1
|
Doinikov DA, Zavgorodnii AS, Kazakov IV, Kravtcov DV, Chernysheva AM, Shcherbina NA, Timoshkin AY. Thermal Decomposition of Aluminium Hydride Complexes with Trimethylamine and N-Heterocyclic Carbene. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221100078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Effect of fluorosubstitution in the ligand on structure, spectral and thermal characteristics of trimethylplatinum β-diketonate complexes. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Decosterd L, Topka KC, Diallo B, Samelor D, Vergnes H, Senocq F, Caussat B, Vahlas C, Menu MJ. An innovative GC-MS, NMR and ESR combined, gas-phase investigation during chemical vapor deposition of silicon oxynitrides films from tris(dimethylsilyl)amine. Phys Chem Chem Phys 2021; 23:10560-10572. [PMID: 33903868 DOI: 10.1039/d1cp01129d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tris(dimethylsilyl)amine (TDMSA) is used in the presence of O2 and NH3 for the atmospheric pressure chemical vapor deposition (CVD) of conformal, corrosion barrier silicon oxynitride (SiOxNy) films at moderate temperature. Plausible decomposition pathways taking place during the process, as well as resulting gas-phase by-products, are investigated by an innovative methodology, coupling solid-state films characteristics with gas phase analysis. Liquid NMR, gas chromatography coupled with mass spectrometry (GC-MS) and electron spin resonance (ESR) allow probing stable compounds and radical intermediate species in the gas phase. At least fifteen by-products are identified, including silanols, siloxanes, disilazanes, silanamines, and mixed siloxane-silanamine molecules, in addition to more usual compounds such as water. The radical dimethylsilane, Me2HSi˙, is noted across all experiments, hinting at the decomposition of the TDMSA precursor. Deposition of SiOxNy films occurs even in the absence of NH3, demonstrating the judicious choice of the silanamine TDMSA as a dual source of nitrogen and silicon. Additionally, the presence of Si-H bonds in the precursor structure allows formation of SiOxNy films at temperatures lower than those required by other conventional silazane/silanamine precursors. Addition of NH3 in the inlet gas supply results in lower carbon impurities in the films. The identified by-products and formulated decomposition and gas-phase reactions provide stimulating insight and understanding of the deposition mechanism of SiOxNy films by CVD, offering possibilities for the investigation of representative chemical models and process simulation.
Collapse
Affiliation(s)
- Laura Decosterd
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Konstantina Christina Topka
- CIRIMAT, Université de Toulouse, CNRS, INP-ENSIACET, 4, Allée Emile Monso, BP-44362, 31030 Toulouse Cedex 4, France and LGC, Université de Toulouse, CNRS, INP-ENSIACET, 4, Allée Emile Monso, BP-44362, 31030 Toulouse Cedex 4, France
| | - Babacar Diallo
- CNRS, Conditions Extrêmes et Matériaux, Haute Température et Irradiation (CEMHTI) UPR 3079, Université d'Orléans, Site Cyclotron, CS 30058, 3A Rue de la Férolerie, 45071 Orléans Cedex 2, France
| | - Diane Samelor
- CIRIMAT, Université de Toulouse, CNRS, INP-ENSIACET, 4, Allée Emile Monso, BP-44362, 31030 Toulouse Cedex 4, France
| | - Hugues Vergnes
- LGC, Université de Toulouse, CNRS, INP-ENSIACET, 4, Allée Emile Monso, BP-44362, 31030 Toulouse Cedex 4, France
| | - François Senocq
- CIRIMAT, Université de Toulouse, CNRS, INP-ENSIACET, 4, Allée Emile Monso, BP-44362, 31030 Toulouse Cedex 4, France
| | - Brigitte Caussat
