidates for the synthesis of cyclic lanthionine-containing peptides. The strategy involves the solid-phase synthesis of sulfamidate-containing peptides followed by late-stage intramolecular cyclization. This protocol allowed for the synthesis of four full-length cytolysin S (CylLS″) analogues, two α-peptides and two hybrid α/β-peptides. Their conformational preferences and biological activities were assessed and compared with those of wild-type CylLS″.
Collapse
Affiliation(s)
- Nuria Mazo
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Imran R. Rahman
- Department
of Biochemistry, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Claudio D. Navo
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain
| | - Jesús M. Peregrina
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Jesús H. Busto
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Wilfred A. van der Donk
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gonzalo Jiménez-Osés
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain
- Ikerbaske, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
4
|
Mthembu SN, Chakraborty A, Schönleber R, Albericio F, de la Torre BG. Solid-Phase Synthesis of C-Terminus Cysteine Peptide Acids. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sinenhlanhla N. Mthembu
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Amit Chakraborty
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | | | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Barcelona 08028, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Beatriz G. de la Torre
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
5
|
Werner M, Pampel J, Pham TL, Thomas F. Late-Stage Functionalisation of Peptides on the Solid Phase by an Iodination-Substitution Approach. Chemistry 2022; 28:e202201339. [PMID: 35700354 PMCID: PMC9545490 DOI: 10.1002/chem.202201339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 11/20/2022]
Abstract
The functionalisation of peptides at a late synthesis stage holds great potential, for example, for the synthesis of peptide pharmaceuticals, fluorescent biosensors or peptidomimetics. Here we describe an on-resin iodination-substitution reaction sequence on homoserine that is also suitable for peptide modification in a combinatorial format. The reaction sequence is accessible to a wide range of sulfur nucleophiles with various functional groups including boronic acids, hydroxy groups or aromatic amines. In this way, methionine-like thioethers or thioesters and thiosulfonates are accessible. Next to sulfur nucleophiles, selenols, pyridines and carboxylic acids were successfully used as nucleophiles, whereas phenols did not react. The late-stage iodination-substitution approach is not only applicable to short peptides but also to the more complex 34-amino-acid WW domains. We applied this strategy to introduce 7-mercapto-4-methylcoumarin into a switchable ZnII responsive WW domain to design an iFRET-based ZnII sensor.
Collapse
Affiliation(s)
- Marius Werner
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced Materials (CAM)Heidelberg UniversityIm Neuenheimer Feld 22569120HeidelbergGermany
- Department of Medicinal ChemistryInstitute of Pharmacy and Molecular Biotechnology (IPMB)Heidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Julius Pampel
- Department of Chemical BiologyMax Planck Institute for Medical ResearchJahnstraße 2969120HeidelbergGermany
| | - Truc Lam Pham
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced Materials (CAM)Heidelberg UniversityIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Franziska Thomas
- Institute of Organic ChemistryHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced Materials (CAM)Heidelberg UniversityIm Neuenheimer Feld 22569120HeidelbergGermany
| |
Collapse
|
6
|
Vacariu CM, Tanner ME. Recent Advances in the Synthesis and Biological Applications of Peptidoglycan Fragments. Chemistry 2022; 28:e202200788. [PMID: 35560956 DOI: 10.1002/chem.202200788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/09/2022]
Abstract
The biosynthesis, breakdown, and modification of peptidoglycan (PG) play vital roles in both bacterial viability and in the response of human physiology to bacterial infection. Studies on PG biochemistry are hampered by the fact that PG is an inhomogeneous insoluble macromolecule. Chemical synthesis is therefore an important means to obtain PG fragments that may serve as enzyme substrates and elicitors of the human immune response. This review outlines the recent advances in the synthesis and biochemical studies of PG fragments, PG biosynthetic intermediates (such as Park's nucleotides and PG lipids), and PG breakdown products (such as muramyl dipeptides and anhydro-muramic acid-containing fragments). A rich variety of synthetic approaches has been applied to preparing such compounds since carbohydrate, peptide, and phospholipid chemical methodologies must all be applied.
Collapse
Affiliation(s)
- Condurache M Vacariu
- Department of Chemistry, University of British Columbia, V6T 1Z1, Vancouver, British Columbia, Canada
| | - Martin E Tanner
- Department of Chemistry, University of British Columbia, V6T 1Z1, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Tovillas P, Navo CD, Oroz P, Avenoza A, Corzana F, Zurbano MM, Jiménez-Osés G, Busto JH, Peregrina JM. Synthesis of β 2,2-Amino Acids by Stereoselective Alkylation of Isoserine Derivatives Followed by Nucleophilic Ring Opening of Quaternary Sulfamidates. J Org Chem 2022; 87:8730-8743. [PMID: 35732024 PMCID: PMC9490828 DOI: 10.1021/acs.joc.2c01034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chiral bicyclic N,O-acetal isoserine derivatives have been synthesized by an acid-catalyzed tandem N,O-acetalization/intramolecular transcarbamoylation reaction between conveniently protected l-isoserine and 2,2,3,3-tetramethoxybutane. The delicate balance of the steric interactions between the different functional groups on each possible diastereoisomer controls their thermodynamic stability and hence the experimental product distribution. These chiral isoserine derivatives undergo diastereoselective alkylation at the α position, proceeding with either retention or inversion of the configuration depending on the relative configuration of the stereocenters. Quantum mechanical calculations revealed that a concave-face alkylation is favored due to smaller torsional and steric interactions at the bicyclic scaffold. This synthetic methodology gives access to chiral β2,2-amino acids, attractive compounds bearing a quaternary stereocenter at the α position with applications in peptidomimetic and medicinal chemistry. Thus, enantiopure α-alkylisoserine derivatives were produced upon acidic hydrolysis of these alkylated scaffolds. In addition, α-benzylisoserine was readily transformed into a five-membered ring cyclic sulfamidate, which was ring opened regioselectively with representative nucleophiles to yield other types of enantiopure β2,2-amino acids such as α-benzyl-α-heterofunctionalized-β-alanines and α-benzylnorlanthionine derivatives.
