1
|
Ito R, Komaki Y, Ibuki Y. Increased matrix metalloproteinase-1 expression by coexposure to UVA and cigarette sidestream smoke and contribution of histone acetylation. Genes Environ 2025; 47:2. [PMID: 39865280 PMCID: PMC11765920 DOI: 10.1186/s41021-025-00325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Skin is exposed to various environmental factors throughout life, and some of these factors are known to contribute to skin aging. Long-term solar UV exposure is a well-known cause of skin aging, as is cigarette smoke, which contains a number of chemicals. In this study, combined effect of UVA and cigarette sidestream smoke (CSS) on matrix metalloproteinase-1 (MMP-1) induction was investigated. MMP-1 is the main protease that initiates collagen type I fiber fragmentation in human skin and is associated with aging. RESULTS Combined exposure to UVA and CSS enhanced MMP-1 induction, accompanied by collagen type I (COL1A1) gene suppression. The basal expression of MMP-1 was higher in senescent cells than in normal cells, with a pronounced increase after coexposure to UVA and CSS. UVA irradiation resulted in global histone H3 acetylation, and we considered this was responsible for the MMP-1 upregulation. Histone deacetylase inhibitors, sodium acetate, propionate, and butyrate, all enhanced the CSS-induced MMP-1 according to the degree of histone acetylation. CONCLUSION These results suggest that UVA and CSS additively induce MMP-1, which may lead to skin aging, and that such combined effect may further promote aging in aged skin. UVA-induced histone acetylation may contribute to MMP-1 induction.
Collapse
Affiliation(s)
- Ryoma Ito
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52- 1, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yukako Komaki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52- 1, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52- 1, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
2
|
De Los Santos Gomez P, Costello L, Goncalves K, Przyborski S. Comparison of photodamage in non-pigmented and pigmented human skin equivalents exposed to repeated ultraviolet radiation to investigate the role of melanocytes in skin photoprotection. Front Med (Lausanne) 2024; 11:1355799. [PMID: 38698778 PMCID: PMC11063240 DOI: 10.3389/fmed.2024.1355799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction Daily solar ultraviolet (UV) radiation has an important impact on skin health. Understanding the initial events of the UV-induced response is critical to prevent deleterious conditions. However, studies in human volunteers have ethical, technical, and economic implications that make skin equivalents a valuable platform to investigate mechanisms related to UV exposure to the skin. In vitro human skin equivalents can recreate the structure and function of in vivo human skin and represent a valuable tool for academic and industrial applications. Previous studies have utilised non-pigmented full-thickness or pigmented epidermal skin equivalents to investigate skin responses to UV exposure. However, these do not recapitulate the dermal-epidermal crosstalk and the melanocyte role in photoprotection that occurs in vivo. In addition, the UV radiation used in these studies is generally not physiologically representative of real-world UV exposure. Methods Well-characterised pigmented and non-pigmented skin equivalents that contain human dermal fibroblasts, endogenous secreted extracellular matrix proteins (ECM) and a well-differentiated and stratified epidermis have been developed. These constructs were exposed to UV radiation for ×5 consecutive days with a physiologically relevant UV dose and subsequently analysed using appropriate end-points to ascertain photodamage to the skin. Results We have described that repeated irradiation of full-thickness human skin equivalents in a controlled laboratory environment can recreate UV-associated responses in vitro, mirroring those found in photoexposed native human skin: morphological damage, tanning, alterations in epidermal apoptosis, DNA lesions, proliferation, inflammatory response, and ECM-remodelling. Discussion We have found a differential response when using the same UV doses in non-pigmented and pigmented full-thickness skin equivalents, emphasising the role of melanocytes in photoprotection.