- LGC, Université de Toulouse, CNRS, INP-ENSIACET, 4, Allée Emile Monso, BP-44362, 31030 Toulouse Cedex 4, France
| | - Constantin Vahlas
- CIRIMAT, Université de Toulouse, CNRS, INP-ENSIACET, 4, Allée Emile Monso, BP-44362, 31030 Toulouse Cedex 4, France
| | - Marie-Joëlle Menu
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
4
|
Basheer H, Baba K, Bahlawane N. Thermal Conversion of Ethanol into Carbon Nanotube Coatings with Adjusted Packing Density. ACS OMEGA 2019; 4:10405-10410. [PMID: 31460134 PMCID: PMC6648536 DOI: 10.1021/acsomega.9b00616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/31/2019] [Indexed: 05/10/2023]
Abstract
The ability to control the growth of carbon nanotube (CNT) coatings with adjusted packing density is essential for the design of functional devices with an emphasized interaction with the surrounding medium. This challenge is addressed in the present study using an innovative single-pot chemical vapor deposition (CVD) process based on the thermal conversion of ethanol to CNTs. Benefitting from the relatively safe and easily bio-derived carbon source is enabled using a cobalt catalyst and a magnesium oxide promoter. The resulting innovative direct-liquid injection CVD opens up new opportunities for low-temperature CNT deposition. The simultaneous formation of a cobalt catalyst along the process results in a sustainable CNT growth that is substantially emphasized with the deposition time. Furthermore, the formation of these catalyst nanoparticles in the porous structure nucleates new CNTs and results in a substantial film densification. Relative to densely packed CNTs that feature a density exceeding 1000 mg/cm3, the investigated process enables an adjusted density from 0.1 to 20 mg/cm3 with no significant impact on the quality of the obtained multiwalled CNTs. This unprecedented control over the packing density of the CNT film paves the way toward the development of high-performance functional nanocomposite coatings.
Collapse
|
5
|
Siebels M, Mai L, Schmolke L, Schütte K, Barthel J, Yue J, Thomas J, Smarsly BM, Devi A, Fischer RA, Janiak C. Synthesis of rare-earth metal and rare-earth metal-fluoride nanoparticles in ionic liquids and propylene carbonate. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1881-1894. [PMID: 30013882 PMCID: PMC6036975 DOI: 10.3762/bjnano.9.180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Decomposition of rare-earth tris(N,N'-diisopropyl-2-methylamidinato)metal(III) complexes [RE{MeC(N(iPr)2)}3] (RE(amd)3; RE = Pr(III), Gd(III), Er(III)) and tris(2,2,6,6-tetramethyl-3,5-heptanedionato)europium(III) (Eu(dpm)3) induced by microwave heating in the ionic liquids (ILs) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIm][NTf2]) and in propylene carbonate (PC) yield oxide-free rare-earth metal nanoparticles (RE-NPs) in [BMIm][NTf2] and PC for RE = Pr, Gd and Er or rare-earth metal-fluoride nanoparticles (REF3-NPs) in the fluoride-donating IL [BMIm][BF4] for RE = Pr, Eu, Gd and Er. The crystalline phases and the absence of significant oxide impurities in RE-NPs and REF3-NPs were verified by powder X-ray diffraction (PXRD), selected area electron diffraction (SAED) and high-resolution X-ray photoelectron spectroscopy (XPS). The size distributions of the nanoparticles were determined by transmission electron microscopy (TEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) to an average diameter of (11 ± 6) to (38 ± 17) nm for the REF3-NPs from [BMIm][BF4]. The RE-NPs from [BMIm][NTf2] or PC showed diameters of (1.5 ± 0.5) to (5 ± 1) nm. The characterization was completed by energy-dispersive X-ray spectroscopy (EDX).
