1
|
Miao L, Pan YB, Wang ST, Zhang JS, Zhang H. Sesquiterpenoids and steroids from Eupatorium fortunei and their inhibitory effects on NO production. Nat Prod Res 2024:1-10. [PMID: 38577968 DOI: 10.1080/14786419.2024.2335665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
Two heterodimers including a clovane-phenylpropanoid hybrid (1) and a clovane-menthane hybrid (2), five linear sesquiterpenoids incorporating a tetrahydrofuran ring (3-6 & 8), and four steroids (7 & 9-11), were separated from the ethanolic extract of a well-known aromatic and medicinal herb Eupatorium fortunei. Their structures were characterised by detailed analyses of spectroscopic data and comparison with known analogues, with seven (1-7) of them being described for the first time. The hybrids 1 and 2 represent the first examples of clovane type sesquiterpenoids hybridising with other class of natural products, and compounds 3-6 and 8 are first linear sesquiterpenyl constituents reported from the title species. All the isolates were evaluated for their inhibitory effect on the NO production induced by LPS in murine RAW264.7 macrophage cells, and 1, 7, 10 and 11 exhibited moderate activity with IC50 values in the range of 24.4-43.5 µM.
Collapse
Affiliation(s)
- Lei Miao
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yin-Bo Pan
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Shu-Ting Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jun-Sheng Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
2
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
3
|
Zhou Y, Qin JL, Xu W, Yu ZX. Total Synthesis of Clovan-2,9-dione via [3 + 2 + 1] Cycloaddition and Hydroformylation/Aldol Reaction. Org Lett 2022; 24:5902-5906. [PMID: 35939530 DOI: 10.1021/acs.orglett.2c02111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we report the total synthesis of clovan-2,9-dione via Rh-catalyzed [3 + 2 + 1] cycloaddition/hydroformylation/aldol reaction. The [3 + 2 + 1] reaction of 1-yne-vinylcyclopropane and CO was used for the generation of a 5/6 bicyclic skeleton with a bridgehead vinyl group. The hydroformylation reaction converted the congested olefin of the [3 + 2 + 1] cycloadduct to a one-carbon elongated aldehyde, which underwent in situ aldol reaction, with the carbonyl group in the [3 + 2 + 1] cycloadduct, to generate the tricyclic bridged-ring skeleton of the target molecule.
Collapse
Affiliation(s)
- Yi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Jun-Long Qin
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Wenbo Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Heravi MM, Nazari A. Samarium(ii) iodide-mediated reactions applied to natural product total synthesis. RSC Adv 2022; 12:9944-9994. [PMID: 35424959 PMCID: PMC8965710 DOI: 10.1039/d1ra08163b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/12/2022] [Indexed: 12/22/2022] Open
Abstract
Natural product synthesis remains a field in which new synthetic methods and reagents are continually being evaluated. Due to the demanding structures and complex functionality of many natural products, only powerful and selective methods and reagents will be highlighted in this proceeding. Since its introduction by Henri Kagan, samarium(ii) iodide (SmI2, Kagan's reagent) has found increasing use in chemical synthesis. Over the years, many reviews have been published on the application of SmI2 in numerous reductive coupling procedures as well as in natural product total synthesis. This review highlights recent advances in SmI2-mediated synthetic strategies, as applied in the total synthesis of natural products since 2004.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University PO Box 1993891176 Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| | - Azadeh Nazari
- Department of Chemistry, School of Science, Alzahra University PO Box 1993891176 Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| |
Collapse
|
5
|
Caryophyllene and caryophyllene oxide: a variety of chemical transformations and biological activities. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01865-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Affiliation(s)
- Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Rd Chengdu Sichuan 610064 China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Rd Chengdu Sichuan 610064 China
| |
Collapse
|
7
|
Abstract
The first asymmetric total synthesis of rumphellclovane E, a clovane-type sesquiterpenoid, has been accomplished in eight steps from commercially available (R)-carvone. Key elements of the synthesis include Rh-catalyzed cyclopropanation, iron-catalyzed intramolecular reductive aldol reaction, and SmI2-mediated chemo- and diastereoselective reduction of the cyclopentanone.