Collapse
Affiliation(s)
| | - Lydia Costello
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Kirsty Goncalves
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, United Kingdom
- Reprocell Europe Ltd., Glasgow, United Kingdom
| |
Collapse
|
3
|
Young AR. The adverse consequences of not using sunscreens. Int J Cosmet Sci 2023; 45 Suppl 1:11-19. [PMID: 37799076 DOI: 10.1111/ics.12897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/10/2023] [Indexed: 10/07/2023]
Abstract
The adverse effects of solar ultraviolet radiation (UVR) on normal skin are well established, especially in those with poorly melanized skin. Clinically, these effects may be classified as acute, such as erythema or chronic such as keratinocyte and melanocyte skin cancers. Apart from skin type genetics, clinical responses to solar UVR are dependent on geophysical (e.g., solar intensity) and behavioural factors. The latter are especially important because they may result in 'solar overload' with unwanted clinical consequences and ever greater burdens to healthcare systems. Correctly used, sunscreens can mitigate the acute and chronic effects of solar UVR exposure. Laboratory studies also show that sunscreens can inhibit the initial molecular and cellular events that are responsible for clinical outcomes. Despite public health campaigns, global trends continue to show increasing incidence of all types of skin cancer. Large-scale epidemiological studies have shown the benefits of sunscreen use in preventing skin cancer, though it is likely that sunscreen use has not been optimal in such studies. It is evident that without substantial changes in sun-seeking behaviour, sunscreen use is a very important part of the defence against the acute and chronic effects of solar exposure. Ideally, sunscreens should be able to provide the level of protection that reduces the risk of skin cancer in susceptible skin types to that observed in heavily melanized skin.
Collapse
Affiliation(s)
- Antony R Young
- St John's Institute of Dermatology, King's College London, London, UK
| |
Collapse
|
4
|
Young AR, Schalka S, Temple RC, Simeone E, Sohn M, Kohlmann C, Morelli M. Innovative digital solution supporting sun protection and vitamin D synthesis by using satellite-based monitoring of solar radiation. Photochem Photobiol Sci 2022; 21:1853-1868. [DOI: 10.1007/s43630-022-00263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
|
5
|
Young AR, Morgan KA, Harrison GI, Lawrence KP, Petersen B, Wulf HC, Philipsen PA. A revised action spectrum for vitamin D synthesis by suberythemal UV radiation exposure in humans in vivo. Proc Natl Acad Sci U S A 2021; 118:e2015867118. [PMID: 34580202 PMCID: PMC8501902 DOI: 10.1073/pnas.2015867118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 11/24/2022] Open
Abstract
Action spectra are important biological weighting functions for risk/benefit analyses of ultraviolet (UV) radiation (UVR) exposure. One important human benefit of exposure to terrestrial solar UVB radiation (∼295 to 315 nm) is the cutaneous synthesis of vitamin D3 that is initiated by the photoconversion of 7-dehydrocholesterol to previtamin D3 An action spectrum for this process that is followed by other nonphotochemical steps to achieve biologically active vitamin D3 has been established from ex vivo data and is widely used, although its validity has been questioned. We tested this action spectrum in vivo by full- or partial-body suberythemal irradiation of 75 healthy young volunteers with five different polychromatic UVR spectra on five serial occasions. Serum 25-hydroxyvitamin D3 [25(OH)D3] levels, as the most accurate measure of vitamin D3 status, were assessed before, during, and after the exposures. These were then used to generate linear dose-response curves that were different for each UVR spectrum. It was established that the previtamin D3 action spectrum was not valid when related to the serum 25(OH)D3 levels, as weighting the UVR doses with this action spectrum did not result in a common regression line unless it was adjusted by a blue shift, with 5 nm giving the best fit. Such a blue shift is in accord with the published in vitro action spectra for vitamin D3 synthesis. Thus, calculations regarding the risk (typically erythema) versus the benefit of exposure to solar UVR based on the ex vivo previtamin D3 action spectrum require revision.