Collapse
Affiliation(s)
- Marvin Siebels
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany. Fax: +49-211-81-12287; Tel: +49-211-81-12286
| | - Lukas Mai
- Inorganic Materials Chemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Laura Schmolke
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany. Fax: +49-211-81-12287; Tel: +49-211-81-12286
| | - Kai Schütte
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany. Fax: +49-211-81-12287; Tel: +49-211-81-12286
| | - Juri Barthel
- Gemeinschaftslabor für Elektronenmikroskopie RWTH-Aachen, Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen, 52425 Jülich, Germany
| | - Junpei Yue
- Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Jörg Thomas
- Department Structure and Nano-/Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany
| | - Bernd M Smarsly
- Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Anjana Devi
- Inorganic Materials Chemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Roland A Fischer
- Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany. Fax: +49-211-81-12287; Tel: +49-211-81-12286
| |
Collapse
|
6
|
Tuning the electrical properties of the p-type transparent conducting oxide Cu 1-xCr 1+xO 2 by controlled annealing. Sci Rep 2018; 8:7216. [PMID: 29740118 PMCID: PMC5940695 DOI: 10.1038/s41598-018-25659-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/18/2018] [Indexed: 11/27/2022] Open
Abstract
Off-stoichiometric copper chromium oxide delafossite received lately a great interest due to its high p-type electrical conductivity and adequate optical transmittance in the visible range. However, for a suitable integration in active devices such as p-n junctions, transistors or optoelectronic devices, the electronic properties must be efficiently tailored. Here, post-deposition thermal treatment is proven as an adequate approach for finely controlling the electrical properties of this former degenerate semiconducting material. The energetics of the annealing process are investigated using two different approaches, as a function of the annealing temperature and as a function of the annealing time, allowing the accurate determination of the activation energy of the annealing of defects. By using this method, the electrical carrier concentration was varied in the 1021 – 1017 cm−3 range while the recorded changes in the drift mobility covered three orders of magnitude. Moreover, we demonstrate the ability to accurately manipulate the Fermi level of such materials, which is of great importance in controlling the carrier injection and extraction in optoelectronic active layers.
Collapse
|
7
|
Barry ST, Teplyakov AV, Zaera F. The Chemistry of Inorganic Precursors during the Chemical Deposition of Films on Solid Surfaces. Acc Chem Res 2018; 51:800-809. [PMID: 29489341 DOI: 10.1021/acs.accounts.8b00012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The deposition of thin solid films is central to many industrial applications, and chemical vapor deposition (CVD) methods are particularly useful for this task. For one, the isotropic nature of the adsorption of chemical species affords even coverages on surfaces with rough topographies, an increasingly common requirement in microelectronics. Furthermore, by splitting the overall film-depositing reactions into two or more complementary and self-limiting steps, as it is done in atomic layer depositions (ALD), film thicknesses can be controlled down to the sub-monolayer level. Thanks to the availability of a vast array of inorganic and metalorganic precursors, CVD and ALD are quite versatile and can be engineered to deposit virtually any type of solid material. On the negative side, the surface chemistry that takes place in these processes is often complex, and can include undesirable side reactions leading to the incorporation of impurities in the growing films. Appropriate precursors and deposition conditions need to be chosen to minimize these problems, and that requires a proper understanding of the underlying surface chemistry. The precursors for CVD and ALD are often designed and chosen based on their known thermal chemistry from inorganic chemistry studies, taking advantage of the vast knowledge developed in that field over the years. Although a good first approximation, however, this approach can lead to wrong choices, because the reactions of these precursors at gas-solid interfaces can be quite different from what is seen in solution. For one, solvents often aid in the displacement of ligands in metalorganic compounds, providing the right dielectric environment, temporarily coordinating to the metal, or facilitating multiple ligand-complex interactions to increase reaction probabilities; these options are not available in the gas-solid reactions associated with CVD and ALD. Moreover, solid surfaces act as unique "ligands", if these reactions are to be viewed from the point of view of the metalorganic complexes used as precursors: they are bulky and rigid, can provide multiple binding sites for a single reaction, and can promote unique bonding modes, especially on metals, which have delocalized electronic structures. The differences between the molecular and surface chemistry of CVD and ALD precursors can result in significant variations in their reactivity, ultimately leading to unpredictable properties in the newly grown films. In this Account, we discuss some of the main similarities and differences in chemistry that CVD/ALD precursors follow on surfaces when contrasted against their known behavior in solution, with emphasis on our own work but also referencing other key contributions. Our approach is unique in that it combines expertise from the inorganic, surface science, and quantum-mechanics fields to better understand the mechanistic details of the chemistry of CVD and ALD processes and to identify new criteria to consider when designing CVD/ALD precursors.