Collapse
Affiliation(s)
- Pablo Tovillas
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Paula Oroz
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Alberto Avenoza
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - María M Zurbano
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Jesús H Busto
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Jesús M Peregrina
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| |
Collapse
|
8
|
Recent Studies on Hydrogels Based on H 2O 2-Responsive Moieties: Mechanism, Preparation and Application. Gels 2022; 8:gels8060361. [PMID: 35735705 PMCID: PMC9222492 DOI: 10.3390/gels8060361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 01/04/2023] Open
Abstract
H2O2 is essential for cellular processes and plays a vital role in the regulation of cell signaling pathways, which can be viewed as a warning signal for many kinds of disease including cancer, cardiovascular disease, reproductive abnormalities, diabetes, and renal failure. A H2O2-responsive hydrogel (H2O2-Gel) is a promising candidate for biomedical applications because of its good biocompatibility, similarity to soft biological tissues, ease of preparation, and its ability to respond to H2O2. In this study, the H2O2-responsive moieties used to fabricate H2O2-Gels were reviewed, including thioethers, disulfide bonds, selenides, diselenium bonds, diketones, boronic, and others. Next, the preparation method of H2O2-Gel was divided into two major categories according to their reaction mechanisms: either self-crosslinking or mechanisms entailing the addition of difunctional crosslinkers. Last, the applications of H2O2-Gels were emphasized, which have been viewed as desirable candidates in the fields of drug delivery, the detection of H2O2, glucose-responsive systems, ROS scavengers, tissue engineering, and cell-encapsulation.
Collapse
|
9
|
Pascoe CA, Engelhardt DB, Rosana ARR, van Belkum MJ, Vederas JC. Methylene Analogues of Neopetrosiamide as Potential Antimetastatic Agents: Solid-Supported Syntheses Using Diamino Diacids for Pre-Stapling of Peptides with Multiple Disulfides. Org Lett 2021; 23:9216-9220. [PMID: 34784223 DOI: 10.1021/acs.orglett.1c03532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neopetrosiamide, a 28-residue peptide from Neopetrosia sp., contains three disulfide bonds and hinders mammalian tumor cell invasion. Proper connectivity of disulfide bonds is crucial for activity. Synthetic replacement of single disulfide bridges with methylene bridges gives active analogues. Pre-stapling of one ring enhances the correct formation of the remaining disulfides by reducing isomeric possibilities and possibly initiating the correct 3D fold. Cloning and expression of neopetrosiamide in E. coli affords access to the natural linear peptide.
Collapse
Affiliation(s)
- Cameron A Pascoe
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Daniel B Engelhardt
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | - Marco J van Belkum
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
10
|
Abstract
We report the first synthesis of the complex amino acid labionin in a fully orthogonally protected and stereopure form. The structure-which incorporates five orthogonal protecting groups and three stereogenic centers-was assembled using two key synthetic steps: (1) a thia-Michael addition for installing the thioether bridge; (2) an electrophilic azidation for creating the central quaternary α-amino acid carbon in a stereochemically pure form. This work is expected to enable the solid phase synthesis of both natural and synthetic analogues labyrinthopeptins.
Collapse
Affiliation(s)
- Eliana Lo Presti
- National Research Council, Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC), via Mario Bianco 9, 20131 Milan, Italy
| | - Alessandro Volonterio
- National Research Council, Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC), via Mario Bianco 9, 20131 Milan, Italy.,Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20141 Milan, Italy
| | - Monica Sani
- National Research Council, Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC), via Mario Bianco 9, 20131 Milan, Italy
| |
Collapse
|
11
|
Waliczek M, Pehlivan Ö, Stefanowicz P. A photochemical transformation of cyclic peptides leading to formation of selenolanthionine bridges. NEW J CHEM 2020. [DOI: 10.1039/d0nj01563f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptides with diselenide bridge under UV irradiation eliminate one selenium atom forming selenoether bond with good yield.
Collapse
Affiliation(s)
| | - Özge Pehlivan
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | |
Collapse
|
12
|
Dickman R, Danelius E, Mitchell SA, Hansen DF, Erdélyi M, Tabor AB. A Chemical Biology Approach to Understanding Molecular Recognition of Lipid II by Nisin(1-12): Synthesis and NMR Ensemble Analysis of Nisin(1-12) and Analogues. Chemistry 2019; 25:14572-14582. [PMID: 31599485 PMCID: PMC6899958 DOI: 10.1002/chem.201902814] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/29/2019] [Indexed: 12/14/2022]
Abstract
Natural products that target lipid II, such as the lantibiotic nisin, are strategically important in the development of new antibacterial agents to combat the rise of antimicrobial resistance. Understanding the structural factors that govern the highly selective molecular recognition of lipid II by the N-terminal region of nisin, nisin(1-12), is a crucial step in exploiting the potential of such compounds. In order to elucidate the relationships between amino acid sequence and conformation of this bicyclic peptide fragment, we have used solid-phase peptide synthesis to prepare two novel analogues of nisin(1-12) in which the dehydro residues have been replaced. We have carried out an NMR ensemble analysis of one of these analogues and of the wild-type nisin(1-12) peptide in order to compare the conformations of these two bicyclic peptides. Our analysis has shown the effects of residue mutation on ring conformation. We have also demonstrated that the individual rings of nisin(1-12) are pre-organised to an extent for binding to the pyrophosphate group of lipid II, with a high degree of flexibility exhibited in the central amide bond joining the two rings.
Collapse
Affiliation(s)
- Rachael Dickman
- Department of ChemistryUniversity College London, 20Gordon StreetLondonWC1H 0AJUK
| | - Emma Danelius
- The Swedish NMR CentreMedicinaregatan 540530GothenburgSweden
| | - Serena A. Mitchell
- Department of ChemistryUniversity College London, 20Gordon StreetLondonWC1H 0AJUK
| | - D. Flemming Hansen
- Institute of Structural and Molecular BiologyDivision of BiosciencesUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Máté Erdélyi
- The Swedish NMR CentreMedicinaregatan 540530GothenburgSweden
- Department of Chemistry–BMCUppsala UniversityBox 57675123UppsalaSweden
| | - Alethea B. Tabor
- Department of ChemistryUniversity College London, 20Gordon StreetLondonWC1H 0AJUK
| |
Collapse
|
13
|
De Luca S, Digilio G, Verdoliva V, Tovillas P, Jiménez-Osés G, Peregrina JM. Lanthionine Peptides by S-Alkylation with Substituted Cyclic Sulfamidates Promoted by Activated Molecular Sieves: Effects of the Sulfamidate Structure on the Yield. J Org Chem 2019; 84:14957-14964. [PMID: 31625377 DOI: 10.1021/acs.joc.9b02306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A green and efficient method for preparing lanthionine peptides by a highly chemoselective and stereochemically controlled procedure is presented. It involves an S-alkylation reaction, promoted by activated molecular sieves, on chiral cyclic sulfamidates, both N-protected and unprotected. Of note, the reaction yield was high also for cyclic sulfamidates bearing a free amine group, while other strategies failed to achieve a ring-opening nucleophilic reaction with N-unprotected substrates. To prove the feasibility of the procedure, the synthesis of a thioether ring B mimetic of the natural lantibiotic haloduracin β was performed.