Collapse
Affiliation(s)
- Guanggen Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhijiang Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Fukuyama Y, Kubo M, Harada K. The search for, and chemistry and mechanism of, neurotrophic natural products. J Nat Med 2020; 74:648-671. [PMID: 32643028 PMCID: PMC7456418 DOI: 10.1007/s11418-020-01431-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022]
Abstract
Abstract Neurotrophic factors, now termed neurotrophins, which belong to a class of polypeptidyl agents, have been shown to potentially be beneficial for the treatment of neurodegenerative diseases such as Alzheimer’s disease, because endogenous neurotrophic factors (NGF, BDNF, NT3, NT4) have been recognized to play critical roles in the promotion of neurogenesis, differentiation, and neuroprotection throughout the development of the central nervous system. However, high-molecular weight proteins are unable to cross the blood–brain barrier and are easily decomposed by peptidase under physiological conditions. To address this issue, small molecules that can mimic the functions of neurotrophic factors would be promising alternatives for the treatment of neurodegenerative disease. We have continued to search for natural products having typical neurotrophic properties, which can cause neurogenesis, enhance neurite outgrowth, and protect neuronal death using three cellular systems (PC12, rat cortical neurons, and MEB5 cells). In this review, we summarize the neurotrophic activities and synthesis of dimeric isocuparane-type sesquiterpenes from the liverwort, Mastigophora diclados, the mechanism of neurotrophic neolignans, magnolol, honokiol and their sesquiterpene derivatives, and introduce unique neurotrophin-mimic natural products, including seco-prezizaane-type sesquiterpenes from the Illicium species, vibsane-type diterpenes from Viburnum awabuki, and miscellaneous natural products with neurotrophic effects discovered by us. Graphic abstract ![]()
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
9
|
Stakanovs G, Mishnev A, Rasina D, Jirgensons A. A Concise Bioinspired Semisynthesis of Rumphellaones A-C and Their C-8 Epimers from β-Caryophyllene. JOURNAL OF NATURAL PRODUCTS 2020; 83:2004-2009. [PMID: 32538090 DOI: 10.1021/acs.jnatprod.0c00403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The first semisynthetic route toward rumphellaones B (2) and C (3) and their C-8 epimers as well as the shortest synthesis of rumphellaone A (1) and its C-8 epimer from the most accessible sesquiterpene, β-caryophyllene (4), is presented. Synthetic routes involved caryophyllonic acid as a key intermediate, which was converted to rumphellaone A (and epimer) via acid-catalyzed lactonization and rumphellaone C (and epimer) using one-pot epoxidation-lactonization. Rumphellaone B (2) and its epimer were obtained from rumphellaone A (1) and its epimer, respectively, using Saegusa-Ito oxidation. The absolute configuration at C-8 was confirmed by single-crystal X-ray analysis of rumphellaone B (2) and an acylated derivative of rumphellaone C.
Collapse
Affiliation(s)
- Georgijs Stakanovs
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006, Riga, Latvia
| | - Anatoly Mishnev
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006, Riga, Latvia
| | - Dace Rasina
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006, Riga, Latvia
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, LV-1006, Riga, Latvia
| |
Collapse
|
10
|
Grigalunas M, Burhop A, Christoforow A, Waldmann H. Pseudo-natural products and natural product-inspired methods in chemical biology and drug discovery. Curr Opin Chem Biol 2020; 56:111-118. [PMID: 32362382 DOI: 10.1016/j.cbpa.2019.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 11/20/2022]
Abstract
Through evolution, nature has provided natural products (NPs) as a rich source of diverse bioactive material. Many drug discovery programs have used nature as an inspiration for the design of NP-like compound classes. These concepts are guided by the prevalidated biological relevance of NPs while going beyond the limitations of nature to produce chemical matter that could have unexpected or novel bioactivities. Herein, we discuss, compare, and highlight recent examples of NP-inspired methods with a focus on the pseudo-NP concept.
