1
|
Sun Y, Zhang X, Jiang F, Zhang M, Wu W, Sun Y. Concise Synthesis of Norzoanthamine Enabled by a Set of Photochemical Transformations. J Am Chem Soc 2024; 146:32305-32310. [PMID: 39526830 DOI: 10.1021/jacs.4c14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Norzoanthamine is a structurally complex polycyclic natural product that expresses a broad range of biological activities, rendering facile access to it and its analogs of considerable importance in drug discovery and development. However, strategies for efficient access to this class of marine alkaloids remain lacking. Here, we report a strategy, characterized by three key photochemical reactions, that we used to synthesize norzoanthamine in 16 steps. A photoinduced dearomative-6π-desymmetrization was developed for facile access to the ABC-tricyclic core of the alkaloid. This was supplemented by a [2 + 2]-photocycloaddition, a visible-light-induced decarboxylative borylation, and a retro-aldol process, constituting an effective solution to the challenging problem of establishing the C9-C22 vicinal all-carbon quaternary stereogenic centers. Finally, a one-pot cascade transformation, involving global deprotection, cyclization, and epimerization reaction, was designed for efficient and stereocontrolled assembly of the core framework of norzoanthamine.
Collapse
Affiliation(s)
- Yuchen Sun
- School of Pharmacy, Fudan University, Shanghai, China, 201203
| | - Xiao Zhang
- School of Pharmacy, Fudan University, Shanghai, China, 201203
| | - Fuyin Jiang
- School of Pharmacy, Fudan University, Shanghai, China, 201203
| | - Mengling Zhang
- School of Pharmacy, Fudan University, Shanghai, China, 201203
| | - Wanru Wu
- School of Pharmacy, Fudan University, Shanghai, China, 201203
| | - Yu Sun
- School of Pharmacy, Fudan University, Shanghai, China, 201203
| |
Collapse
|
2
|
Franov LJ, Wilsdon TL, Czyz ML, Polyzos A. Electroinduced Reductive and Dearomative Alkene-Aldehyde Coupling. J Am Chem Soc 2024; 146:29450-29461. [PMID: 39417706 DOI: 10.1021/jacs.4c08691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The direct coupling of alkene feedstocks with aldehydes represents an expedient approach to the generation of new and structurally diverse C(sp3)-hybridized alcohols that are primed for elaboration into privileged architectures. Despite their abundance, current disconnection strategies enabling the direct coupling of carbon-carbon π-bonds and aldehydes remain challenging because contemporary methods are often limited by substrate or functional group tolerance and compatibility in complex molecular environments. Here, we report a coupling between simple alkenes, heteroarenes and unactivated aliphatic aldehydes via an electrochemically induced reductive activation of C-C π-bonds. The cornerstone of this approach is the discovery of rapid alternating polarity (rAP) electrolysis to access and direct highly reactive radical anion intermediates derived from conjugated alkenes and heterocyclic compounds. Our developed catalyst-free protocol enables direct access to new and structurally diverse C(sp3)-hybridized alcohol products. This is achieved by the controlled reduction of conjugated alkenes and the C2-C3 π-bond in heteroarenes via an unprecedented reductive dearomative functionalization for heterocyclic compounds. Experimental mechanistic studies demonstrate a kinetically biased single-electron reduction of C-C π-bonds over aldehydes. Application of rAP enables chemoselective generation of olefinic radical anion intermediates and avoids undesired saturative overreduction. Overall, this technology provides a versatile approach to the reductive coupling of olefin and heterocycle feedstocks with aliphatic aldehydes, offering straightforward access to diverse C(sp3)-rich oxygenated scaffolds.
Collapse
Affiliation(s)
- Liam J Franov
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tayla L Wilsdon
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Milena L Czyz
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anastasios Polyzos
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| |
Collapse
|
3
|
Guo W, Robinson EE, Thomson RJ, Tantillo DJ. Heavy Atom Quantum Mechanical Tunneling in Total Synthesis. Org Lett 2024. [PMID: 38809009 DOI: 10.1021/acs.orglett.4c01152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Contributions from quantum mechanical tunneling to the rates of several radical coupling reactions between carbon sp2 centers used as key steps in natural product total syntheses were computed using density functional theory. Contributions ranging from ∼15-52% from tunneling were predicted at room temperature, thereby indicating that tunneling plays an important role in the rates of these reactions and should perhaps be considered when designing complex synthetic schemes.
Collapse
Affiliation(s)
- Wentao Guo
- Department of Chemistry, University of California - Davis, 1 Shields Ave, Davis, California 95616, United States
| | - Emily E Robinson
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California - Davis, 1 Shields Ave, Davis, California 95616, United States
| |
Collapse
|
4
|
Zhang W, Ren J, Wang D, Sun TY, Xia XF. Selective Reduction of Triple Bond via Proton-Coupled Electron Transfer for the Synthesis of α, β-Unsaturated γ-Lactams. Org Lett 2024; 26:3982-3986. [PMID: 38690829 DOI: 10.1021/acs.orglett.4c01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Described herein is the development of a visible-light-induced photoredox 1,6-enyne reductive cyclization via selective reduction of a triple bond instead of an activated double bond. The selective 1,6-enyne radical cyclization/carbon═carbon double bond cleavage provided a straightforward route to structurally valuable α,β-unsaturated γ-lactams. TEMPO-trap experiments, control experiments, and DFT calculations have offered evidence supporting the possible catalytic cycle.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Juan Ren
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tian-Yu Sun
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Peng Y, Bao H, Zheng L, Zhou Y, Ni Q, Chen X, Li Y, Yan P, Yang YF, Liu Y. Cu(I)-Photosensitizer-Catalyzed Olefin-α-Amino Radical Metathesis/Demethylenative Cyclization of 1,7-Enynes. Org Lett 2024; 26:3218-3223. [PMID: 38587936 DOI: 10.1021/acs.orglett.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
A demethylenative En-Yne radical cyclization of 1,7-enynes has been successfully developed to chemoselectively afford 3,4-dihyroquinolin-2-ones or quinolin-2-ones under the catalysis of Cu(I) photosensitizers PS3 and PS6 with different redox potentials. The preliminary mechanistic experiments revealed that the reaction underwent an unprecedented olefin-α-amino radical metathesis-type process. A reasonable mechanism was proposed to illustrate the catalyst-controlled chemoselectivity of the reaction based on preliminary mechanistic experiments and DFT calculations.