Collapse
Affiliation(s)
- Stefania De Luca
- Institute of Biostructures and Bioimaging , National Research Council , 80134 Naples , Italy
| | - Giuseppe Digilio
- Department of Science and Technologic Innovation Università del Piemonte Orientale "A. Avogadro" , 15121 Alessandria , Italy
| | - Valentina Verdoliva
- Institute of Biostructures and Bioimaging , National Research Council , 80134 Naples , Italy
| | - Pablo Tovillas
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Gonzalo Jiménez-Osés
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain.,CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48170 Derio , Spain
| | - Jesús M Peregrina
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| |
Collapse
|
14
|
Dickman R, Mitchell SA, Figueiredo AM, Hansen DF, Tabor AB. Molecular Recognition of Lipid II by Lantibiotics: Synthesis and Conformational Studies of Analogues of Nisin and Mutacin Rings A and B. J Org Chem 2019; 84:11493-11512. [PMID: 31464129 PMCID: PMC6759747 DOI: 10.1021/acs.joc.9b01253] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 12/12/2022]
Abstract
In response to the growing threat posed by antibiotic-resistant bacterial strains, extensive research is currently focused on developing antimicrobial agents that target lipid II, a vital precursor in the biosynthesis of bacterial cell walls. The lantibiotic nisin and related peptides display unique and highly selective binding to lipid II. A key feature of the nisin-lipid II interaction is the formation of a cage-like complex between the pyrophosphate moiety of lipid II and the two thioether-bridged rings, rings A and B, at the N-terminus of nisin. To understand the important structural factors underlying this highly selective molecular recognition, we have used solid-phase peptide synthesis to prepare individual ring A and B structures from nisin, the related lantibiotic mutacin, and synthetic analogues. Through NMR studies of these rings, we have demonstrated that ring A is preorganized to adopt the correct conformation for binding lipid II in solution and that individual amino acid substitutions in ring A have little effect on the conformation. We have also analyzed the turn structures adopted by these thioether-bridged peptides and show that they do not adopt the tight α-turn or β-turn structures typically found in proteins.
Collapse
Affiliation(s)
- Rachael Dickman
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Serena A. Mitchell
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Angelo M. Figueiredo
- Institute
of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K.
| | - D. Flemming Hansen
- Institute
of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K.
| | - Alethea B. Tabor
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| |
Collapse
|
15
|
Itoh H, Inoue M. Full solid-phase total synthesis of macrocyclic natural peptides using four-dimensionally orthogonal protective groups. Org Biomol Chem 2019; 17:6519-6527. [PMID: 31232404 DOI: 10.1039/c9ob01130g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fmoc-based solid-phase synthesis provides efficient access to both linear and macrocyclic peptides. To synthesize complex macrocyclic polyamides using Fmoc chemistry, multiple protective groups with orthogonal reactivities are generally employed because the free amines and carboxylic acids of specific residues must be selectively exposed prior to amide formation. This review focuses on four-dimensionally orthogonal protective group strategies for the full solid-phase synthesis of macrocyclic peptides with branched chains (polymyxin E2 and daptomycin) and a tricyclic natural peptide (lacticin 481).
Collapse
Affiliation(s)
- Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
16
|
Li Z, Gentry Z, Murphy B, VanNieuwenhze MS. Scalable Synthesis of Orthogonally Protected β-Methyllanthionines by Indium(III)-Mediated Ring Opening of Aziridines. Org Lett 2019; 21:2200-2203. [PMID: 30855974 DOI: 10.1021/acs.orglett.9b00125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lantibiotics are a class of peptide antibiotics with activity against most Gram-positive bacteria. Lanthionine (Lan) and β-MeLan are unusual thioether-bridged, non-proteinogenic amino acids, which are characteristic features of lantibiotics. In this paper, we report the facile stereoselective synthesis of β-methyllanthionines with orthogonal protection by nucleophilic ring opening of aziridines. This method leads to an expedient access to β-methyllanthionines and allows production of over 30 g of β-methyllanthionine in a single batch.
Collapse
Affiliation(s)
- Ziran Li
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405-7102 , United States
| | - Zachary Gentry
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405-7102 , United States
| | - Brennan Murphy
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405-7102 , United States
| | - Michael S VanNieuwenhze
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405-7102 , United States
| |
Collapse
|
17
|
Abdel Monaim SAH, Somboro AM, El-Faham A, de la Torre BG, Albericio F. Bacteria Hunt Bacteria through an Intriguing Cyclic Peptide. ChemMedChem 2018; 14:24-51. [PMID: 30394699 DOI: 10.1002/cmdc.201800597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/10/2018] [Indexed: 12/15/2022]
Abstract
In the last few decades, peptides have been victorious over small molecules as therapeutics due to their broad range of applications, high biological activity, and high specificity. However, the main challenges to overcome if peptides are to become effective drugs is their low oral bioavailability and instability under physiological conditions. Cyclic peptides play a vital role in this context because they show higher stability under physiological conditions, higher membrane permeability, and greater oral bioavailability than that of their corresponding linear analogues. In this regard, cyclic antimicrobial peptides (AMPs) have gained considerable attention in the field of novel antibiotic development. Bacterial strains produce cyclic AMPs through two pathways: ribosomal and nonribosomal. This review provides an overview of the chemical classification of cyclic AMPs isolated from bacteria, and provides a description of their biological activity and mode of action.