Collapse
Affiliation(s)
- Michael Grigalunas
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Annina Burhop
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany
| | - Andreas Christoforow
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany.
| |
Collapse
|
11
|
Two New Cyathane Diterpenoids from Mycelial Cultures of the Medicinal Mushroom Hericium erinaceus and the Rare Species, Hericium flagellum. Int J Mol Sci 2018; 19:ijms19030740. [PMID: 29509661 PMCID: PMC5877601 DOI: 10.3390/ijms19030740] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/23/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
Basidiomycetes of the genus Hericium are among the most praised medicinal and edible mushrooms, which are known to produce secondary metabolites with the potential to treat neurodegenerative diseases. This activity has been attributed to the discovery of various terpenoids that can stimulate the production of nerve growth factor (NGF) or (as established more recently) brain-derived neurotrophic factor (BDNF) in cell-based bioassays. The present study reports on the metabolite profiles of a Lion’s Mane mushroom (Hericium erinaceus) strain and a strain of the rare species, Hericium flagellum (synonym H. alpestre). While we observed highly similar metabolite profiles between the two strains that were examined, we isolated two previously undescribed metabolites, given the trivial names erinacines Z1 and Z2. Their chemical structures were elucidated by means of nuclear magnetic resonance (NMR) spectroscopy and high resolution mass spectrometry. Along with six further, previously identified cyathane diterpenes, the novel erinacines were tested for neurotrophin inducing effects. We found that erinacines act on BDNF, which is a neurotrophic factor that has been reported recently by us to be induced by the corallocins, but as well on NGF expression, which is consistent with the literature.
Collapse
|
12
|
Yang J, Xu W, Cui Q, Fan X, Wang LN, Yu ZX. Asymmetric Total Synthesis of (−)-Clovan-2,9-dione Using Rh(I)-Catalyzed [3 + 2 + 1] Cycloaddition of 1-Yne-vinylcyclopropane and CO. Org Lett 2017; 19:6040-6043. [DOI: 10.1021/acs.orglett.7b02656] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Yang
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry
and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Wenbo Xu
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry
and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Qi Cui
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry
and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Xing Fan
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry
and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Lu-Ning Wang
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry
and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory
for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry
and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Zhang CC, Cao CY, Kubo M, Harada K, Yan XT, Fukuyama Y, Gao JM. Chemical Constituents from Hericium erinaceus Promote Neuronal Survival and Potentiate Neurite Outgrowth via the TrkA/Erk1/2 Pathway. Int J Mol Sci 2017; 18:ijms18081659. [PMID: 28758954 PMCID: PMC5578049 DOI: 10.3390/ijms18081659] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/30/2022] Open
Abstract
Hericium erinaceus is a culinary-medicinal mushroom used traditionally in Eastern Asia to improve memory. In this work, we investigated the neuroprotective and neuritogenic effects of the secondary metabolites isolated from the MeOH extract of cultured mycelium of H. erinaceus and the primary mechanisms involved. One new dihydropyridine compound (6) and one new natural product (2) together with five known compounds (1,3-5,7) were obtained and their structures were elucidated by spectroscopic analysis, including 2D NMR and HRMS. The cell-based screening for bioactivity showed that 4-chloro-3,5-dimethoxybenzoic methyl ester (1) and a cyathane diterpenoid, erincine A (3), not only potentiated NGF-induced neurite outgrowth but also protected neuronally-differentiated cells against deprivation of NGF in PC12 pheochromocytoma cells. Additionally, compound 3 induced neuritogenesis in primary rat cortex neurons. Furthermore, our results revealed that TrkA-mediated and Erk1/2-dependant pathways could be involved in 1 and 3-promoted NGF-induced neurite outgrowth in PC12 cells.
Collapse
Affiliation(s)
- Cheng-Chen Zhang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan.
| | - Chen-Yu Cao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan.