Collapse
Affiliation(s)
- Yun Peng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Hanyang Bao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Raybow (Hangzhou) Pharmaceutical Co., Ltd., Hangzhou, Zhejiang 310018, P. R. China
| | - Limeng Zheng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Raybow (Hangzhou) Pharmaceutical Co., Ltd., Hangzhou, Zhejiang 310018, P. R. China
| | - Yan Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Qibo Ni
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiahe Chen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yuanqiang Li
- Raybow (Hangzhou) Pharmaceutical Co., Ltd., Hangzhou, Zhejiang 310018, P. R. China
| | - Pucha Yan
- Raybow (Hangzhou) Pharmaceutical Co., Ltd., Hangzhou, Zhejiang 310018, P. R. China
| | - Yun-Fang Yang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
6
|
Zhou W, Dmitriev IA, Melchiorre P. Reductive Cross-Coupling of Olefins via a Radical Pathway. J Am Chem Soc 2023; 145:25098-25102. [PMID: 37947488 PMCID: PMC10682986 DOI: 10.1021/jacs.3c11285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Olefins are widely available at low costs, which explains the usefulness of developing new methods for their functionalization. Here we report a simple protocol that uses a photoredox catalyst and an inexpensive thiol catalyst to stitch together two olefins, forming a new C-C bond. Specifically, an electron-poor olefin is reduced by the photoredox catalyst to generate, upon protonation, a carbon radical, which is then captured by a neutral olefin. This intermolecular cross-coupling process provides a tool for rapidly synthesizing sp3-dense molecules from olefins using an unconventional disconnection.
Collapse
Affiliation(s)
- Wei Zhou
- ICIQ
− Institute of Chemical Research of Catalonia, Avinguda Països Catalans
16, 43007 Tarragona, Spain
| | - Igor A. Dmitriev
- ICIQ
− Institute of Chemical Research of Catalonia, Avinguda Països Catalans
16, 43007 Tarragona, Spain
| | - Paolo Melchiorre
- Department
of Industrial Chemistry ‘Toso Montanari’, University of Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy
| |
Collapse
|
7
|
Rourke MJ, McGill MJ, Yang D, Farnam EJ, Zhu JL, Scheidt KA. Photoredox-Catalyzed Radical-Radical Coupling of Potassium Trifluoroborates with Acyl Azoliums. Synlett 2023; 34:2175-2180. [PMID: 38948905 PMCID: PMC11210951 DOI: 10.1055/s-0041-1738448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Potassium trifluoroborates have gained significant utility as coupling partners in organic synthesis, particularly in the Suzuki-Miyaura coupling reaction. Recently, they have also been used as radical precursors under oxidative conditions to generate carbon-centered radicals. These versatile reagents have found new applications in photoredox catalysis, including radical substitution, conjugate addition reactions, and transition metal dual catalysis. In addition, this photomediated redox neutral process has enabled radical-radical coupling with persistent radicals in the absence of a metal, and this process remains to be fully explored. In this study, we report the radical-radical coupling of benzylic potassium trifluoroborate salts with isolated acyl azolium triflates, which are persistent radical precursors. The reaction is catalyzed by an organic photocatalyst and forms isolable tertiary alcohol species. These compounds can be transformed into a range of substituted ketone products by simple treatment with a mild base.
Collapse
Affiliation(s)
- Michael J. Rourke
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| | - Matthew J. McGill
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| | - Daniel Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| | - Emelia J. Farnam
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| | - Joshua L. Zhu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| | - Karl A. Scheidt
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| |
Collapse
|
8
|
Rourke MJ, Wang CT, Schull CR, Scheidt KA. Acyl Azolium-Photoredox-Enabled Synthesis of β-Keto Sulfides. ACS Catal 2023; 13:7987-7994. [PMID: 37969469 PMCID: PMC10651059 DOI: 10.1021/acscatal.3c01558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
α-Heteroatom functionalization is a key strategy for C-C bond formation in organic synthesis, as exemplified by the addition of a nucleophile to electrophilic functional groups, such as iminium ions; oxocarbenium ions; and their sulfur analogues, sulfenium ions. We envisioned a photoredox-enabled radical Pummerer-type reaction realized through the single-electron oxidation of a sulfide. Following this oxidative event, α-deprotonation would afford α-thio radicals that participate in radical-radical coupling reactions with azolium-bound ketyl radicals, thereby accessing a commonly proposed mechanistic intermediate of the radical-radical coupling en route to functionalized additive Pummerer products. This system provides a complementary synthetic approach to highly functionalized sulfurous products, including modification of methionine residues in peptides, and beckons further exploration in C-C bond formations previously limited in the standard two-electron process.
Collapse
Affiliation(s)
- Michael J Rourke
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Charles T Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Cullen R Schull
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Heterogeneous Photoredox Catalysis Based on Silica Mesoporous Material and Eosin Y: Impact of Material Support on Selectivity of Radical Cyclization. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020549. [PMID: 36677607 PMCID: PMC9865568 DOI: 10.3390/molecules28020549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023]
Abstract
Heterogenization of the photocatalyst appears to be a valuable solution to reach sustainable processes. Rapid and efficient synthesis of supported photocatalyst is still a remaining challenge and the choice of the support material is crucial. The present study aims at preparing a new generation of hybrid inorganic/organic photocatalysts based on silica mesoporous material and Eosin Y. These results highlight the influence of non-covalent interactions between the material support and the reagent impacting the selectivity of the reaction.