Collapse
Affiliation(s)
- Antony R Young
- St. John's Institute of Dermatology, School of Basic and Biomedical Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom;
| | - Kylie A Morgan
- St. John's Institute of Dermatology, School of Basic and Biomedical Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Graham I Harrison
- St. John's Institute of Dermatology, School of Basic and Biomedical Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Karl P Lawrence
- St. John's Institute of Dermatology, School of Basic and Biomedical Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Bibi Petersen
- Global Medical Affairs, LEO Pharma, 2750 Ballerup, Denmark
| | - Hans Christian Wulf
- Department of Dermatology D92, Copenhagen University Hospital - Bispebjerg, DK-2400 Copenhagen, Denmark
| | - Peter A Philipsen
- Department of Dermatology D92, Copenhagen University Hospital - Bispebjerg, DK-2400 Copenhagen, Denmark
| |
Collapse
|
6
|
Neville JJ, Palmieri T, Young AR. Physical Determinants of Vitamin D Photosynthesis: A Review. JBMR Plus 2021; 5:e10460. [PMID: 33553995 PMCID: PMC7839826 DOI: 10.1002/jbm4.10460] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Vitamin D synthesis by exposure of skin to solar ultraviolet radiation (UVR) provides the majority of this hormone that is essential for bone development and maintenance but may be important for many other health outcomes. This process, which is the only well-established benefit of solar UVR exposure, depends on many factors including genetics, age, health, and behavior. However, the most important factor is the quantity and quality of UVR reaching the skin. Vitamin D synthesis specifically requires ultraviolet B (UVB) radiation that is the minority component (<5%) of solar UVR. This waveband is also the most important for the adverse effects of solar exposure. The most obvious of which is sunburn (erythema), but UVB is also the main cause of DNA damage to the skin that is a prerequisite for most skin cancers. UVB at the Earth's surface depends on many physical and temporal factors such as latitude, altitude, season, and weather. Personal, cultural, and behavioral factors are also important. These include skin melanin, clothing, body surface area exposed, holiday habits, and sunscreen use. There is considerable disagreement in the literature about the role of some of these factors, possibly because some studies have been done by researchers with little understanding of photobiology. It can be argued that vitamin D supplementation obviates the need for solar exposure, but many studies have shown little benefit from this approach for a wide range of health outcomes. There is also increasing evidence that such exposure offers health benefits independently of vitamin D: the most important of which is blood-pressure reduction. In any case, public health advice must optimize risk versus benefit for solar exposure. It is fortunate that the individual UVB doses necessary for maintaining optimal vitamin D status are lower than those for sunburn, irrespective of skin melanin. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jonathan J Neville
- St John's Institute of Dermatology, School of Basic & Medical Biosciences King's College London London United Kingdom
| | - Tommaso Palmieri
- St John's Institute of Dermatology, School of Basic & Medical Biosciences King's College London London United Kingdom
| | - Antony R Young
- St John's Institute of Dermatology, School of Basic & Medical Biosciences King's College London London United Kingdom
| |
Collapse
|
7
|
Chaudhuri RK, Meyer T, Premi S, Brash D. Acetyl zingerone: An efficacious multifunctional ingredient for continued protection against ongoing DNA damage in melanocytes after sun exposure ends. Int J Cosmet Sci 2019; 42:36-45. [PMID: 31538664 PMCID: PMC7004018 DOI: 10.1111/ics.12582] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 11/26/2022]
Abstract
Objective Recent research has shown that significant levels of cyclobutane pyrimidine dimers (CPDs) in DNA continue to form in melanocytes for several hours in the dark after exposure to ultraviolet radiation (UVR) ends. We document the utility of a new multifunctional ingredient, 3‐(4‐hydroxy, 3‐methoxybenzyl)‐pentane‐2,4‐dione (INCI acetyl zingerone (AZ)), to protect melanocytes against CPD formation after UVR exposure ends. Methods The use of AZ as an intervention to reduce CPD formation after irradiation was assessed in vitro by comparing kinetic profiles of CPD formation for several hours after irradiation in cells that were untreated or treated with AZ immediately after irradiation. Multifunctional performance of AZ as an antioxidant, quencher and scavenger was established using industry‐standard in vitro chemical assays, and then, its efficacy in a more biological assay was confirmed by its in vitro ability to reduce intracellular levels of reactive oxygen species (ROS) in keratinocytes exposed to UVA radiation. Molecular photostability was assessed in solution during exposure to solar‐simulated UVR and compared with the conventional antioxidant α‐tocopherol. Results Even when added immediately after irradiation, AZ significantly inhibited ongoing formation of CPDs in melanocytes after exposure to UVA. Incubation with AZ before irradiation decreased intracellular levels of UVA‐induced ROS formation in keratinocytes. Compared with α‐tocopherol, the molecular structure of AZ endows it with significantly better photostability and efficacy to neutralize free radicals (∙OH, ∙OOH), physically quench singlet oxygen (1O2) and scavenge peroxynitrite (ONOO−). Conclusion These results designate AZ as a new type of multifunctional ingredient with strong potential to extend photoprotection of traditional sunscreens and daily skincare products over the first few hours after sun exposure ends.