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan.
| | - Xi-Tao Yan
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan.
| | - Jin-Ming Gao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
14
|
|
15
|
Förster T, López-Tosco S, Ziegler S, Antonchick AP, Waldmann H. Enantioselective Organocatalytic Synthesis of a Secoyohimbane-Inspired Compound Collection with Neuritogenic Activity. Chembiochem 2017; 18:1098-1108. [DOI: 10.1002/cbic.201700015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Tim Förster
- Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Chemische Biologie; Fakultät Chemie; Technische Universität Dortmund; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Sara López-Tosco
- Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Slava Ziegler
- Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Andrey P. Antonchick
- Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Chemische Biologie; Fakultät Chemie; Technische Universität Dortmund; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Herbert Waldmann
- Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Chemische Biologie; Fakultät Chemie; Technische Universität Dortmund; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| |
Collapse
|
16
|
|
17
|
Synthesis and oxidation of sulfides based on (–)-caryophyllene oxide and tert-butanethiol. Russ Chem Bull 2016. [DOI: 10.1007/s11172-016-1441-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Mohammadnezhad G, Amini MM, Khavasi HR, Plass W. Structural and spectroscopic characterizations of aluminum phenoxide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 157:238-243. [PMID: 26774815 DOI: 10.1016/j.saa.2016.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 12/30/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
A synthetic route to obtain crystalline aluminum phenoxide was established. Its molecular structure in solid-state and solution is unambiguously determined by single-crystal X-ray diffraction and (1)H, (13)C and (27)Al NMR spectroscopy. The single-crystal X-ray analysis revealed the presence of the dimeric THF adduct [Al(OPh)3·THF]2 with a disordered trigonal bipyramidal geometry at the aluminum atom which is bonded to a THF ligand, two terminal and two bridging phenoxy groups (OPh). The solution behavior of the title compound was investigated by (27)Al NMR in non-coordinating (CDCl3) as well as coordinating (THF) solvents at different temperatures. The obtained results indicate the presence of four- and five-coordinate species in solution.
Collapse
Affiliation(s)
| | - Mostafa M Amini
- Faculty of Chemistry, Shahid Beheshti University G.C., Tehran 1983963113, Iran
| | - Hamid Reza Khavasi
- Faculty of Chemistry, Shahid Beheshti University G.C., Tehran 1983963113, Iran
| | - Winfried Plass
- Institute of Inorganic and Analytical Chemistry, Chair of Inorganic Chemistry II, Friedrich Schiller University Jena, Humboldtstr. 8, 07743 Jena, Germany
| |
Collapse
|
19
|
Steenackers B, De Cooman L, De Vos D. Chemical transformations of characteristic hop secondary metabolites in relation to beer properties and the brewing process: a review. Food Chem 2014; 172:742-56. [PMID: 25442616 DOI: 10.1016/j.foodchem.2014.09.139] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/20/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
Abstract
The annual production of hops (Humulus lupulus L.) exceeds 100,000 mt and is almost exclusively consumed by the brewing industry. The value of hops is attributed to their characteristic secondary metabolites; these metabolites are precursors which are transformed during the brewing process into important bittering, aromatising and preservative components with rather low efficiency. By selectively transforming these components off-line, both their utilisation efficiency and functionality can be significantly improved. Therefore, the chemical transformations of these secondary metabolites will be considered with special attention to recent advances in the field. The considered components are the hop alpha-acids, hop beta-acids and xanthohumol, which are components unique to hops, and alpha-humulene and beta-caryophyllene, sesquiterpenes which are highly characteristic of hops.