Collapse
|
10
|
Streuff J. Reductive Umpolung and Defunctionalization Reactions through Higher-Order Titanium(III) Catalysis. Synlett 2022. [DOI: 10.1055/s-0042-1751391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractThe single-electron transfer from an in situ formed titanium(III) catalyst to ketones, imines, nitriles, Michael acceptors, and many other functions has enabled a large number of intra- and intermolecular reductive umpolung reactions. Likewise, it allows the homolytic cleavage of functional groups for selective defunctionalizations. These reactions often take place with the participation of two titanium(III) species, avoiding free-radical pathways and enabling high catalyst control of the reaction selectivity. This account discusses the development of the individual reactions together with the fundamental mechanistic discoveries that led to a better understanding of such titanium(III)-catalyzed processes in general.1 Introduction2 Active Titanium(III) Species and Additives3 Ketone-Nitrile Couplings4 Further Reductive Umpolung Reactions5 Catalytic Homolytic C–CN and C–SO2R Cleavage6 Conclusion
Collapse
|
11
|
French SA, Sumby CJ, Huang DM, George JH. Total Synthesis of Atrachinenins A and B. J Am Chem Soc 2022; 144:22844-22849. [DOI: 10.1021/jacs.2c09978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sarah A. French
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Christopher J. Sumby
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - David M. Huang
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jonathan H. George
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
12
|
Murray PD, Leibler INM, Hell SM, Villalona E, Doyle AG, Knowles RR. Radical Redox Annulations: A General Light-Driven Method for the Synthesis of Saturated Heterocycles. ACS Catal 2022; 12:13732-13740. [PMID: 36366762 PMCID: PMC9638994 DOI: 10.1021/acscatal.2c04316] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/14/2022] [Indexed: 11/29/2022]
Abstract
We introduce here a two-component annulation strategy that provides access to a diverse collection of five- and six-membered saturated heterocycles from aryl alkenes and a family of redox-active radical precursors bearing tethered nucleophiles. This transformation is mediated by a combination of an Ir(III) photocatalyst and a Brønsted acid under visible-light irradiation. A reductive proton-coupled electron transfer generates a reactive radical which undergoes addition to an alkene. Then, an oxidative radical-polar crossover step leading to carbocation formation is followed by ring closure through cyclization of the tethered nucleophile. A wide range of heterocycles are easily accessible, including pyrrolidines, piperidines, tetrahydrofurans, morpholines, δ-valerolactones, and dioxanones. We demonstrate the scope of this approach through broad structural variation of both reaction components. This method is amenable to gram-scale preparation and to complex fragment coupling.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | | | - Sandrine M. Hell
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Eris Villalona
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Abigail G. Doyle
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California90095, United States
| | - Robert R. Knowles
- Department
of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| |
Collapse
|
13
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
14
|
Abstract
![]()
Here, we present a visible light-catalyzed hydroalkylation
of aryl-alkenes
affording C–C bonds using aryl-alkenes and alkyl iodides. We
demonstrate the formation of various hydroalkylation products in excellent
yields, with primary, secondary, and tertiary alkyl iodides being
tolerated in the reaction. Mechanistic experiments reveal a pathway
consisting of halogen atom transfer followed by a radical-polar crossover
mechanism delivering the desired hydroalkylation products.
Collapse
Affiliation(s)
- Cornelia S Buettner
- Institute for Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Michael Schnürch
- Institute for Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Katharina Bica-Schröder
- Institute for Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| |
Collapse
|
15
|
Venditto NJ, Liang YS, El Mokadem RK, Nicewicz DA. Ketone-Olefin Coupling of Aliphatic and Aromatic Carbonyls Catalyzed by Excited-State Acridine Radicals. J Am Chem Soc 2022; 144:11888-11896. [PMID: 35737516 PMCID: PMC10031806 DOI: 10.1021/jacs.2c04822] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ketone-olefin coupling reactions are common methods for the formation of carbon-carbon bonds. This reaction class typically requires stoichiometric or super stoichiometric quantities of metal reductants, and catalytic variations are limited in application. Photoredox catalysis has offered an alternative method toward ketone-olefin coupling reactions, although most methods are limited in scope to easily reducible aromatic carbonyl compounds. Herein, we describe a mild, metal-free ketone-olefin coupling reaction using an excited-state acridine radical super reductant as a photoredox catalyst. We demonstrate both intramolecular and intermolecular ketone-olefin couplings of aliphatic and aromatic ketones and aldehydes. Mechanistic evidence is also presented supporting an "olefin first" ketone-olefin coupling mechanism.
Collapse
Affiliation(s)
- Nicholas J Venditto
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Yiyang S Liang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Roukaya K El Mokadem
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
16
|
Cao K, Li C, Tian D, Zhao X, Yin Y, Jiang Z. Catalytic Enantioselective Reductive Cross Coupling of Electron-Deficient Olefins. Org Lett 2022; 24:4788-4792. [PMID: 35735267 DOI: 10.1021/acs.orglett.2c01801] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report an enantioselective reductive cross coupling of electron-deficient olefins. Using a visible-light-driven cooperative photoredox and chiral Brønsted acid-catalyzed reaction with a Hantzsch ester as the terminal reductant, various cyclic and acyclic enones with 2-vinylpyridines were converted in high yields (up to 93%) to a wide range of enantioenriched pyridine derivatives featuring diverse γ-tertiary carbon stereocenters with good to excellent enantioselectivities (up to >99% ee).