Collapse
Affiliation(s)
- Shimaa A H Abdel Monaim
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.,Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Anou M Somboro
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria, 12321, Egypt
| | - Beatriz G de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa.,Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
18
|
De Luca S, Digilio G, Verdoliva V, Saviano M, Menchise V, Tovillas P, Jiménez-Osés G, Peregrina JM. A Late-Stage Synthetic Approach to Lanthionine-Containing Peptides via S-Alkylation on Cyclic Sulfamidates Promoted by Molecular Sieves. Org Lett 2018; 20:7478-7482. [DOI: 10.1021/acs.orglett.8b03254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Stefania De Luca
- Institute of Biostructures and Bioimaging, National Research Council, 80134 Naples, Italy
| | - Giuseppe Digilio
- Department of Science and Technologic Innovation, Università del Piemonte Orientale “A. Avogadro”, 15121 Alessandria, Italy
| | - Valentina Verdoliva
- Institute of Biostructures and Bioimaging, National Research Council, 80134 Naples, Italy
| | - Michele Saviano
- Institute of Crystallography, National Research Council, 70126 Bari, Italy
| | - Valeria Menchise
- Institute of Biostructures and Bioimaging, National Research Council, c/o Molecular
Biotechnology Center, 10126 Turin, Italy
| | - Pablo Tovillas
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Gonzalo Jiménez-Osés
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Jesus M. Peregrina
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| |
Collapse
|
19
|
Mitchell SA, Truscott F, Dickman R, Ward J, Tabor AB. Simplified lipid II-binding antimicrobial peptides: Design, synthesis and antimicrobial activity of bioconjugates of nisin rings A and B with pore-forming peptides. Bioorg Med Chem 2018; 26:5691-5700. [DOI: 10.1016/j.bmc.2018.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
|
20
|
De Leon Rodriguez LM, Williams ET, Brimble MA. Chemical Synthesis of Bioactive Naturally Derived Cyclic Peptides Containing Ene‐Like Rigidifying Motifs. Chemistry 2018; 24:17869-17880. [DOI: 10.1002/chem.201802533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Indexed: 12/12/2022]
Affiliation(s)
| | - Elyse T. Williams
- School of Chemical SciencesThe University of Auckland 23 Symonds St. Auckland 1142 New Zealand
| | - Margaret A. Brimble
- School of Biological SciencesThe University of Auckland 3 Symonds St. Auckland 1142 New Zealand
- School of Chemical SciencesThe University of Auckland 23 Symonds St. Auckland 1142 New Zealand
| |
Collapse
|
21
|
Xu B, Aitken EJ, Baker BP, Turner CA, Harvey JE, Stott MB, Power JF, Harris PWR, Keyzers RA, Brimble MA. Genome mining, isolation, chemical synthesis and biological evaluation of a novel lanthipeptide, tikitericin, from the extremophilic microorganism Thermogemmatispora strain T81. Chem Sci 2018; 9:7311-7317. [PMID: 30294420 PMCID: PMC6167946 DOI: 10.1039/c8sc02170h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/19/2018] [Indexed: 01/31/2023] Open
Abstract
Tikitericin, a novel lanthipeptide was isolated and characterised together with its first total synthesis.
Genome mining of the New Zealand extremophilic microorganism Thermogemmatispora strain T81 indicated the presence of biosynthetic machinery to produce several different peptidic natural products. Solid-phase culture of T81 led to the isolation of tikitericin 1, a new lanthipeptide characterised by four (methyl)lanthionine bridges. The mass-guided isolation and structural elucidation of tikitericin 1 is described together with its total synthesis via Fmoc-solid-phase peptide synthesis (SPPS). The key non-canonical (methyl)lanthionine residues were synthesised in solution phase via an improved synthetic route and subsequently assembled to construct the peptide backbone using Fmoc-SPPS. N-Terminal truncated analogues of tikitericin (2–5) were also prepared in order to evaluate the contribution of each sequential ring of the polycyclic lanthipeptide to the antibacterial activity.
Collapse
Affiliation(s)
- Buzhe Xu
- School of Chemical Sciences , 23 Symonds Street , Auckland 1010 , New Zealand . ; Tel: +64 9 9238259.,Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand . ; Tel: +64 4 4635117
| | - Emma J Aitken
- School of Chemical & Physical Sciences , The Centre for Biodiscovery , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Benjamin P Baker
- School of Chemical & Physical Sciences , The Centre for Biodiscovery , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Claire A Turner
- School of Chemical & Physical Sciences , The Centre for Biodiscovery , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Joanne E Harvey
- Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand . ; Tel: +64 4 4635117.,School of Chemical & Physical Sciences , The Centre for Biodiscovery , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Matthew B Stott
- School of Biological Sciences , University of Canterbury , Private Bag 4800 , Christchurch 8140 , New Zealand.,GNS Science , Private Bag 2000 , Taupō 3352 , New Zealand
| | - Jean F Power
- GNS Science , Private Bag 2000 , Taupō 3352 , New Zealand
| | - Paul W R Harris
- School of Chemical Sciences , 23 Symonds Street , Auckland 1010 , New Zealand . ; Tel: +64 9 9238259.,Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand . ; Tel: +64 4 4635117.,School of Biological Sciences , 23 Symonds Street , Auckland 1010 , New Zealand
| | - Robert A Keyzers
- Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand . ; Tel: +64 4 4635117.,School of Chemical & Physical Sciences , The Centre for Biodiscovery , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences , 23 Symonds Street , Auckland 1010 , New Zealand . ; Tel: +64 9 9238259.,Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand . ; Tel: +64 4 4635117.,School of Biological Sciences , 23 Symonds Street , Auckland 1010 , New Zealand
| |
Collapse
|
22
|
Denoël T, Lemaire C, Luxen A. Progress in Lanthionine and Protected Lanthionine Synthesis. Chemistry 2018; 24:15421-15441. [PMID: 29714402 DOI: 10.1002/chem.201801115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/20/2018] [Indexed: 01/01/2023]
Abstract
Lanthionine (Lan), a non-proteinogenic natural amino acid, is an essential component of peptidoglycan found in the cell wall of Fusobacterium species. Lan and β-methyllanthionine are also key constituents in lantibiotics, a prevalent class of peptide antibiotics. The development of those new antibacterial drugs with enhanced properties is the focus of recent research. Since multiple isomers of Lan are possible, a regio- and diastereoselective synthesis is challenging. This comprehensive review summarizes the known chemical syntheses of lanthionine from various precursors (e.g., β-chloroalanine, cystine, dehydroalanine, β-iodoalanine, aziridine, serine lactone, sulfamidate) since 1941. Methods for preparation of unprotected, protected, orthogonally protected, and mutually orthogonally protected lanthionine with relevant experimental details and perspectives on their usefulness are provided. The potential of these Lan derivatives is illustrated by one recent application.