Collapse
Affiliation(s)
- Seán T. Barry
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Andrew V. Teplyakov
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Francisco Zaera
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
8
|
Levchenko I, Xu S, Teel G, Mariotti D, Walker MLR, Keidar M. Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials. Nat Commun 2018; 9:879. [PMID: 29491411 PMCID: PMC5830404 DOI: 10.1038/s41467-017-02269-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/16/2017] [Indexed: 11/23/2022] Open
Abstract
Drastic miniaturization of electronics and ingression of next-generation nanomaterials into space technology have provoked a renaissance in interplanetary flights and near-Earth space exploration using small unmanned satellites and systems. As the next stage, the NASA's 2015 Nanotechnology Roadmap initiative called for new design paradigms that integrate nanotechnology and conceptually new materials to build advanced, deep-space-capable, adaptive spacecraft. This review examines the cutting edge and discusses the opportunities for integration of nanomaterials into the most advanced types of electric propulsion devices that take advantage of their unique features and boost their efficiency and service life. Finally, we propose a concept of an adaptive thruster.
Collapse
Affiliation(s)
- I Levchenko
- Plasma Sources and Applications Centre, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore.
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| | - S Xu
- Plasma Sources and Applications Centre, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore
| | - G Teel
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - D Mariotti
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Newtownabbey, BT37 0QB, UK
| | - M L R Walker
- School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0150, USA
| | - M Keidar
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
9
|
Blakeney KJ, Martin PD, Winter CH. Aluminum dihydride complexes and their unexpected application in atomic layer deposition of titanium carbonitride films. Dalton Trans 2018; 47:10897-10905. [DOI: 10.1039/c8dt02508h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aluminum dihydride complexes containing amido-amine ligands were synthesized and evaluated as potential reducing precursors for thermal atomic layer deposition (ALD).
Collapse
|
10
|
Wegner S, Rutz C, Schütte K, Barthel J, Bushmelev A, Schmidt A, Dilchert K, Fischer RA, Janiak C. Soft, Wet-Chemical Synthesis of Metastable Superparamagnetic Hexagonal Close-Packed Nickel Nanoparticles in Different Ionic Liquids. Chemistry 2017; 23:6330-6340. [PMID: 28196305 DOI: 10.1002/chem.201605251] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Susann Wegner
- Institut für Anorganische Chemie und Strukturchemie; Heine-Universität Düsseldorf; 40204 Düsseldorf Germany
| | - Christina Rutz
- Institut für Anorganische Chemie und Strukturchemie; Heine-Universität Düsseldorf; 40204 Düsseldorf Germany
| | - Kai Schütte
- Institut für Anorganische Chemie und Strukturchemie; Heine-Universität Düsseldorf; 40204 Düsseldorf Germany
| | - Juri Barthel
- Gemeinschaftslabor für Elektronenmikroskopie RWTH-Aachen; Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen; 52425 Jülich Germany
| | - Alexey Bushmelev
- Physical Chemistry Department; University of Cologne; Luxemburger Str. 116 50939 Cologne Germany
| | - Annette Schmidt
- Physical Chemistry Department; University of Cologne; Luxemburger Str. 116 50939 Cologne Germany
| | - Katharina Dilchert
- Lehrstuhl für Anorganische und Metallorganische Chemie; TU München; Lichtenbergstr. 4 85748 Garching Germany
| | - Roland A. Fischer
- Lehrstuhl für Anorganische und Metallorganische Chemie; TU München; Lichtenbergstr. 4 85748 Garching Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie; Heine-Universität Düsseldorf; 40204 Düsseldorf Germany
| |
Collapse
|
11
|