Collapse
Affiliation(s)
- R K Chaudhuri
- Sytheon Ltd., 315 Wootton Street, Boonton, NJ, 07005, USA
| | - T Meyer
- Sytheon Ltd., 315 Wootton Street, Boonton, NJ, 07005, USA
| | - S Premi
- Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - D Brash
- Department of Therapeutic Radiology, School of Medicine, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
8
|
Lentigine Formation in Caucasian Women—Interaction between Particulate Matter and Solar UVR. J Invest Dermatol 2019; 139:974-976. [DOI: 10.1016/j.jid.2018.09.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022]
|
9
|
Saito P, Melo CPB, Martinez RM, Fattori V, Cezar TLC, Pinto IC, Bussmann AJC, Vignoli JA, Georgetti SR, Baracat MM, Verri WA, Casagrande R. The Lipid Mediator Resolvin D1 Reduces the Skin Inflammation and Oxidative Stress Induced by UV Irradiation in Hairless Mice. Front Pharmacol 2018; 9:1242. [PMID: 30429790 PMCID: PMC6220064 DOI: 10.3389/fphar.2018.01242] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
UV irradiation-induced oxidative stress and inflammation contribute to the development of skin diseases. Therefore, targeting oxidative stress and inflammation might contribute to reduce skin diseases. Resolvin D1 (RvD1) is a bioactive metabolite generated during inflammation to actively orchestrate the resolution of inflammation. However, the therapeutic potential of RvD1 in UVB skin inflammation remains undetermined, which was, therefore, the aim of the present study. The intraperitoneal treatment with RvD1 (3-100 ng/mouse) reduced UVB irradiation-induced skin edema, myeloperoxidase activity, matrix metalloproteinase 9 activity, and reduced glutathione depletion with consistent effects observed with the dose of 30 ng/mouse, which was selected to the following experiments. RvD1 inhibited UVB reduction of catalase activity, and hydroperoxide formation, superoxide anion production, and gp91phox mRNA expression. RvD1 also increased the Nrf2 and its downstream targets NQO1 and HO-1 mRNA expression. Regarding cytokines, RvD1 inhibited UVB-induced production of IL-1β, IL-6, IL-33, TNF-α, TGF-β, and IL-10. These immuno-biochemical alterations by RvD1 treatment had as consequence the reduction of UVB-induced epidermal thickness, sunburn and mast cell counts, and collagen degradation. Therefore, RvD1 inhibited UVB-induced skin oxidative stress and inflammation, rendering this resolving lipid mediator as a promising therapeutic agent.
Collapse
Affiliation(s)
- Priscila Saito
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| | - Cristina P. B. Melo
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| | - Renata M. Martinez
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Talita L. C. Cezar
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| | - Ingrid C. Pinto
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| | - Allan J. C. Bussmann
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Josiane A. Vignoli
- Department of Biochemistry and Biotechnology, Londrina State University, Londrina, Brazil
| | - Sandra R. Georgetti
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| | - Marcela M. Baracat
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Rubia Casagrande
- Laboratory of Oxidative Stress and Inflammation, Department of Pharmaceutical Sciences, Londrina State University, Londrina, Brazil
| |
Collapse
|
10
|
Lawrence KP, Douki T, Sarkany RPE, Acker S, Herzog B, Young AR. The UV/Visible Radiation Boundary Region (385-405 nm) Damages Skin Cells and Induces "dark" Cyclobutane Pyrimidine Dimers in Human Skin in vivo. Sci Rep 2018; 8:12722. [PMID: 30143684 PMCID: PMC6109054 DOI: 10.1038/s41598-018-30738-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
The adverse effects of terrestrial solar ultraviolet radiation (UVR) (~295–400 nm) on the skin are well documented, especially in the UVB region (~295–320 nm). The effects of very long-wave UVA (>380 nm) and visible radiation (≥400 nm) are much less known. Sunscreens have been beneficial in inhibiting a wide range of photodamage, however most formulations provide very little protection in the long wave UVA region (380–400 nm) and almost none from shortwave visible wavelengths (400–420 nm). We demonstrate photodamage in this region for a number of different endpoints including cell viability, DNA damage (delayed cyclobutane pyrimidine dimers), differential gene expression (for genes associated with inflammation, oxidative stress and photoageing) and induction of oxidizing species in vitro in HaCaT keratinocytes and in vivo in human volunteers. This work has implications for phototherapy and photoprotection.