Collapse
Affiliation(s)
- Thibaut Denoël
- Cyclotron Research Centre, Université de Liège, Quartier Agora, allée du VI août, 8, 4000, Liège, Belgium
| | - Christian Lemaire
- Cyclotron Research Centre, Université de Liège, Quartier Agora, allée du VI août, 8, 4000, Liège, Belgium
| | - André Luxen
- Cyclotron Research Centre, Université de Liège, Quartier Agora, allée du VI août, 8, 4000, Liège, Belgium
| |
Collapse
|
23
|
|
24
|
Chen H, Zhang Y, Li QQ, Zhao YF, Chen YX, Li YM. De Novo Design To Synthesize Lanthipeptides Involving Cascade Cysteine Reactions: SapB Synthesis as an Example. J Org Chem 2018; 83:7528-7533. [PMID: 29893565 DOI: 10.1021/acs.joc.8b00259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lanthipeptides are a family of ribosomally synthesized peptides that have crucial biological functions. However, due to their complicated structures, the total synthesis of lanthipeptides is challenging. Here, a novel strategy to construct lanthipeptides is described, which involves cascade reactions of cysteine, including Cys disalkylation elimination, Michael reaction, and native chemical ligation. We utilized this strategy to synthesize lanthipeptide SapB as an example. This methodology has the potential to obtain lanthipeptides and their analogues for biological research and drug discovery.
Collapse
Affiliation(s)
- Huai Chen
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Yuan Zhang
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Qian-Qian Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Yu-Fen Zhao
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Yong-Xiang Chen
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Yan-Mei Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China.,Beijing Institute for Brain Disorders , Beijing 100069 , P.R. China
| |
Collapse
|
25
|
Bédard F, Biron E. Recent Progress in the Chemical Synthesis of Class II and S-Glycosylated Bacteriocins. Front Microbiol 2018; 9:1048. [PMID: 29875754 PMCID: PMC5974097 DOI: 10.3389/fmicb.2018.01048] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
A wide variety of antimicrobial peptides produced by lactic acid bacteria (LAB) have been identified and studied in the last decades. Known as bacteriocins, these ribosomally synthesized peptides inhibit the growth of a wide range of bacterial species through numerous mechanisms and show a great variety of spectrum of activity. With their great potential as antimicrobial additives and alternatives to traditional antibiotics in food preservation and handling, animal production and in veterinary and medical medicine, the demand for bacteriocins is rapidly increasing. Bacteriocins are most often produced by fermentation but, in several cases, the low isolated yields and difficulties associated with their purification seriously limit their use on a large scale. Chemical synthesis has been proposed for their production and recent advances in peptide synthesis methodologies have allowed the preparation of several bacteriocins. Moreover, the significant cost reduction for peptide synthesis reagents and building blocks has made chemical synthesis of bacteriocins more attractive and competitive. From a protein engineering point of view, the chemical approach offers many advantages such as the possibility to rapidly perform amino acid substitution, use unnatural or modified residues, and make backbone and side chain modifications to improve potency, modify the activity spectrum or increase the stability of the targeted bacteriocin. This review summarized synthetic approaches that have been developed and used in recent years to allow the preparation of class IIa bacteriocins and S-linked glycopeptides from LAB. Synthetic strategies such as the use of pseudoprolines, backbone protecting groups, microwave irradiations, selective disulfide bridge formation and chemical ligations to prepare class II and S-glycosylsated bacteriocins are discussed.
Collapse
Affiliation(s)
- François Bédard
- Faculty of Pharmacy and Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
- Laboratory of Medicinal Chemistry, CHU de Québec Research Centre, Québec, QC, Canada
| | - Eric Biron
- Faculty of Pharmacy and Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
- Laboratory of Medicinal Chemistry, CHU de Québec Research Centre, Québec, QC, Canada
| |
Collapse
|
26
|
Martin-Gómez H, Tulla-Puche J. Lasso peptides: chemical approaches and structural elucidation. Org Biomol Chem 2018; 16:5065-5080. [DOI: 10.1039/c8ob01304g] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The diverse functionality and the extraordinary stability of lasso peptides make these molecules attractive scaffolds for drug discovery. The ability to generate lasso peptides chemically remains a challenging endeavor.
Collapse
Affiliation(s)
| | - Judit Tulla-Puche
- Department of Inorganic and Organic Chemistry – Organic Chemistry Section
- University of Barcelona
- Barcelona
- Spain
| |
Collapse
|
27
|
Wright ZVF, McCarthy S, Dickman R, Reyes FE, Sanchez-Martinez S, Cryar A, Kilford I, Hall A, Takle AK, Topf M, Gonen T, Thalassinos K, Tabor AB. The Role of Disulfide Bond Replacements in Analogues of the Tarantula Toxin ProTx-II and Their Effects on Inhibition of the Voltage-Gated Sodium Ion Channel Na v1.7. J Am Chem Soc 2017; 139:13063-13075. [PMID: 28880078 PMCID: PMC5618157 DOI: 10.1021/jacs.7b06506] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Spider
venom toxins, such as Protoxin-II (ProTx-II), have recently
received much attention as selective Nav1.7 channel blockers,
with potential to be developed as leads for the treatment of chronic
nocioceptive pain. ProTx-II is a 30-amino acid peptide with three
disulfide bonds that has been reported to adopt a well-defined inhibitory
cystine knot (ICK) scaffold structure. Potential drawbacks with such
peptides include poor pharmacodynamics and potential scrambling of
the disulfide bonds in vivo. In order to address
these issues, in the present study we report the solid-phase synthesis
of lanthionine-bridged analogues of ProTx-II, in which one of the
three disulfide bridges is replaced with a thioether linkage, and
evaluate the biological properties of these analogues. We have also
investigated the folding and disulfide bridging patterns arising from
different methods of oxidation of the linear peptide precursor. Finally,
we report the X-ray crystal structure of ProTx-II to atomic resolution;
to our knowledge this is the first crystal structure of an ICK spider
venom peptide not bound to a substrate.