Collapse
Affiliation(s)
- Kangning Cao
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.,International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Chunyang Li
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Dong Tian
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xiaowei Zhao
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yanli Yin
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Zhiyong Jiang
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
17
|
Tang J, Ren L, Li J, Wang Y, Hu D, Tong X, Xia C. Photochemical Synthesis of Indolocarbazoles through Tandem Indolization/Dimerization/Mannich Cyclization from Allenes. Org Lett 2022; 24:3582-3587. [PMID: 35549288 DOI: 10.1021/acs.orglett.2c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Indolocarbazole alkaloids and their derivatives were discovered to have potent protein kinase and topoisomerase I inhibitory activities. Disclosed herein is the photochemical synthesis of the indolocarbazole ring system from N-allenyl-2-iodoanilines. The tandem protocol included visible-light-mediated 5-exo-trig radical cyclization and subsequent radical dimerization, followed by acid-promoted deprotection and intramolecular Mannich cyclization. This strategy showed exceptional functional group tolerance and was successfully applied in the concise synthesis of natural products tjipanazoles B and D.
Collapse
Affiliation(s)
- Jiaying Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Linlin Ren
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Jianwei Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Yonggong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Dongyan Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Xiaogang Tong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research and Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| |
Collapse
|
18
|
Guo F, Wang H, Ye X, Tan CH. Advanced Synthesis Using Photocatalysis Involved Dual Catalytic System. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fenfen Guo
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Hong Wang
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Xinyi Ye
- Zhejiang University of Technology College of Pharmaceutical Science 18 Chaowang Road 310014 Hangzhou CHINA
| | - Choon-Hong Tan
- Nanyang Technological University School of Physical and Mathematical Sciences SINGAPORE
| |
Collapse
|
19
|
Trenchs G, Diaba F. Photoredox catalysis in the synthesis of γ- and δ-lactams from N-alkenyl trichloro- and dichloroacetamides. Org Biomol Chem 2022; 20:3118-3123. [PMID: 35333274 DOI: 10.1039/d2ob00276k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first blue light-mediated synthesis of γ- and δ-lactams from trichloroacetamides is reported in the presence of fac-Ir(ppy)3. Unlike previous works, these reactions are achieved under an air atmosphere with non-anhydrous solvents and even in water. Moreover, we have demonstrated that the solvent can be the hydrogen donor in the radical process which opens up new insights into these radical transformations and the reaction mechanisms involved.
Collapse
Affiliation(s)
- Gisela Trenchs
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028-Barcelona, Spain.
| | - Faïza Diaba
- Laboratori de Química Orgànica, Facultat de Farmàcia, IBUB, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028-Barcelona, Spain.
| |
Collapse
|
20
|
Zubi YS, Liu B, Gu Y, Sahoo D, Lewis JC. Controlling the optical and catalytic properties of artificial metalloenzyme photocatalysts using chemogenetic engineering. Chem Sci 2022; 13:1459-1468. [PMID: 35222930 PMCID: PMC8809394 DOI: 10.1039/d1sc05792h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/08/2022] [Indexed: 11/21/2022] Open
Abstract
Visible light photocatalysis enables a broad range of organic transformations that proceed via single electron or energy transfer. Metal polypyridyl complexes are among the most commonly employed visible light photocatalysts. The photophysical properties of these complexes have been extensively studied and can be tuned by modifying the substituents on the pyridine ligands. On the other hand, ligand modifications that enable substrate binding to control reaction selectivity remain rare. Given the exquisite control that enzymes exert over electron and energy transfer processes in nature, we envisioned that artificial metalloenzymes (ArMs) created by incorporating Ru(ii) polypyridyl complexes into a suitable protein scaffold could provide a means to control photocatalyst properties. This study describes approaches to create covalent and non-covalent ArMs from a variety of Ru(ii) polypyridyl cofactors and a prolyl oligopeptidase scaffold. A panel of ArMs with enhanced photophysical properties were engineered, and the nature of the scaffold/cofactor interactions in these systems was investigated. These ArMs provided higher yields and rates than Ru(Bpy)3 2+ for the reductive cyclization of dienones and the [2 + 2] photocycloaddition between C-cinnamoyl imidazole and 4-methoxystyrene, suggesting that protein scaffolds could provide a means to improve the efficiency of visible light photocatalysts.
Collapse
Affiliation(s)
- Yasmine S Zubi
- Department of Chemistry, Indiana University Bloomington Indiana 47405 USA
| | - Bingqing Liu
- Department of Chemistry, Indiana University Bloomington Indiana 47405 USA
| | - Yifan Gu
- Department of Chemistry, University of Chicago Chicago IL 60637 USA
| | - Dipankar Sahoo
- Department of Chemistry, Indiana University Bloomington Indiana 47405 USA
| | - Jared C Lewis
- Department of Chemistry, Indiana University Bloomington Indiana 47405 USA
| |
Collapse
|
21
|
Visible-light photocatalysis promoted by solid- and liquid-phase immobilized transition metal complexes in organic synthesis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Bortolato T, Cuadros S, Simionato G, Dell'Amico L. The advent and development of organophotoredox catalysis. Chem Commun (Camb) 2022; 58:1263-1283. [PMID: 34994368 DOI: 10.1039/d1cc05850a] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the last decade, photoredox catalysis has unlocked unprecedented reactivities in synthetic organic chemistry. Seminal advancements in the field have involved the use of well-studied metal complexes as photoredox catalysts (PCs). More recently, the synthetic community, looking for more sustainable approaches, has been moving towards the use of purely organic molecules. Organic PCs are generally cheaper and less toxic, while allowing their rational modification to an increased generality. Furthermore, organic PCs have allowed reactivities that are inaccessible by using common metal complexes. Likewise, in synthetic catalysis, the field of photocatalysis is now experiencing a green evolution moving from metal catalysis to organocatalysis. In this feature article, we discuss and critically comment on the scientific reasons for this ongoing evolution in the field of photoredox catalysis, showing how and when organic PCs can efficiently replace their metal counterparts.