Collapse
Affiliation(s)
- Karl P Lawrence
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| | - Thierry Douki
- University Grenoble Alpes, CEA, CNRS, INAC-SyMMES/CIBEST, 38000, Grenoble, France
| | - Robert P E Sarkany
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | | | - Bernd Herzog
- BASF Grenzach GmbH, Grenzach-Whylen, 79639, Germany
| | - Antony R Young
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
11
|
Delinasios GJ, Karbaschi M, Cooke MS, Young AR. Vitamin E inhibits the UVAI induction of "light" and "dark" cyclobutane pyrimidine dimers, and oxidatively generated DNA damage, in keratinocytes. Sci Rep 2018; 8:423. [PMID: 29323251 PMCID: PMC5764969 DOI: 10.1038/s41598-017-18924-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 12/20/2017] [Indexed: 01/08/2023] Open
Abstract
Solar ultraviolet radiation (UVR)-induced DNA damage has acute, and long-term adverse effects in the skin. This damage arises directly by absorption of UVR, and indirectly via photosensitization reactions. The aim of the present study was to assess the effects of vitamin E on UVAI-induced DNA damage in keratinocytes in vitro. Incubation with vitamin E before UVAI exposure decreased the formation of oxidized purines (with a decrease in intracellular oxidizing species), and cyclobutane pyrimidine dimers (CPD). A possible sunscreening effect was excluded when similar results were obtained following vitamin E addition after UVAI exposure. Our data showed that DNA damage by UVA-induced photosensitization reactions can be inhibited by the introduction of vitamin E either pre- or post-irradiation, for both oxidized purines and CPD (including so-called "dark" CPDs). These data validate the evidence that some CPD are induced by UVAI initially via photosensitization, and some via chemoexcitation, and support the evidence that vitamin E can intervene in this pathway to prevent CPD formation in keratinocytes. We propose the inclusion of similar agents into topical sunscreens and aftersun preparations which, for the latter in particular, represents a means to mitigate on-going DNA damage formation, even after sun exposure has ended.
Collapse
Affiliation(s)
- George J Delinasios
- King's College London, St John's Institute of Dermatology, 9th Floor, Tower Wing, Guy's Hospital; Great Maze Pond, London, SE1 9RT, UK
- International Institute of Anticancer Research, Kapandriti, 19014, Greece
| | - Mahsa Karbaschi
- Oxidative Stress Group, Department of Cancer Studies, University Hospitals of Leicester NHS Trust, Leicester, UK
- Oxidative Stress Group, Department of Environmental Health Sciences; and Biomolecular Sciences Institute, Florida International University, University Park, 11200 SW 8th Street, Miami, Fl, 33199, USA
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cancer Studies, University Hospitals of Leicester NHS Trust, Leicester, UK.
- Department of Genetics, University of Leicester, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK.