Collapse
Affiliation(s)
- Zoë V F Wright
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Stephen McCarthy
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Rachael Dickman
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Francis E Reyes
- Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia 20147, United States
| | - Silvia Sanchez-Martinez
- Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia 20147, United States
| | - Adam Cryar
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London , Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London , London WC1E 7HX, United Kingdom
| | - Ian Kilford
- European Knowledge Centre, Eisai Limited , Mosquito Way, Hatfield, Hertfordshire AL10 9SN, United Kingdom
| | - Adrian Hall
- European Knowledge Centre, Eisai Limited , Mosquito Way, Hatfield, Hertfordshire AL10 9SN, United Kingdom
| | - Andrew K Takle
- European Knowledge Centre, Eisai Limited , Mosquito Way, Hatfield, Hertfordshire AL10 9SN, United Kingdom
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London , London WC1E 7HX, United Kingdom
| | - Tamir Gonen
- Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia 20147, United States
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London , Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London , London WC1E 7HX, United Kingdom
| | - Alethea B Tabor
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
28
|
Manzor K, Proinsias KÓ, Kelleher F. Solid-phase peptide synthesis of analogues of the N -terminus A-ring fragment of the lantibiotic nisin: Replacements for the dehydroalanine (Dha) residue at position 5 and the first incorporation of a thioamide residue. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Lenartowicz P, Dziuk B, Zarychta B, Makowski M, Kafarski P. Michael additions to double bonds of esters of N-protected (s)-phenylalanyldehydroalanine (X-(s)-Phe-ΔAla-OMe) and its phosphonic acid counterpart (X-(s)-Phe-ΔAla-PO(OEt)2). PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1308933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Błażej Dziuk
- Faculty of Chemistry, Opole University, Opole, Poland
| | | | | | - Paweł Kafarski
- Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
30
|
|
31
|
|
32
|
Gleeson EC, Wang ZJ, Robinson SD, Chhabra S, MacRaild CA, Jackson WR, Norton RS, Robinson AJ. Stereoselective synthesis and structural elucidation of dicarba peptides. Chem Commun (Camb) 2016; 52:4446-9. [PMID: 26892179 DOI: 10.1039/c5cc10540d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile stereoselective synthesis of cis and trans unsaturated dicarba peptides has been established using preformed diaminosuberic acid derivatives as bridging units. In addition, characteristic spectral differences in the (13)C-NMR spectra of the cis- and trans-isomers show that the chemical shift of carbons in the Δ4,5-diaminosuberic acid residue can be used to assign stereochemistry in unsaturated dicarba peptides formed from ring closing metathesis of linear peptide sequences.
Collapse
Affiliation(s)
- Ellen C Gleeson
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia.
| | - Zhen J Wang
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia.
| | - Samuel D Robinson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Sandeep Chhabra
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Christopher A MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - W Roy Jackson
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia.
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Andrea J Robinson
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia.
| |
Collapse
|
33
|
Montalbán-López M, van Heel AJ, Kuipers OP. Employing the promiscuity of lantibiotic biosynthetic machineries to produce novel antimicrobials. FEMS Microbiol Rev 2016; 41:5-18. [PMID: 27591436 DOI: 10.1093/femsre/fuw034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/07/2016] [Accepted: 07/28/2016] [Indexed: 12/30/2022] Open
Abstract
As the number of new antibiotics that reach the market is decreasing and the demand for them is rising, alternative sources of novel antimicrobials are needed. Lantibiotics are potent peptide antimicrobials that are ribosomally synthesized and stabilized by post-translationally introduced lanthionine rings. Their ribosomal synthesis and enzymatic modifications provide excellent opportunities to design and engineer a large variety of novel antimicrobial compounds. The research conducted in this area demonstrates that the modularity present in both the peptidic rings as well as in the combination of promiscuous modification enzymes can be exploited to further increase the diversity of lantibiotics. Various approaches, where the modifying enzymes and corresponding leader peptides are decoupled from their natural core peptide and integrated in designed plug-and-play production systems, enable the production of modified peptides that are either derived from vast genomic data or designed using functional parts from a wide diversity of core peptides. These approaches constitute a powerful discovery platform to develop novel antimicrobials with high therapeutic potential.
Collapse
Affiliation(s)
- Manuel Montalbán-López
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| | - Auke J van Heel
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| |
Collapse
|
34
|
|
35
|
Zhao B, Zhang Q, Li Z. Constructing thioether-tethered cyclic peptides via on-resin intra-molecular thiol-ene reaction. J Pept Sci 2016; 22:540-4. [DOI: 10.1002/psc.2902] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Bingchuan Zhao
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Qingzhou Zhang
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Zigang Li
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| |
Collapse
|
36
|
Ongey EL, Neubauer P. Lanthipeptides: chemical synthesis versus in vivo biosynthesis as tools for pharmaceutical production. Microb Cell Fact 2016; 15:97. [PMID: 27267232 PMCID: PMC4897893 DOI: 10.1186/s12934-016-0502-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/01/2016] [Indexed: 01/15/2023] Open
Abstract
Lanthipeptides (also called lantibiotics for those with antibacterial activities) are ribosomally synthesized post-translationally modified peptides having thioether cross-linked amino acids, lanthionines, as a structural element. Lanthipeptides have conceivable potentials to be used as therapeutics, however, the lack of stable, high-yield, well-characterized processes for their sustainable production limit their availability for clinical studies and further pharmaceutical commercialization. Though many reviews have discussed the various techniques that are currently employed to produce lanthipeptides, a direct comparison between these methods to assess industrial applicability has not yet been described. In this review we provide a synoptic comparison of research efforts on total synthesis and in vivo biosynthesis aimed at fostering lanthipeptides production. We further examine current applications and propose measures to enhance product yields. Owing to their elaborate chemical structures, chemical synthesis of these biomolecules is economically less feasible for large-scale applications, and hence biological production seems to be the only realistic alternative.
Collapse
Affiliation(s)
- Elvis Legala Ongey
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, 13355, Berlin, Germany.
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, 13355, Berlin, Germany
| |
Collapse
|
37
|
Bartoloni M, Jin X, Marcaida MJ, Banha J, Dibonaventura I, Bongoni S, Bartho K, Gräbner O, Sefkow M, Darbre T, Reymond JL. Bridged bicyclic peptides as potential drug scaffolds: synthesis, structure, protein binding and stability. Chem Sci 2015; 6:5473-5490. [PMID: 29861888 PMCID: PMC5949603 DOI: 10.1039/c5sc01699a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/12/2015] [Indexed: 12/28/2022] Open
Abstract
Double cyclization of short linear peptides obtained by solid phase peptide synthesis was used to prepare bridged bicyclic peptides (BBPs) corresponding to the topology of bridged bicyclic alkanes such as norbornane. Diastereomeric norbornapeptides were investigated by 1H-NMR, X-ray crystallography and CD spectroscopy and found to represent rigid globular scaffolds stabilized by intramolecular backbone hydrogen bonds with scaffold geometries determined by the chirality of amino acid residues and sharing structural features of β-turns and α-helices. Proteome profiling by capture compound mass spectrometry (CCMS) led to the discovery of the norbornapeptide 27c binding selectively to calmodulin as an example of a BBP protein binder. This and other BBPs showed high stability towards proteolytic degradation in serum.