Collapse
Affiliation(s)
- Tommaso Bortolato
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy.
| | - Sara Cuadros
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy.
| | - Gianluca Simionato
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy.
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy.
| |
Collapse
|
23
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 209] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
24
|
Yu D, To WP, Liu Y, Wu LL, You T, Ling J, Che CM. Direct photo-induced reductive Heck cyclization of indoles for the efficient preparation of polycyclic indolinyl compounds. Chem Sci 2021; 12:14050-14058. [PMID: 34760188 PMCID: PMC8565399 DOI: 10.1039/d1sc04258k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
The photo-induced cleavage of C(sp2)-Cl bonds is an appealing synthetic tool in organic synthesis, but usually requires the use of high UV light, photocatalysts and/or photosensitizers. Herein is described a direct photo-induced chloroarene activation with UVA/blue LEDs that can be used in the reductive Heck cyclization of indoles and without the use of a photocatalyst or photosensitizer. The indole compounds examined display room-temperature phosphorescence. The photochemical reaction tolerates a panel of functional groups including esters, alcohols, amides, cyano and alkenes (27 examples, 50-88% yields), and can be used to prepare polycyclic compounds and perform the functionalization of natural product analogues in moderate to good yields. Mechanistic experiments, including time-resolved absorption spectroscopy, are supportive of photo-induced electron transfer between the indole substrate and DIPEA, with the formation of radical intermediates in the photo-induced dearomatization reaction.
Collapse
Affiliation(s)
- Daohong Yu
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou 341000 China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Liang-Liang Wu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Tingjie You
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Jesse Ling
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park New Territories Hong Kong China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research and Innovation Shenzhen Guangdong 518057 China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park New Territories Hong Kong China
| |
Collapse
|
25
|
Zhao X, Zhu S, Qing FL, Chu L. Reductive hydrobenzylation of terminal alkynes via photoredox and nickel dual catalysis. Chem Commun (Camb) 2021; 57:9414-9417. [PMID: 34528966 DOI: 10.1039/d1cc03668h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A photoredox/nickel dual catalyzed reductive hydrobenzylation of alkynes and benzyl chlorides by employing alkyl amines as a stoichiometric reductant is described. This synergistic protocol proceeds via Markovnikov-selective migratory insertion of an alkyne into nickel hydride, followed by cross-coupling with benzyl chloride, providing facile access to important 1,1-disubstituted olefins. This reaction enables the generation of nickel hydride by utilizing readily available alkyl amines as the hydrogen source. The mild conditions are compatible with a wide range of aryl and alkyl alkynes as well as chlorides.
Collapse
Affiliation(s)
- Xian Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China.
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China.
| | - Feng-Ling Qing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China. .,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
26
|
Medici F, Resta S, Presenti P, Caruso L, Puglisi A, Raimondi L, Rossi S, Benaglia M. Stereoselective Visible‐Light Catalyzed Cyclization of Bis(enones): A Viable Approach to the Synthesis of Enantiomerically Enriched Cyclopentane Rings. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fabrizio Medici
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi, 19 20133 Milano Italy
| | - Simonetta Resta
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi, 19 20133 Milano Italy
| | - Piero Presenti
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi, 19 20133 Milano Italy
| | - Lucia Caruso
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi, 19 20133 Milano Italy
| | - Alessandra Puglisi
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi, 19 20133 Milano Italy
| | - Laura Raimondi
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi, 19 20133 Milano Italy
| | - Sergio Rossi
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi, 19 20133 Milano Italy
| | - Maurizio Benaglia
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi, 19 20133 Milano Italy
| |
Collapse
|
27
|
Bell JD, Murphy JA. Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chem Soc Rev 2021; 50:9540-9685. [PMID: 34309610 DOI: 10.1039/d1cs00311a] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photoredox chemistry with organic or transition metal agents has been reviewed in earlier years, but such is the pace of progress that we will overlap very little with earlier comprehensive reviews. This review first presents an overview of the area of research and then examines recent examples of C-C, C-N, C-O and C-S bond formations via radical intermediates with transition metal and organic radical promoters. Recent successes with Birch reductions are also included. The transition metal chemistry will be restricted to photocatalysts based on the most widely used metals, Ru and Ir, but includes coupling chemistries that take advantage of low-valent nickel, or occasionally copper, complexes to process the radicals that are formed. Our focus is on developments in the past 10 years (2011-2021). This period has also seen great advances in the chemistry of organic photoredox reagents and the review covers this area. The review is intended to present highlights and is not comprehensive.