- Oxidative Stress Group, Department of Environmental Health Sciences; and Biomolecular Sciences Institute, Florida International University, University Park, 11200 SW 8th Street, Miami, Fl, 33199, USA.
| | - Antony R Young
- King's College London, St John's Institute of Dermatology, 9th Floor, Tower Wing, Guy's Hospital; Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
12
|
Young AR, Claveau J, Rossi AB. Ultraviolet radiation and the skin: Photobiology and sunscreen photoprotection. J Am Acad Dermatol 2017; 76:S100-S109. [DOI: 10.1016/j.jaad.2016.09.038] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/19/2016] [Accepted: 09/24/2016] [Indexed: 10/20/2022]
|
13
|
Fajuyigbe D, Young AR. The impact of skin colour on human photobiological responses. Pigment Cell Melanoma Res 2016; 29:607-618. [PMID: 27454804 PMCID: PMC5132026 DOI: 10.1111/pcmr.12511] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/11/2016] [Indexed: 01/30/2023]
Abstract
Terrestrial solar ultraviolet radiation (UVR) exerts both beneficial and adverse effects on human skin. Epidemiological studies show a lower incidence of skin cancer in people with pigmented skins compared to fair skins. This is attributed to photoprotection by epidermal melanin, as is the poorer vitamin D status of those with darker skins. We summarize a wide range of photobiological responses across different skin colours including DNA damage and immunosuppression. Some studies show the generally modest photoprotective properties of melanin, but others show little or no effect. DNA photodamage initiates non‐melanoma skin cancer and is reduced by a factor of about 3 in pigmented skin compared with white skin. This suggests that if such a modest reduction in DNA damage can result in the significantly lower skin cancer incidence in black skin, the use of sunscreen protection might be extremely beneficial for susceptible population. Many contradictory results may be explained by protocol differences, including differences in UVR spectra and exposure protocols. We recommend that skin type comparisons be done with solar‐simulated radiation and standard erythema doses or physical doses (J/m2) rather than those based solely on clinical endpoints such as minimal erythema dose (MED).
Collapse
Affiliation(s)
- Damilola Fajuyigbe
- Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, St John's Institute of Dermatology, King's College London, London, UK
| | - Antony R Young
- Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, St John's Institute of Dermatology, King's College London, London, UK
| |
Collapse
|
14
|
Danielsen PL, Lerche CM, Wulf HC, Jorgensen LN, Liedberg ASH, Hansson C, Ågren MS. Acute Ultraviolet Radiation Perturbs Epithelialization but not the Biomechanical Strength of Full-thickness Cutaneous Wounds. Photochem Photobiol 2016; 92:187-92. [DOI: 10.1111/php.12552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/10/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Patricia L. Danielsen
- Department of Dermatology and Copenhagen Wound Healing Center; Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | - Catharina M. Lerche
- Department of Dermatology and Copenhagen Wound Healing Center; Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | - Hans Christian Wulf
- Department of Dermatology and Copenhagen Wound Healing Center; Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | - Lars N. Jorgensen
- Digestive Disease Center; Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | - Ann-Sofie H. Liedberg
- Division of Microbiology, Immunology and Glycobiology; University of Lund; Lund Sweden
| | | | - Magnus S. Ågren
- Department of Dermatology and Copenhagen Wound Healing Center; Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
- Digestive Disease Center; Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
15
|
Lucas RM, Norval M, Neale RE, Young AR, de Gruijl FR, Takizawa Y, van der Leun JC. The consequences for human health of stratospheric ozone depletion in association with other environmental factors. Photochem Photobiol Sci 2015; 14:53-87. [DOI: 10.1039/c4pp90033b] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ozone depletion, climate and human health.