Zhou P, Wang X, Guan W, Zhang D, Fang L, Jiang Y. SnS 2 Nanowall Arrays toward High-Performance Sodium Storage. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6979-6987. [PMID: 28103016 DOI: 10.1021/acsami.6b13613] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cost-effective sodium ion batteries (SIBs) are emerging as a desirable alternative choice to lithium ion batteries in terms of application in large-scale energy storage devices. SnS2 is regarded as a potential anode material for SIBs because of its unique layered structure and high theoretical specific capacity. However, the development of SnS2 was hindered by the sluggish kinetics of the diffusion process and the inevitable volume change during repeated sodiation-desodiation processes. In this work, SnS2 with a unique nanowall array (NWA) structure is fabricated by one-step pulsed spray evaporation chemical vapor deposition (PSE-CVD), which could be used directly as binder-free and carbon-free anodes for SIBs. The SnS2 NWA electrode achieves a high reversible capacity of 576 mAh g-1 at 500 mA g-1 and enhanced cycling stability. Attractively, an excellent rate capability is demonstrated with ∼370 mAh g-1 at 5 A g-1, corresponding to a capacity retention of 64.2% at 500 mA g-1. The superior sodium storage capability of the SnS2 NWA electrode could be attributed to outstanding electrode design and a rational growth process, which favor fast electron and Na-ion transport, as well as provide steady structure for elongated cycling.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, PR China
| | - Xiao Wang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, PR China
| | - Wenhao Guan
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, PR China
| | - Dan Zhang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, PR China
| | - Libin Fang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, PR China
| | - Yinzhu Jiang
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University , Hangzhou, Zhejiang 310027, PR China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science , Fuzhou, Fujian 350002, PR China
| |
Collapse
|
12
|
Schütte K, Barthel J, Endres M, Siebels M, Smarsly BM, Yue J, Janiak C. Synthesis of Metal Nanoparticles and Metal Fluoride Nanoparticles from Metal Amidinate Precursors in 1-Butyl-3-Methylimidazolium Ionic Liquids and Propylene Carbonate. ChemistryOpen 2017; 6:137-148. [PMID: 28168159 PMCID: PMC5288766 DOI: 10.1002/open.201600105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Indexed: 11/06/2022] Open
Abstract
Decomposition of transition-metal amidinates [M{MeC(NiPr)2} n ] [M(AMD) n ; M=MnII, FeII, CoII, NiII, n=2; CuI, n=1) induced by microwave heating in the ionic liquids (ILs) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]), 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]), 1-butyl-3-methylimidazolium trifluoromethanesulfonate (triflate) ([BMIm][TfO]), and 1-butyl-3-methylimidazolium tosylate ([BMIm][Tos]) or in propylene carbonate (PC) gives transition-metal nanoparticles (M-NPs) in non-fluorous media (e.g. [BMIm][Tos] and PC) or metal fluoride nanoparticles (MF2-NPs) for M=Mn, Fe, and Co in [BMIm][BF4]. FeF2-NPs can be prepared upon Fe(AMD)2 decomposition in [BMIm][BF4], [BMIm][PF6], and [BMIm][TfO]. The nanoparticles are stable in the absence of capping ligands (surfactants) for more than 6 weeks. The crystalline phases of the metal or metal fluoride synthesized in [BMIm][BF4] were identified by powder X-ray diffraction (PXRD) to exclusively Ni- and Cu-NPs or to solely MF2-NPs for M=Mn, Fe, and Co. The size and size dispersion of the nanoparticles were determined by transmission electron microscopy (TEM) to an average diameter of 2(±2) to 14(±4) nm for the M-NPs, except for the Cu-NPs in PC, which were 51(±8) nm. The MF2-NPs from [BMIm][BF4] were 15(±4) to 65(±18) nm. The average diameter from TEM is in fair agreement with the size evaluated from PXRD with the Scherrer equation. The characterization was complemented by energy-dispersive X-ray spectroscopy (EDX). Electrochemical investigations of the CoF2-NPs as cathode materials for lithium-ion batteries were simply evaluated by galvanostatic charge/discharge profiles, and the results indicated that the reversible capacity of the CoF2-NPs was much lower than the theoretical value, which may have originated from the complex conversion reaction mechanism and residue on the surface of the nanoparticles.