Collapse
Affiliation(s)
- Jonathan D Bell
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| | | |
Collapse
|
28
|
Czyz ML, Taylor MS, Horngren TH, Polyzos A. Reductive Activation and Hydrofunctionalization of Olefins by Multiphoton Tandem Photoredox Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01000] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Milena L. Czyz
- School of Chemistry, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Mitchell S. Taylor
- School of Chemistry, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Tyra H. Horngren
- School of Chemistry, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Anastasios Polyzos
- School of Chemistry, The University of Melbourne, Parkville 3010, Victoria, Australia
- CSIRO Manufacturing, Research Way, Clayton 3168, Victoria, Australia
| |
Collapse
|
29
|
Rafferty SM, Rutherford JE, Zhang L, Wang L, Nagib DA. Cross-Selective Aza-Pinacol Coupling via Atom Transfer Catalysis. J Am Chem Soc 2021; 143:5622-5628. [DOI: 10.1021/jacs.1c00886] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sean M. Rafferty
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Joy E. Rutherford
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lumin Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lu Wang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David A. Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
30
|
Kong M, Tan Y, Zhao X, Qiao B, Tan CH, Cao S, Jiang Z. Catalytic Reductive Cross Coupling and Enantioselective Protonation of Olefins to Construct Remote Stereocenters for Azaarenes. J Am Chem Soc 2021; 143:4024-4031. [DOI: 10.1021/jacs.1c01073] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Manman Kong
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yaqi Tan
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xiaowei Zhao
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Baokun Qiao
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Choon-Hong Tan
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 637371
| | - Shanshan Cao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Zhiyong Jiang
- International Scientific and Technological Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
31
|
Tomanik M, Hsu IT, Herzon SB. Fragment Coupling Reactions in Total Synthesis That Form Carbon-Carbon Bonds via Carbanionic or Free Radical Intermediates. Angew Chem Int Ed Engl 2021; 60:1116-1150. [PMID: 31869476 DOI: 10.1002/anie.201913645] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 12/21/2022]
Abstract
Fragment coupling reactions that form carbon-carbon bonds are valuable transformations in synthetic design. Advances in metal-catalyzed cross-coupling reactions in the early 2000s brought a high level of predictability and reliability to carbon-carbon bond constructions involving the union of unsaturated fragments. By comparison, recent years have witnessed an increase in fragment couplings proceeding via carbanionic and open-shell (free radical) intermediates. The latter has been driven by advances in methods to generate and utilize carbon-centered radicals under mild conditions. In this Review, we survey a selection of recent syntheses that have implemented carbanion- or radical-based fragment couplings to form carbon-carbon bonds. We aim to highlight the strategic value of these disconnections in their respective settings and to identify extensible lessons from each example that might be instructive to students.
Collapse
Affiliation(s)
- Martin Tomanik
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA
| | - Ian Tingyung Hsu
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA.,Department of Pharmacology, Yale University, 333 Cedar St, New Haven, CT, USA
| |
Collapse
|
32
|
Tomanik M, Hsu IT, Herzon SB. Fragmentverknüpfungen in der Totalsynthese – Bildung von C‐C‐Bindungen über intermediäre Carbanionen oder freie Radikale. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201913645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Tomanik
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
| | - Ian Tingyung Hsu
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
| | - Seth B. Herzon
- Department of Chemistry Yale University 225 Prospect St New Haven CT USA
- Department of Pharmacology Yale University 333 Cedar St New Haven CT USA
| |
Collapse
|
33
|
Xu Y, Shao Y, Ahlquist MSG, Yu H, Fu Y. Pivotal Electron Delivery Effect of the Cobalt Catalyst in Photocarboxylation of Alkynes: A DFT Calculation. J Org Chem 2021; 86:1540-1548. [PMID: 33353304 DOI: 10.1021/acs.joc.0c02393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photocarboxylation of alkyne with carbon dioxide represents a highly attractive strategy to prepare functionalized alkenes with high efficiency and atomic economy. However, the reaction mechanism, especially the sequence of elementary steps (leading to different reaction pathways), reaction modes of the H-transfer step and carboxylation step, spin and charge states of the cobalt catalyst, etc., is still an open question. Herein, density functional theory calculations are carried out to probe the mechanism of the Ir/Co-catalyzed photocarboxylation of alkynes. The overall catalytic cycle mainly consists of four steps: reductive-quenching of the Ir catalyst, hydrogen transfer (rate-determining step), outer sphere carboxylation, and the final catalyst regeneration step. Importantly, the cobalt catalyst can facilitate the H-transfer by an uncommon hydride coupled electron transfer (HCET) process. The pivotal electron delivery effect of the Co center enables a facile H-transfer to the α-C(alkyne) of the aryl group, resulting in the high regioselectivity for β-carboxylation.
Collapse
Affiliation(s)
- Yuantai Xu
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, People's Republic of China.,Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yifan Shao
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, People's Republic of China
| | - Mårten S G Ahlquist
- Department of Theoretical Chemistry & Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Haizhu Yu
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, People's Republic of China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
34
|
Zhuang X, Shi X, Zhu R, Sun B, Su W, Jin C. Photocatalytic intramolecular radical cyclization involved synergistic SET and HAT: synthesis of 3,3-difluoro-γ-lactams. Org Chem Front 2021. [DOI: 10.1039/d0qo01188f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A mild and metal-free protocol for visible-light induced intramolecular radical cyclization of N-allyl(propargyl)-2-bromo-2,2-difluoro-N-arylacetamide has been developed.
Collapse
Affiliation(s)
- Xiaohui Zhuang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Xiayue Shi
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Rui Zhu
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - WeiKe Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- PR China
- College of Pharmaceutical Sciences
| | - Can Jin
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- PR China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
| |
Collapse
|
35
|
Chen W, Liu Q. Recent Advances in the Oxidative Coupling Reaction of Enol Derivatives. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Alfonzo E, Hande SM. Photoredox and Weak Brønsted Base Dual Catalysis: Alkylation of α-Thio Alkyl Radicals. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Edwin Alfonzo
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Sudhir M. Hande
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| |
Collapse
|
37
|
Tsuchiya Y, Onai R, Uraguchi D, Ooi T. Redox-regulated divergence in photocatalytic addition of α-nitro alkyl radicals to styrenes. Chem Commun (Camb) 2020; 56:11014-11017. [PMID: 32785394 DOI: 10.1039/d0cc04821f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A divergent photocatalytic system for the reaction of α-bromo nitroalkanes with styrene derivatives is established, wherein the generation of the persistent nitroxyl radical as a junctional intermediate and suitable tuning of the redox ability of the system constitute the crucial elements for achieving rigorous control over the possible reaction pathways.