Collapse
Affiliation(s)
- Marco Bartoloni
- Department of Chemistry and Biochemistry , University of Berne , Freiestrasse 3 , 3012 Berne , Switzerland .
| | - Xian Jin
- Department of Chemistry and Biochemistry , University of Berne , Freiestrasse 3 , 3012 Berne , Switzerland .
| | - Maria José Marcaida
- School of Life Sciences , Ecole Polytechnique de Lausanne , 1015 Lausanne , Switzerland
| | - João Banha
- caprotec bioanalytics GmbH , Berlin , Germany
| | - Ivan Dibonaventura
- Department of Chemistry and Biochemistry , University of Berne , Freiestrasse 3 , 3012 Berne , Switzerland .
| | - Swathi Bongoni
- Department of Chemistry and Biochemistry , University of Berne , Freiestrasse 3 , 3012 Berne , Switzerland .
| | | | | | | | - Tamis Darbre
- Department of Chemistry and Biochemistry , University of Berne , Freiestrasse 3 , 3012 Berne , Switzerland .
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry , University of Berne , Freiestrasse 3 , 3012 Berne , Switzerland .
| |
Collapse
|
38
|
Chandrasekar J, Wylder AC, Silverman SK. Phosphoserine Lyase Deoxyribozymes: DNA-Catalyzed Formation of Dehydroalanine Residues in Peptides. J Am Chem Soc 2015. [PMID: 26200899 DOI: 10.1021/jacs.5b06308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dehydroalanine (Dha) is a nonproteinogenic electrophilic amino acid that is a synthetic intermediate or product in the biosynthesis of several bioactive cyclic peptides such as lantibiotics, thiopeptides, and microcystins. Dha also enables labeling of proteins and synthesis of post-translationally modified proteins and their analogues. However, current chemical approaches to introducing Dha into peptides have substantial limitations. Using in vitro selection, here we show that DNA can catalyze Zn(2+) or Zn(2+)/Mn(2+)-dependent formation of Dha from phosphoserine (pSer), i.e., exhibit pSer lyase activity, a fundamentally new DNA-catalyzed reaction. Two new pSer lyase deoxyribozymes, named Dha-forming deoxyribozymes 1 and 2 (DhaDz1 and DhaDz2), each function with multiple turnover on the model hexapeptide substrate that was used during selection. Using DhaDz1, we generated Dha from pSer within an unrelated linear 13-mer peptide. Subsequent base-promoted intramolecular cyclization of homocysteine into Dha formed a stable cystathionine (thioether) analogue of the complement inhibitor compstatin. These findings establish the fundamental catalytic ability of DNA to eliminate phosphate from pSer to form Dha and suggest that with further development, pSer lyase deoxyribozymes will have broad practical utility for site-specific enzymatic synthesis of Dha from pSer in peptide substrates.
Collapse
Affiliation(s)
- Jagadeeswaran Chandrasekar
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Adam C Wylder
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
39
|
Koopmans T, Wood TM, 't Hart P, Kleijn LHJ, Hendrickx APA, Willems RJL, Breukink E, Martin NI. Semisynthetic Lipopeptides Derived from Nisin Display Antibacterial Activity and Lipid II Binding on Par with That of the Parent Compound. J Am Chem Soc 2015; 137:9382-9. [PMID: 26122963 DOI: 10.1021/jacs.5b04501] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The lipid II-binding N-terminus of nisin, comprising the so-called A/B ring system, was synthetically modified to provide antibacterially active and proteolytically stable derivatives. A variety of lipids were coupled to the C-terminus of the nisin A/B ring system to generate semisynthetic constructs that display potent inhibition of bacterial growth, with activities approaching that of nisin itself. Most notable was the activity observed against clinically relevant bacterial strains including MRSA and VRE. Experiments with membrane models indicate that these constructs operate via a lipid II-mediated mode of action without causing pore formation. A lipid II-dependent mechanism of action is further supported by antagonization assays wherein the addition of lipid II was found to effectively block the antibacterial activity of the nisin-derived lipopeptides.
Collapse
Affiliation(s)
| | | | | | | | - Antoni P A Hendrickx
- ‡Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Rob J L Willems
- ‡Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Eefjan Breukink
- §Membrane Biochemistry and Biophysics Group, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
40
|
Escano J, Smith L. Multipronged approach for engineering novel peptide analogues of existing lantibiotics. Expert Opin Drug Discov 2015; 10:857-70. [PMID: 26004576 DOI: 10.1517/17460441.2015.1049527] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Lantibiotics are a class of ribosomally and post-translationally modified peptide antibiotics that are active against a broad spectrum of Gram-positive bacteria. Great efforts have been made to promote the production of these antibiotics, so that they can one day be used in our antimicrobial arsenal to combat multidrug-resistant bacterial infections. AREAS COVERED This review provides a synopsis of lantibiotic research aimed at furthering our understanding of the structural limitation of lantibiotics as well as identifying structural regions that can be modified to improve the bioactivity. In vivo, in vitro and chemical synthesis of lantibiotics has been useful for engineering novel variants with enhanced activities. These approaches have provided novel ways to further our understanding of lantibiotic function and have advanced the objective to develop lantibiotics for the treatment of infectious diseases. EXPERT OPINION Synthesis of lantibiotics with enhanced activities will lead to the discovery of new promising drug candidates that will have a long lasting impact on the treatment of Gram-positive infections. The current body of literature for producing structural variants of lantibiotics has been more of a 'proof-of-principle' approach and the application of these methods has not yet been fully utilized.