Collapse
Affiliation(s)
- Bart Steenackers
- Centre for Surface Science and Catalysis, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - Luc De Cooman
- Laboratory for Enzyme and Brewing Technology, KaHo St.-Lieven, Gebroeders Desmetstraat 1, 9000 Gent, Belgium
| | - Dirk De Vos
- Centre for Surface Science and Catalysis, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium.
| |
Collapse
|
20
|
Burch P, Schmid F, Gademann K. Neuritogenic surfaces using natural product analogs. Adv Healthc Mater 2014; 3:1415-9. [PMID: 24596342 DOI: 10.1002/adhm.201300671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/10/2014] [Indexed: 01/08/2023]
Abstract
Neuritogenic surfaces are generated by a simple dip-coating procedure, as glass slides are coated with a neurotrophin-like small organic molecule in the presence of a collagen matrix. The surfaces retain their biological activity for multiple cycles and the protocol is suitable for various substrates and coating conditions.
Collapse
Affiliation(s)
- Patrick Burch
- Department of Chemistry; University of Basel; St. Johanns-Ring 19 CH-4056 Basel Switzerland
| | - Fabian Schmid
- Department of Chemistry; University of Basel; St. Johanns-Ring 19 CH-4056 Basel Switzerland
| | - Karl Gademann
- Department of Chemistry; University of Basel; St. Johanns-Ring 19 CH-4056 Basel Switzerland
| |
Collapse
|
21
|
Zhu Y, Wang Q, Cornwall RG, Shi Y. Organocatalytic asymmetric epoxidation and aziridination of olefins and their synthetic applications. Chem Rev 2014; 114:8199-256. [PMID: 24785198 DOI: 10.1021/cr500064w] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yingguang Zhu
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| | | | | | | |
Collapse
|
22
|
Xu J, Lacoske MH, Theodorakis EA. Neurotrophic natural products: chemistry and biology. Angew Chem Int Ed Engl 2014; 53:956-87. [PMID: 24353244 PMCID: PMC3945720 DOI: 10.1002/anie.201302268] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases and spinal cord injury affect approximately 50 million people worldwide, bringing the total healthcare cost to over 600 billion dollars per year. Nervous system growth factors, that is, neurotrophins, are a potential solution to these disorders, since they could promote nerve regeneration. An average of 500 publications per year attests to the significance of neurotrophins in biomedical sciences and underlines their potential for therapeutic applications. Nonetheless, the poor pharmacokinetic profile of neurotrophins severely restricts their clinical use. On the other hand, small molecules that modulate neurotrophic activity offer a promising therapeutic approach against neurological disorders. Nature has provided an impressive array of natural products that have potent neurotrophic activities. This Review highlights the current synthetic strategies toward these compounds and summarizes their ability to induce neuronal growth and rehabilitation. It is anticipated that neurotrophic natural products could be used not only as starting points in drug design but also as tools to study the next frontier in biomedical sciences: the brain activity map project.
Collapse
Affiliation(s)
- Jing Xu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358 (USA), Homepage: http://theodorakisgroup.ucsd.edu
| | - Michelle H. Lacoske
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358 (USA), Homepage: http://theodorakisgroup.ucsd.edu
| | - Emmanuel A. Theodorakis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358 (USA), Homepage: http://theodorakisgroup.ucsd.edu
| |
Collapse
|
23
|
Xu J, Lacoske MH, Theodorakis EA. Neurotrophe Naturstoffe - ihre Chemie und Biologie. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Neuritogenic monoglyceride derived from the constituent of a marine fish for activating the PI3K/ERK/CREB signalling pathways in PC12 cells. Int J Mol Sci 2013; 14:24200-10. [PMID: 24351811 PMCID: PMC3876105 DOI: 10.3390/ijms141224200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 01/25/2023] Open
Abstract
A neuritogenic monoglyceride, 1-O-(myristoyl) glycerol (MG), was isolated from the head of Ilisha elongate using a PC12 cell bioassay system, and its chemical structure was elucidated using spectroscopic methods. MG significantly induced 42% of the neurite outgrowth of PC12 cells at a concentration of 10 μM. To study the structure-activity relationships of MG, a series of monoglycerides was designed and synthesised. Bioassay results indicated that the alkyl chain length plays a key role in the neuritogenic activity of the monoglycerides. The groups that link the propane-1,2-diol and alkyl chain were also investigated. An ester linkage, rather than an amido one, was found to be optimal for neuritogenic activity. Therefore, 1-O-(stearoyl) glycerol (SG), which induces 57% of the neurite outgrowth of PC12 cells at 10 μM, was determined to be a lead compound for neuritogenic activity. We then investigated the mechanism of action of neurite outgrowth induced by SG on PC12 cells using protein specific inhibitors and Western blot analysis. The mitogen-activated kinase/ERK kinase (MEK) inhibitor U0126 and the phosphatidylinositol-3 kinase (PI3K) inhibitor LY294002 significantly decreased neurite outgrowth. At the same time, SG increased phosphorylation of CREB in protein level. Thus, SG-induced neuritogenic activity depends on the activation of the extracellular-regulated protein kinase (ERK), cAMP responsive element-binding protein (CREB) and PI3K signalling pathways in PC12 cells.