Collapse
Affiliation(s)
- Kai Schütte
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Juri Barthel
- Gemeinschaftslabor für Elektronenmikroskopie RWTH-AachenErnst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen52425JülichGermany
| | - Manuel Endres
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Marvin Siebels
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| | - Bernd M. Smarsly
- Physikalisch-Chemisches InstitutJustus-Liebig-Universität Gießen35392GießenGermany
| | - Junpei Yue
- Physikalisch-Chemisches InstitutJustus-Liebig-Universität Gießen35392GießenGermany
| | - Christoph Janiak
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität Düsseldorf40204DüsseldorfGermany
| |
Collapse
|
13
|
Influence of Water on Chemical Vapor Deposition of Ni and Co thin films from ethanol solutions of acetylacetonate precursors. Sci Rep 2015; 5:18194. [PMID: 26658547 PMCID: PMC4677359 DOI: 10.1038/srep18194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 11/16/2015] [Indexed: 11/20/2022] Open
Abstract
In chemical vapor deposition experiments with pulsed spray evaporation (PSE-CVD) of liquid solutions of Ni and Co acetylacetonate in ethanol as precursors, the influence of water in the feedstock on the composition and growth kinetics of deposited Ni and Co metal films was systematically studied. Varying the water concentration in the precursor solutions, beneficial as well as detrimental effects of water on the metal film growth, strongly depending on the concentration of water and the β-diketonate in the precursor, were identified. For 2.5 mM Ni(acac)2 precursor solutions, addition of 0.5 vol% water improves growth of a metallic Ni film and reduces carbon contamination, while addition of 1.0 vol% water and more leads to significant oxidation of deposited Ni. By tuning the concentration of both, Ni(acac)2 and water in the precursor solution, the fraction of Ni metal and Ni oxide in the film or the film morphology can be adjusted. In the case of Co(acac)2, even smallest amounts of water promote complete oxidation of the deposited film. All deposited films were analyzed with respect to chemical composition quasi in situ by XPS, their morphology was evaluated after deposition by SEM.
Collapse
|
14
|
Schütte K, Meyer H, Gemel C, Barthel J, Fischer RA, Janiak C. Synthesis of Cu, Zn and Cu/Zn brass alloy nanoparticles from metal amidinate precursors in ionic liquids or propylene carbonate with relevance to methanol synthesis. NANOSCALE 2014; 6:3116-3126. [PMID: 24492885 DOI: 10.1039/c3nr05780a] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microwave-induced decomposition of the transition metal amidinates {[Me(C(N(i)Pr)2)]Cu}2 (1) and [Me(C(N(i)Pr)2)]2Zn (2) in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) or in propylene carbonate (PC) gives copper and zinc nanoparticles which are stable in the absence of capping ligands (surfactants) for more than six weeks. Co-decomposition of 1 and 2 yields the intermetallic nano-brass phases β-CuZn and γ-Cu3Zn depending on the chosen molar ratios of the precursors. Nanoparticles were characterized by high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), dynamic light scattering and powder X-ray diffractometry. Microstructure characterizations were complemented by STEM with spatially resolved energy-dispersive X-ray spectrometry and X-ray photoelectron spectroscopy. Synthesis in ILs yields significantly smaller nanoparticles than in PC. β-CuZn alloy nanoparticles are precursors to catalysts for methanol synthesis from the synthesis gas H2/CO/CO2 with a productivity of 10.7 mol(MeOH) (kg(Cu) h)(-1).
Collapse
Affiliation(s)
- Kai Schütte
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Emslie DJ, Chadha P, Price JS. Metal ALD and pulsed CVD: Fundamental reactions and links with solution chemistry. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Precursors and chemistry for the atomic layer deposition of metallic first row transition metal films. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.03.019] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|