Collapse
Affiliation(s)
- Jerome Escano
- Texas A&M University, Department of Biological Sciences, College Station , TX 77843 , USA
| | | |
Collapse
|
41
|
Pulka-Ziach K, Pavet V, Chekkat N, Estieu-Gionnet K, Rohac R, Lechner MC, Smulski CR, Zeder-Lutz G, Altschuh D, Gronemeyer H, Fournel S, Odaert B, Guichard G. Thioether analogues of disulfide-bridged cyclic peptides targeting death receptor 5: conformational analysis, dimerisation and consequences for receptor activation. Chembiochem 2014; 16:293-301. [PMID: 25487639 DOI: 10.1002/cbic.201402485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Indexed: 12/31/2022]
Abstract
Cyclic peptides containing redox-stable thioether bridges might provide a useful alternative to disulfide-bridged bioactive peptides. We report the effect of replacing the disulfide bridge with a lanthionine linkage in a 16-mer cyclic peptide that binds to death receptor 5 (DR5, TRAIL-R2). Upon covalent oligomerisation, the disulfide-bridged peptide has previously shown similar behaviour to that of TNF-related apoptosis inducing ligand (TRAIL), by selectively triggering the DR5 cell death pathway. The structural and biological properties of the DR5-binding peptide and its desulfurised analogue were compared. Surface plasmon resonance (SPR) data suggest that these peptides bind DR5 with comparable affinities. The same holds true for dimeric versions of these peptides: the thioether is able to induce DR5-mediated apoptosis of BJAB lymphoma and tumorigenic BJELR cells, albeit to a slightly lower extent compared to its disulfide homologue. NMR analysis revealed subtle variation in the conformations of the two peptides and suggests that the thioether peptide is slightly less folded than its disulfide homologue. These observations could account for the different capability of the two dimers to cluster DR5 receptors on the cell surface and to trigger apoptosis. Nevertheless, our results suggest that the thioether peptide is a potential candidate for evaluation in animal models.
Collapse
Affiliation(s)
- Karolina Pulka-Ziach
- Université de Bordeaux, CNRS, Institut Polytechnique de Bordeaux, UMR5248 CBMN, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac (France); Present address: Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Semi-synthesis of biologically active nisin hybrids composed of the native lanthionine ABC-fragment and a cross-stapled synthetic DE-fragment. Bioorg Med Chem 2014; 22:5345-53. [DOI: 10.1016/j.bmc.2014.07.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 01/23/2023]
|
43
|
Denoël T, Zervosen A, Gerards T, Lemaire C, Joris B, Blanot D, Luxen A. Stereoselective synthesis of lanthionine derivatives in aqueous solution and their incorporation into the peptidoglycan of Escherichia coli. Bioorg Med Chem 2014; 22:4621-8. [DOI: 10.1016/j.bmc.2014.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 02/05/2023]
|
44
|
O'Brien K, ó Proinsias K, Kelleher F. Studies on the synthesis of orthogonally protected azalanthionines, and of routes towards β-methyl azalanthionines, by ring opening of N-activated aziridine-2-carboxylates. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Denoël T, Zervosen A, Lemaire C, Plenevaux A, Luxen A. Synthesis of protected α-alkyl lanthionine derivatives. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Barbour A, Philip K. Variable characteristics of bacteriocin-producing Streptococcus salivarius strains isolated from Malaysian subjects. PLoS One 2014; 9:e100541. [PMID: 24941127 PMCID: PMC4062538 DOI: 10.1371/journal.pone.0100541] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/28/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Salivaricins are bacteriocins produced by Streptococcus salivarius, some strains of which can have significant probiotic effects. S. salivarius strains were isolated from Malaysian subjects showing variable antimicrobial activity, metabolic profile, antibiotic susceptibility and lantibiotic production. METHODOLOGY/PRINCIPAL FINDINGS In this study we report new S. salivarius strains isolated from Malaysian subjects with potential as probiotics. Safety assessment of these strains included their antibiotic susceptibility and metabolic profiles. Genome sequencing using Illumina's MiSeq system was performed for both strains NU10 and YU10 and demonstrating the absence of any known streptococcal virulence determinants indicating that these strains are safe for subsequent use as probiotics. Strain NU10 was found to harbour genes encoding salivaricins A and 9 while strain YU10 was shown to harbour genes encoding salivaricins A3, G32, streptin and slnA1 lantibiotic-like protein. Strain GT2 was shown to harbour genes encoding a large non-lantibiotic bacteriocin (salivaricin-MPS). A new medium for maximum biomass production buffered with 2-(N-morpholino)ethanesulfonic acid (MES) was developed and showed better biomass accumulation compared with other commercial media. Furthermore, we extracted and purified salivaricin 9 (by strain NU10) and salivaricin G32 (by strain YU10) from S. salivarius cells grown aerobically in this medium. In addition to bacteriocin production, S. salivarius strains produced levan-sucrase which was detected by a specific ESI-LC-MS/MS method which indicates additional health benefits from the developed strains. CONCLUSION The current study established the bacteriocin, levan-sucrase production and basic safety features of S. salivarius strains isolated from healthy Malaysian subjects demonstrating their potential for use as probiotics. A new bacteriocin-production medium was developed with potential scale up application for pharmaceuticals and probiotics from S. salivarius generating different lantibiotics. This is relevant for the clinical management of oral cavity and upper respiratory tract in the human population.
Collapse
Affiliation(s)
- Abdelahhad Barbour
- Institute of Biological Sciences, Microbiology Division, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Koshy Philip
- Institute of Biological Sciences, Microbiology Division, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Tabor AB. Recent advances in synthetic analogues of lantibiotics: What can we learn from these? Bioorg Chem 2014; 55:39-50. [PMID: 24877613 DOI: 10.1016/j.bioorg.2014.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/11/2014] [Indexed: 11/30/2022]
Abstract
The lantibiotics are a family of antibacterial cyclic peptides distinguished by one or more thioether linkages between amino acid side chains, and by unique modes of action. Recent developments in the chemical synthesis, mutagenesis and mutasynthesis of these peptides are providing insights into the structural requirements for antibacterial activity and into the mode of action, as well as having the potential to produce analogues with greater stability, potency and bioavailability. This Review provides a survey of these recent advances.
Collapse
Affiliation(s)
- Alethea B Tabor
- UCL Department of Chemistry, 20, Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
48
|
Azizi N, Yadollahy Z, Rahimzadeh-Oskooee A. An atom-economic and odorless thia-Michael addition in a deep eutectic solvent. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.104] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
|
50
|
Spillane W, Malaubier JB. Sulfamic Acid and Its N- and O-Substituted Derivatives. Chem Rev 2013; 114:2507-86. [DOI: 10.1021/cr400230c] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- William Spillane
- School
of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Jean-Baptiste Malaubier
- Manufacturing Science
and
Technology, Roche Ireland Limited, Clarecastle, Co. Clare, Ireland
| |
Collapse
|