Collapse
Affiliation(s)
- R. M. Lucas
- National Centre for Epidemiology and Population Health
- The Australian National University
- Canberra 2601
- Australia
- Telethon Kids Institute
| | - M. Norval
- Biomedical Sciences
- University of Edinburgh Medical School
- Edinburgh EH8 9AG
- UK
| | - R. E. Neale
- QIMR Berghofer Medical Research Institute
- Brisbane 4029
- Australia
| | - A. R. Young
- King's College London (KCL)
- St John's Institute of Dermatology
- London SE1 9RT
- UK
| | - F. R. de Gruijl
- Department of Dermatology
- Leiden University Medical Centre
- NL-2300 RC Leiden
- The Netherlands
| | - Y. Takizawa
- Akita University Graduate School of Medicine
- Akita Prefecture
- Japan
- National Institute for Minamata Diseases
- Kumamoto Prefecture
| | | |
Collapse
|
16
|
Upregulation of MMP12 and its activity by UVA1 in human skin: potential implications for photoaging. J Invest Dermatol 2014; 134:2598-2609. [PMID: 24714202 DOI: 10.1038/jid.2014.173] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 02/22/2014] [Accepted: 03/11/2014] [Indexed: 01/18/2023]
Abstract
UVA1 constitutes around 75% of the terrestrial UV radiation, and most of the output of artificial tanning sources. However, the molecular effects of UVA1 in human skin in vivo are surprisingly poorly understood. We have examined time-dependent whole-genome expression, along with mRNA and protein changes in the skin after one minimal erythema dose of spectrally pure UVA1 (50 J cm(-2)) and 300 nm UVB (30 mJ cm(-2)). After 24 hours, the genes induced to the greatest extent were those involved in extracellular matrix remodeling with both UVA1 (P=5.5e-7) and UVB (P=2.9e-22). UVA1 and UVB caused different effects on matrix metalloproteinase (MMP) expression: UVB induced MMP1, MMP3, and MMP10 mRNA at 24 hours to a much greater extent than UVA1. MMP12 induction by UVA1 at 6 hours is marked and much greater than that by UVB. We have found that MMP12 mRNA induction by UVA1 resulted in expression of MMP12 protein, which is functional as an elastase. This induction of elastase activity did not occur with UVB. We hypothesize that the UVA1 induction of MMP12 mediates some of its photoaging effects, particularly by contributing to elastin degeneration in late solar elastosis. MMP12 is a good marker of UVA1 exposure.
Collapse
|
17
|
Gebhard D, Matt K, Burger K, Bergemann J. Shortwave UV-Induced Damage as Part of the Solar Damage Spectrum Is Not a Major Contributor to Mitochondrial Dysfunction. J Biochem Mol Toxicol 2014; 28:256-62. [DOI: 10.1002/jbt.21561] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Daniel Gebhard
- Department of Life Sciences; Albstadt-Sigmaringen University of Applied Sciences; 72488 Sigmaringen Germany
| | - Katja Matt
- Department of Life Sciences; Albstadt-Sigmaringen University of Applied Sciences; 72488 Sigmaringen Germany
| | - Katharina Burger
- Department of Life Sciences; Albstadt-Sigmaringen University of Applied Sciences; 72488 Sigmaringen Germany
| | - Jörg Bergemann
- Department of Life Sciences; Albstadt-Sigmaringen University of Applied Sciences; 72488 Sigmaringen Germany
| |
Collapse
|
18
|
Birch-Machin M, Russell E, Latimer J. Mitochondrial DNA damage as a biomarker for ultraviolet radiation exposure and oxidative stress. Br J Dermatol 2013; 169 Suppl 2:9-14. [DOI: 10.1111/bjd.12207] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Tewari A, Grage MML, Harrison GI, Sarkany R, Young AR. UVA1 is skin deep: molecular and clinical implications. Photochem Photobiol Sci 2013. [PMID: 23192740 DOI: 10.1039/c2pp25323b] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Long wavelength UVA1 (340-400 nm) is the main component of terrestrial UVR and is increasingly used in skin phototherapy. Its damage to critical biomolecules such as DNA has been widely attributed to its ability to generate reactive oxygen species (ROS) via other chromophores. However recent studies in vitro and in vivo have shown that UVA1 has a specific ability to generate cyclobutane pyrimidine dimers (CPD), especially thymine dimers (T<>T), and that this is probably due to direct absorption of UVR. The CPD has been implicated in many aspects of skin cancer. Measuring UVB-induced CPD in the epidermis and dermis in vivo shows that, as expected, the skin attenuates UVB. In contrast, our data show that this is not the case with UVA1: in fact there is more damage with increased skin depth. This suggests that the basal layer, which contains keratinocyte stem cells and melanocytes, is more vulnerable to the carcinogenic effects of UVA1 than would be predicted by mouse models. These data support the continuing trend for better UVA1 protection by sunscreens.
Collapse
Affiliation(s)
- Angela Tewari
- King's College London (KCL), King's College London School of Medicine, Division of Genetics and Molecular Medicine, St John's Institute of Dermatology, London, UK.
| | | | | | | | | |
Collapse
|