Collapse
Affiliation(s)
- Yuto Tsuchiya
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan.
| | - Ryota Onai
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan.
| | - Daisuke Uraguchi
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan.
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
38
|
Abstract
AbstractWithin the last decade the combination of photoredox catalysis and other catalytic modes of activation has become a powerful tool for organic synthesis to enable transformations that are not possible using single catalyst systems and hence are complementary to traditional methodology. Especially reactions proceeding via synergistic catalysis where co-catalyst and photocatalyst simultaneously and separately activate different reaction partners greatly benefit from the special properties of molecules and transition metal complexes in their excited state being oxidizing and reducing in nature at the same time. Apart from allowing for the generation of radical (open-shell) reactive intermediates by SET under mild conditions from bench-stable, abundant precursors, the photocatalyst often acts to interweave the distinct catalytic cycles by interaction at multiple points of the reaction mechanism to provide overall redox-neutral processes by shuttling electrons within in this complex network of elementary reaction steps. Synergistic strategies moreover may allow to performing such reactions with enantioselectivity, while mostly the selectivity is achieved by the chiral co-catalyst. The merger of photocatalysis has been achieved with a broad range of alternative modes of catalysis including organocatalysis, Brønstedt and Lewis acid and base catalysis, enzyme catalysis as well as in the context of cross-coupling transition metal catalysis overcoming challenging steps in this methodology and therefore has contributed to considerably expand the repertoire of suitable coupling partners. While only selected examples will be discussed, this chapter will highlight various dual catalytic platforms focusing on the photocatalytically generated intermediates, but also illustrating the diverse roles of photocatalysts in the context of such synergistic multicatalysis reactions.
Collapse
Affiliation(s)
- Kirsten Zeitler
- Fakultät für Chemie und Mineralogie, Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, D-04107, Leipzig04103, Germany
| | - Matthias Neumann
- Fakultät für Chemie und Pharmazie, Institut für Organische Chemie, Universität Regensburg, Regensburg, Bayern, Germany
| |
Collapse
|
39
|
Tavakol H, Ranjbari MA, Jafari-Chermahini MT. Mechanistic details for the reaction of methyl acrylate radical anion: a DFT study. REACTION KINETICS MECHANISMS AND CATALYSIS 2019. [DOI: 10.1007/s11144-019-01647-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Betori RC, Scheidt KA. Reductive Arylation of Arylidene Malonates Using Photoredox Catalysis. ACS Catal 2019; 9:10350-10357. [DOI: 10.1021/acscatal.9b03608] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rick C. Betori
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karl A. Scheidt
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
41
|
Liu R, Yang L, Yang T, Huang Y, Barbatti M, Jiang J, Zhang G. Modulating Electron Transfer in an Organic Reaction via Chemical Group Modification of the Photocatalyst. J Phys Chem Lett 2019; 10:5634-5639. [PMID: 31483663 DOI: 10.1021/acs.jpclett.9b01970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tuning electron-transfer (ET) rates from catalysts to substrates is important for modulating photocatalytic organic reactions. In this work, we have taken pyrene-based photocatalysts (Py's) for photocatalytic hydrodefluorination of polyfluoroarenes (FAs) as model systems and conducted a first-principles study on modulating ET rates from Py to FA via the chemical modification of Py with different electron-donating/withdrawing groups (EDGs/EWGs). The computed spatial distributions of frontier Kohn-Sham orbitals suggest that ET is energetically more favorable for Py-EDGs than for Py-EWGs. The estimated ET rates by a simplified Marcus model show that they are appreciably enhanced by EDG substitution and weakened by EWG substitution. Noticeably, the associated Gibbs free-energy change plays a dominant role. Our findings of tuning ET rates for Py-FA complexes via chemical group modifications cast new insight into the rational design of metal-free photocatalysts for organic transformations.
Collapse
Affiliation(s)
- Ran Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Li Yang
- Institutes of Physical Science and Information Technology , Anhui University , Hefei , Anhui 230601 , P. R. China
| | - Tongtong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Yan Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Mario Barbatti
- Aix Marseille Univ, CNRS, ICR , Marseille 13397 , France
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| | - Guozhen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| |
Collapse
|
42
|
|
43
|
Betori RC, McDonald BR, Scheidt KA. Reductive annulations of arylidene malonates with unsaturated electrophiles using photoredox/Lewis acid cooperative catalysis. Chem Sci 2019; 10:3353-3359. [PMID: 30996923 PMCID: PMC6430011 DOI: 10.1039/c9sc00302a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/03/2019] [Indexed: 01/18/2023] Open
Abstract
A cooperative Lewis acid/photocatalytic reduction of salicylaldehyde-derived arylidene malonates provides access to a versatile, stabilized radical anion enolate. Using these unusual umpolung operators, we have developed a novel route to access densely functionalized carbo- and heterocycles through a radical annulation addition pathway.
Collapse
Affiliation(s)
- Rick C Betori
- Department of Chemistry , Center for Molecular Innovation and Drug Discovery , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
| | - Benjamin R McDonald
- Department of Chemistry , Center for Molecular Innovation and Drug Discovery , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
| | - Karl A Scheidt
- Department of Chemistry , Center for Molecular Innovation and Drug Discovery , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
| |
Collapse
|
44
|
Amador AG, Sherbrook EM, Yoon TP. A Redox Auxiliary Strategy for Pyrrolidine Synthesis via Photocatalytic [3+2] Cycloaddition. ASIAN J ORG CHEM 2019; 8:978-985. [PMID: 31886117 DOI: 10.1002/ajoc.201900113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cycloaddition reactions can be used to efficiently assemble pyrrolidine rings that are significant in a variety of chemical and biological applications. We have developed a method for the formal cycloaddition of cyclopropyl ketones with hydrazones that utlizes photoredox catalysis to enable the synthesis of a range of structurally diverse pyrrolidine rings. The key insight enabling the scope of photoredox [3+2] cycloadditions to be expanded to C=N electrophiles was the use of a redox auxiliary strategy that allowed for photoreductive activation of the cyclopropyl ketone without the need for an exogenous tertiary amine co-reductant. These conditions prevent the deleterious reductive ring-opening of the cyclopropyl substrates, enabling a range of less-reactive coupling partners to participate in this cycloaddition.