Collapse
|
25
|
Ye Y, Qu Y, Tang R, Cao S, Yang W, Xiang L, Qi J. Three new neuritogenic steroidal saponins from Ophiopogon japonicus (Thunb.) Ker-Gawl. Steroids 2013; 78:1171-6. [PMID: 24012729 DOI: 10.1016/j.steroids.2013.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 08/05/2013] [Accepted: 08/21/2013] [Indexed: 11/17/2022]
Abstract
Three new steroidal saponins (1-3) and a known saponin (4) were isolated from Ophiopogon japonicus (Thunb.) Ker-Gawl. Their structures were determined by spectroscopic analyses and chemical derivatization. The isolated compounds (1-4) were potent inducers of neuritogenesis on PC12 cells. Compound 1 showed the highest neuritogenic activity of 46% at 1 μM. The study of structure-activity relationships suggests that aglycone is important for the neuritogenic activity of the compounds. Specific inhibitor experiments and Western blot analysis suggest that 1-induced neuritogenic activity depends on the activation of mitogen-activated protein kinase kinase (MEK)/extracellular signal regulated kinase (ERK) signaling pathway on PC12 cells.
Collapse
Affiliation(s)
- Ying Ye
- College of Pharmaceutical Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Trzoss L, Xu J, Lacoske MH, Theodorakis EA. Synthesis of the tetracyclic core of Illicium sesquiterpenes using an organocatalyzed asymmetric Robinson annulation. Beilstein J Org Chem 2013; 9:1135-40. [PMID: 23843905 PMCID: PMC3701413 DOI: 10.3762/bjoc.9.126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/24/2013] [Indexed: 01/19/2023] Open
Abstract
An enantioselective synthesis of the core framework of neurotrophic Illicium majucin-type sesquiterpenes is described here. This strategy is based on an organocatalyzed asymmetric Robinson annulation and provides an efficient approach for a diversity-oriented synthesis of Illicium natural products that holds remarkable therapeutic potential for neurodegenerative diseases.
Collapse
Affiliation(s)
- Lynnie Trzoss
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Jing Xu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Michelle H Lacoske
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Emmanuel A Theodorakis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| |
Collapse
|
27
|
Trzoss L, Xu J, Lacoske MH, Mobley WC, Theodorakis EA. Illicium sesquiterpenes: divergent synthetic strategy and neurotrophic activity studies. Chemistry 2013; 19:6398-408. [PMID: 23526661 PMCID: PMC3875175 DOI: 10.1002/chem.201300198] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Indexed: 01/12/2023]
Abstract
Majucin-type sesquiterpenes from Illicium sp., such as jiadifenolide (2), jiadifenin (3), and (1R,10S)-2-oxo-3,4-dehydroxyneomajucin (4, ODNM), possess a complex caged chemical architecture and remarkable neurotrophic activities. As such, they represent attractive small-molecule leads against various neurodegenerative diseases. We present an efficient, enantioselective, and unified synthesis of 2, 3, and 4 and designed analogues that diverge from tetracyclic key intermediate 7. The synthesis of 7 is highlighted by the use of an enantioselective Robinson annulation reaction (construction of the AB rings), a Pd-mediated carbomethoxylation reaction (construction of the C ring), and a one-pot oxidative reaction cascade (construction of the D ring). Evaluation of the neurotrophic activity of these compounds led to the identification of several highly potent small molecules that significantly enhanced the activity of nerve growth factor (NGF) in PC-12 cells. Moreover, efforts to define the common pharmacophoric motif suggest that substitution at the C-10 center significantly affects bioactivity, while the hemiketal moiety of 2 and 3 and the C-1 substitution might not be critical to the neurotrophic activity.
