1
|
Karak A, Banik D, Ganguly R, Banerjee S, Ghosh P, Maiti A, Mandal D, Mahapatra AK. A Phenanthrenequinone-Based Ratiometric Fluorescent Probe for Rapid Detection of Peroxynitrite with Imaging in Osteoblast Precursor Cells. Chem Res Toxicol 2024; 37:771-778. [PMID: 38658839 DOI: 10.1021/acs.chemrestox.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In the current situation, peroxynitrite (ONOO-) is drawing the increasing attention of researchers for its pivotal role in diverse pathological and physiological processes on grounds of robust oxidation and nitrification. Herein, we have successfully designed and synthesized a phenanthrenequinone benzyl borate-based chemosensor for fast and selective detection of ONOO-. The probe PTDP itself had an orange fluorescence, which was changed to strong blue fluorescence upon the addition of ONOO-, indicating the ratiometric response of the probe. This is so because of the cleavage of the benzyl boronate-protecting group of PTDP upon the addition of ONOO- with simultaneous releasing of pyridinyl-based chemosensor PPI. The PTDP showed outstanding performance in the various photophysical studies such as good selectivity, excellent sensitivity with a very low detection limit of 2.74 nM, and a very fast response time (<15 s). Furthermore, for practical applicability, it was successfully applied in the ratiometric detection of ONOO- in osteoblast precursor cells.
Collapse
Affiliation(s)
- Anirban Karak
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah 711 103, India
| | - Dipanjan Banik
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah 711 103, India
| | - Rajdeep Ganguly
- Centre for Healthcare Science, Indian Institute of Engineering Science and Technology, Shibpur,Howrah 711103, India
| | - Shilpita Banerjee
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah 711 103, India
| | - Pintu Ghosh
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah 711 103, India
| | - Anwesha Maiti
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah 711 103, India
| | - Debasish Mandal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala ,Punjab 147004, India
| | - Ajit Kumar Mahapatra
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah 711 103, India
| |
Collapse
|
2
|
Khan A, Meena VK, Silswal A, Koner AL. A perylenemonoimide-based fluorescent probe: ultrasensitive and selective tracing of endogenous peroxynitrite in living cells. Analyst 2023; 148:5851-5855. [PMID: 37881949 DOI: 10.1039/d3an01469j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Peroxynitrite (ONOO-), a highly reactive species, plays a key role in various physiological and pathological processes. Herein, a red-emitting fluorescent reporter perylenemonoimide-boronate ester (PMI-BE) was synthesized and utilized for ultrasensitive detection of ONOO-. The unique feature of PMI-BE is its nanomolar sensitivity with high selectivity towards ONOO-. Moreover, PMI-BE also detects endogenously generated ONOO- in live cells.
Collapse
Affiliation(s)
- Aasif Khan
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, India.
| | - Vinod Kumar Meena
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, India.
| | - Akshay Silswal
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, India.
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
3
|
Zhuo J, Hui J, Chi H, Guo Y, Lu G. Near-infrared Fluorescent Probes with Long-acting Cyclic Monitoring and Effectively Eliminating Peroxynitrite. Chem Asian J 2023; 18:e202300717. [PMID: 37697898 DOI: 10.1002/asia.202300717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Two through-bond energy transfer fluorescent probes with a dihydroxyl naphthyl-pyrenyl conjugated system were synthesized for long-acting cyclic monitoring and eliminating peroxynitrite (ONOO- ). The probes exhibit large Stokes shifts (230 or 280 nm) and the fluorescence at 620 or 652 nm rapidly change in response to continuously variable concentrations of ONOO- under physiological conditions. The probes show good reversibility and can rapidly monitor the concentration changes of ONOO- in real time. In addition, with the additions of the probes, the decomposition of ONOO- is greatly accelerated. Therefore, the probes can effectively eliminate the excess ONOO- as well as sensing it. The biological studies showed that the probes can effectively and reversibly eliminate both exogenous and endogenous ONOO- in-situ as well as sensing its changes in cells, which can help to maintain the normal physiological concentration of ONOO- in organisms. This is the first system that a probe achieves multifunction including real-time detection, long-acting cyclic monitoring and in-situ elimination, thereby maintaining a normal physiological balance for ONOO- .