Collapse
Affiliation(s)
- Adrian G Amador
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Evan M Sherbrook
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Tehshik P Yoon
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
45
|
Uygur M, García Mancheño O. Visible light-mediated organophotocatalyzed C-H bond functionalization reactions. Org Biomol Chem 2019; 17:5475-5489. [PMID: 31115431 DOI: 10.1039/c9ob00834a] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over the last decade, a variety of methodologies for the direct functionalization of C-H bonds have been developed. Among others, visible light photoredox reactions have recently emerged as one of the most efficient and highly selective processes for the direct introduction of a functionality into organic molecules. Easy reaction setups, as well as mild reaction conditions, make this approach superior to other methodologies applying transition metals or strong oxidants, in terms of both costs and substrate and functional group tolerance. In this review, the recent developments in organophotocatalyzed C-H bond functionalization reactions are presented.
Collapse
Affiliation(s)
- Mustafa Uygur
- Organic Chemistry Institute, Münster University, Corrensstr. 40, 48149 Münster, Germany.
| | | |
Collapse
|
46
|
Zhou Q, Zou Y, Lu L, Xiao W. Mit sichtbarem Licht induzierte, organische photochemische Reaktionen über Energietransferrouten. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803102] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Quan‐Quan Zhou
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 China
| | - You‐Quan Zou
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 China
| | - Liang‐Qiu Lu
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 China
| |
Collapse
|
47
|
Zhou QQ, Zou YQ, Lu LQ, Xiao WJ. Visible-Light-Induced Organic Photochemical Reactions through Energy-Transfer Pathways. Angew Chem Int Ed Engl 2018; 58:1586-1604. [PMID: 29774651 DOI: 10.1002/anie.201803102] [Citation(s) in RCA: 637] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/17/2018] [Indexed: 12/25/2022]
Abstract
Visible-light photocatalysis is a rapidly developing and powerful strategy to initiate organic transformations, as it closely adheres to the tenants of green and sustainable chemistry. Generally, most visible-light-induced photochemical reactions occur through single-electron transfer (SET) pathways. Recently, visible-light-induced energy-transfer (EnT) reactions have received considerable attentions from the synthetic community as this strategy provides a distinct reaction pathway, and remarkable achievements have been made in this field. In this Review, we highlight the most recent advances in visible-light-induced EnT reactions.
Collapse
Affiliation(s)
- Quan-Quan Zhou
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - You-Quan Zou
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, China
| |
Collapse
|
48
|
McDonald BR, Scheidt KA. Intermolecular Reductive Couplings of Arylidene Malonates via Lewis Acid/Photoredox Cooperative Catalysis. Org Lett 2018; 20:6877-6881. [PMID: 30346177 DOI: 10.1021/acs.orglett.8b02893] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cooperative Lewis acid/photocatalytic reduction of arylidene malonates yields a versatile radical anion species. This intermediate preferentially undergoes intermolecular radical-radical coupling reactions, and not the conjugate addition-dimerization reactivity typically observed in the single-electron reduction of conjugate acceptors. Reported here is the development of this open-shell species in intermolecular radical-radical cross couplings, radical dimerizations, and transfer hydrogenations. This reactivity underscores the enabling modularity of cooperative catalysis and demonstrates the utility of stabilized enoate-derived radical anions in intermolecular bond forming reactions.
Collapse
Affiliation(s)
- Benjamin R McDonald
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Karl A Scheidt
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| |
Collapse
|
49
|
Xu R, Drake T, Lan G, Lin W. Metal-Organic Layers Catalyze Photoreactions without Pore Size and Diffusion Limitations. Chemistry 2018; 24:15772-15776. [PMID: 30016566 DOI: 10.1002/chem.201803635] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Indexed: 01/24/2023]
Abstract
Metal-organic frameworks (MOFs) have emerged as promising single-site solid catalysts for organic reactions. However, MOF catalysts suffer from pore size limitation and slow diffusion, which are detrimental for photoreactions. Metal-organic layers (MOLs) have unique ultrathin 2D monolayer structures and overcome pore size and diffusion limitations. Here, the synthesis of photoactive Zr-RuBPY MOL based on Zr-oxo clusters and [Ru(bpy)3 ]2+ -containing linkers is reported as well as its application in photocatalytic [2+2] cyclizations of enones and Meerwein addition reactions between aryl diazonium salts, styrenes, and nitriles.
Collapse
Affiliation(s)
- Ruoyu Xu
- Department of Chemistry, The University of Chicago, 929 East 57th street, Chicago, Illinois, 60637, USA
| | - Tasha Drake
- Department of Chemistry, The University of Chicago, 929 East 57th street, Chicago, Illinois, 60637, USA
| | - Guangxu Lan
- Department of Chemistry, The University of Chicago, 929 East 57th street, Chicago, Illinois, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 East 57th street, Chicago, Illinois, 60637, USA
| |
Collapse
|
50
|
Rong J, Seeberger PH, Gilmore K. Chemoselective Photoredox Synthesis of Unprotected Primary Amines Using Ammonia. Org Lett 2018; 20:4081-4085. [DOI: 10.1021/acs.orglett.8b01637] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiawei Rong
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - Kerry Gilmore
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|