Collapse
Affiliation(s)
- Lynnie Trzoss
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA, Fax: (+)1-858-822-0386
| | - Jing Xu
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA, Fax: (+)1-858-822-0386
| | - Michelle H. Lacoske
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA, Fax: (+)1-858-822-0386
| | - William C. Mobley
- Department of Neurosciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0752, USA
| | - Emmanuel A. Theodorakis
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA, Fax: (+)1-858-822-0386
| |
Collapse
|
28
|
Highly Enantioselective Catalytic Synthesis of Neurite Growth-Promoting Secoyohimbanes. ACTA ACUST UNITED AC 2013; 20:500-9. [DOI: 10.1016/j.chembiol.2013.03.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/12/2013] [Accepted: 03/19/2013] [Indexed: 11/22/2022]
|
29
|
Zlotkowski K, Pierce-Shimomura J, Siegel D. Small-molecule-mediated axonal branching in Caenorhabditis elegans. Chembiochem 2013; 14:307-10. [PMID: 23362121 PMCID: PMC4470382 DOI: 10.1002/cbic.201200712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Indexed: 01/22/2023]
Abstract
An in vivo system for monitoring small-molecule-mediated neuronal branching has been developed by using C. elegans. Growth-promoting compounds can be detected by visual inspection of GFPlabeled cholinergic neurons, as axonal branching occurs following treatment with neurotrophic agents. Investigation of the structure-activity relationship of the neurotrophic natural product clovanemagnolol (1) led us to a comparable chemically edited derivative.
Collapse
Affiliation(s)
- Katherine Zlotkowski
- Department of Chemistry and Biochemistry The University of Texas at Austin, Austin TX, 78701 (USA)
| | - Jon Pierce-Shimomura
- Department of Neurobiology, The University of Texas at Austin Austin TX, 78701 (USA)
| | - Dionicio Siegel
- Department of Chemistry and Biochemistry The University of Texas at Austin, Austin TX, 78701 (USA)
| |
Collapse
|
30
|
Schmid F, Jessen HJ, Burch P, Gademann K. Truncated militarinone fragments identified by total chemical synthesis induce neurite outgrowth. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20181j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Short analogs of militarinone D were prepared that omit the configurationally unstable triene side chain bearing stereogenic centers and cut down the number of synthetic steps by 12. These short natural product fragments induce neuritogenesis at markedly lower concentrations.
Collapse
Affiliation(s)
- Fabian Schmid
- University of Basel
- Department of Chemistry
- 4056 Basel
- Switzerland
| | | | - Patrick Burch
- University of Basel
- Department of Chemistry
- 4056 Basel
- Switzerland
| | - Karl Gademann
- University of Basel
- Department of Chemistry
- 4056 Basel
- Switzerland
| |
Collapse
|
31
|
Liffert R, Hoecker J, Jana CK, Woods TM, Burch P, Jessen HJ, Neuburger M, Gademann K. Withanolide A: synthesis and structural requirements for neurite outgrowth. Chem Sci 2013. [DOI: 10.1039/c3sc50653c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
de Souza GG, Oliveira TS, Takahashi JA, Collado IG, Macías-Sánchez AJ, Hernández-Galán R. Biotransformation of clovane derivatives. Whole cell fungi mediated domino synthesis of rumphellclovane A. Org Biomol Chem 2012; 10:3315-20. [DOI: 10.1039/c2ob07114b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|