Collapse
Affiliation(s)
- Jiezhen Zhuo
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Jin Hui
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Haijun Chi
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| | - Yuxin Guo
- School of Chemical & Environmental Engineering, Liaoning University of Technology, 169 Shiying Road, Jinzhou, Liaoning, 121001, P. R. China
| | - Gonghao Lu
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, P. R. China
| |
Collapse
|
4
|
Wang Y, Jian C, Long Y, Xu X, Song Y, Yin Z. H 2O 2-triggered "off/on signal" nanoparticles target P-selectin for the non-invasive and contrast-enhanced theranostics for arterial thrombosis. Acta Biomater 2023; 158:769-781. [PMID: 36565786 DOI: 10.1016/j.actbio.2022.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Pathological coagulation within an injured artery and the subsequent cardiovascular complications, such as stroke and heart attack, greatly threaten human life. Inspired by the biochemical features of acute arterial thrombosis, such as abundant activated platelets and hydrogen peroxide (H2O2), we constructed platelet-targeted theranostic nanoparticles (CyBA/PFM NPs) with H2O2-triggered photoacoustic contrast enhancement and antithrombotic capabilities. CyBA/PFM NPs were designed to target platelet-rich clots via fucoidan segment within the carrier, which could be activated by H2O2 to produce fluorescent "CyOH" molecules, thus turning on the photoacoustic signal. CyBA/PFM NPs showed obvious amplification of fluorescence following incubation with fresh clots, exhibiting efficient scavenging ability of intracellular reactive oxygen species (ROS). In a FeCl3-induced mouse model of carotid thrombosis, CyBA/PFM NPs significantly amplified the photoacoustic contrast in thrombogenic tissues, effectively eliminated ROS within the occlusion site, and suppressed the thrombus formation, accompanied by a normalization of the soluble CD40L level. Given their accurate imaging potential, potent antithrombotic activities and acceptable biosafety, CyBA/PFM NPs hold strong potential as nanoscale theranostics for H2O2-correlated cardiovascular diseases. STATEMENT OF SIGNIFICANCE: In this study, we developed a platelet-targeted and H2O2-triggered nanosystem self-assembled from phenylboronated fucoidan/maltodextrin polymers and responsive near-infrared probes. The fucoidan segment within the carrier could facilitate the specific delivery of the therapeutic polymers and probes to the platelet-rich arterial thrombus. In a mouse model of FeCl3-induced arterial thrombosis, the system could be activated by H2O2 to produce fluorescent "CyOH" molecules, thus turning on the photoacoustic signal and specifically imaging thrombosed tissues. Besides, CyBA/PFM NPs significantly effectively eliminated ROS within the occlusion site and suppressed the thrombus formation. Given their theranostic potential and acceptable biosafety, this system has great potential for H2O2-correlated cardiovascular diseases.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China; School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Chuanjiang Jian
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yiqing Long
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiaowen Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yang Song
- Cooperative Institute for Great Lakes Research, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Chen JW, Wu TC, Liang W, Ciou JJ, Lai CH. Boronates as hydrogen peroxide-reactive warheads in the design of detection probes, prodrugs, and nanomedicines used in tumors and other diseases. Drug Deliv Transl Res 2022; 13:1305-1321. [PMID: 36258159 DOI: 10.1007/s13346-022-01248-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2022] [Indexed: 11/25/2022]
Abstract
Hydrogen peroxide (H2O2) has always been a topic of great interests attributed to its vital role in biological process. H2O2 is known as a major reactive oxygen species (ROS) which is involve in numerous physiological processes such as cell proliferation, signal transduction, differentiation, and even pathogenesis. A plenty of diseases development such as chronic disease, inflammatory disease, and organ dysfunction are found to be relevant to abnormality of H2O2 production. Thus, imminent and feasible strategies to modulate and detect H2O2 level in vitro and in vivo have gained great importance. To date, the boronate-based chemical structure probes have been widely used to address the problems from the above aspects because of the rearranged chemical bonding which can detect and quantify ROS including hydrogen peroxide (H2O2) and peroxynitrite (ONOO-). This present article discusses boronate-based probes based on the chemical structure difference as well as reactivities to H2O2 and ONOO-. In this review, we also focus on the application of boronate-based probes in the field of cell imaging, prodrugs nanoplatform, nanomedicines, and electrochemical biosensors for disease diagnosis and treatment. In a nutshell, we outline the recent application of boronate-based probes and represent the prospective potentiality in biomedical domain in the future.
Collapse
Affiliation(s)
- Jyun-Wei Chen
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Tzu-Chien Wu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Wun Liang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Jyun-Jia Ciou
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chian-Hui Lai
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 40227, Taiwan.
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
6
|
Jian C, Wang Y, Liu H, Yin Z. A biotin-modified and H 2O 2-activatable theranostic nanoplatform for enhanced photothermal and chemical combination cancer therapy. Eur J Pharm Biopharm 2022; 177:24-38. [PMID: 35667614 DOI: 10.1016/j.ejpb.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Although synergistic effects of photothermal therapy (PTT) and chemotherapy for cancer have been extensively investigated in previous studies, more potential strategies need to be exploited to alleviate severe adverse effects. In this study, a biotin-modified and activatable nanotheranostic system is developed. This system (BPSP/DOX-CyBA) composed of H2O2-sensitive thioketal (TK) linker, hydrophilic biotin-decorated polyethylene glycol (PEG) segment, hydrophobic polycaprolactone (PCL) segment, could self-assemble into (99±1.3) nm nanoparticles and co-deliver H2O2-triggered photosensitizer CyBA and cytotoxic drugs DOX to tumor site. In vitro, DOX and CyBA could release rapidly from nanoparticles, CyBA accumulation in the mitochondria causes mitochondrial damage, leading to mitochondrial dysfunctions,while rising the level of ROS in B16F10 cells, and further to promote the micells to trigger release. CyBA could be activated into CyOH and the photothermal therapy was turn "off" into "on". In BPSP/DOX-CyBA group, the local temperature within tumor reached 50℃ and cell apoptosis rate reached 68.6% under Laser irradiation(650 nm, 1W/cm2). Fluorescence microscopy and flow cytometry analysis further demonstrated the better uptake efficiency on B16F10 cells with biotin decoration. In a mice B16F10 tumor model, the group with co-delivery CyBA and DOX had the best tumor retention effect, the maximal local temperature increasement and the minimum tumor growth with negligible side effects, suggesting the potential of BPSP/DOX-CyBA nanopalteform that synergistic photothermal therapy and chemotherapy and mitochondria damage as an effective melanoma treatment strategy.
Collapse
Affiliation(s)
- Chuanjiang Jian
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huijun Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Kainth S, Goel N, Basu S, Maity B. Surfactant-derived water-soluble carbon dots for quantitative determination of fluoride via a turn-off–on strategy. NEW J CHEM 2022. [DOI: 10.1039/d1nj04838d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surfactants play a vital role as precursors for achieving carbon cores, heteroatom π-systems, and stability in carbon dots (CDs).
Collapse
Affiliation(s)
- Shagun Kainth
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala-147004, India
| | - Neha Goel
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala-147004, India
| | - Soumen Basu
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala-147004, India
| | - Banibrata Maity
- School of Chemistry and Biochemistry, Affiliate Faculty-TIET-Virginia Tech Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology, Patiala-147004, India
| |
Collapse
|
8
|
Xin F, Zhao J, Shu W, Zhang X, Luo X, Tian Y, Xing M, Wang H, Peng Y, Tian Y. A thiocarbonate-caged fluorescent probe for specific visualization of peroxynitrite in living cells and zebrafish. Analyst 2021; 146:7627-7634. [PMID: 34787597 DOI: 10.1039/d1an00971k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Peroxynitrite (ONOO-), a highly reactive oxygen species (ROS), is implicated with many physiological and pathological processes including cancer, neurodegenerative diseases and inflammation. In this regard, developing effective tools for highly selective tracking of ONOO- is urgently needed. Herein, we constructed a concise and specific fluorescent probe NA-ONOO for sensing ONOO- by conjugating an ONOO--specific recognition group ((4-methoxyphenylthio)carbonyl, a thiocarbonate derivative) with a naphthalene fluorophore. The probe, NA-ONOO, was in a dark state because the high electrophilicity of (4-methoxyphenylthio)carbonyl disturbs the intramolecular charge transfer (ICT) in the fluorophore. Upon treatment with ONOO-, the fluorescent emission was sharply boosted (quantum yield Φ: 3% to 56.6%) owing to an ONOO- triggered release of (4-methoxyphenylthio)carbonyl from NA-ONOO. Optical analyses showed that NA-ONOO presented high selectivity and sensitivity toward ONOO-. With good cell permeability and biocompatibility, the NA-ONOO probe was successfully applied to imaging and tracing exogenous and endogenous ONOO- in living cells and zebrafish. The probe NA-ONOO presents a new recognition group and a promising method for further investigating ONOO- in living systems.
Collapse
Affiliation(s)
- Fangyun Xin
- School of Science, Dalian Maritime University, Dalian 116026, PR China.
| | - Jiwei Zhao
- School of Science, Dalian Maritime University, Dalian 116026, PR China.
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Xiaoling Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Xixian Luo
- School of Science, Dalian Maritime University, Dalian 116026, PR China.
| | - Ying Tian
- School of Science, Dalian Maritime University, Dalian 116026, PR China.
| | - Mingming Xing
- School of Science, Dalian Maritime University, Dalian 116026, PR China.
| | - Hong Wang
- School of Science, Dalian Maritime University, Dalian 116026, PR China.
| | - Yong Peng
- School of Science, Dalian Maritime University, Dalian 116026, PR China.
| | - Yong Tian
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, PR China.
| |
Collapse
|
9
|
Li M, Han H, Song S, Shuang S, Dong C. AIE-based fluorescent boronate probe and its application in peroxynitrite imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120044. [PMID: 34118522 DOI: 10.1016/j.saa.2021.120044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/12/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Fluorescent probes have contributed greatly to our understanding of the biological role of peroxynitrite (ONOO-). The ONOO- fluorescence probe characterized by the arlyboronate received a moderate opening fluorescence response, and the borate-masked probe significantly increased the sensitivity of ONOO-. Thus, two simple fluorescent probes (ADB and ANB) with the recognition receptor of phenyl boronate moiety were constructed for the detection of ONOO-. The change of emission spectrum was affected differently by the electron donating (or withdrawing) of the substituents. ANB was shown to have a low sensitivity and quantum yield towards ONOO- in aqueous solution, whereas ADB with aggregation-induced emission (AIE) process exhibited not only good sensitivity for ONOO- with a detection limit of 75 nM, but also ADB could be used to quantitative detecting ONOO- in response to concentrations of ONOO- within 20 s. Importantly, ADB had good performance for the detection of exogenous ONOO- in the RAW 264.7 cells.
Collapse
Affiliation(s)
- Minglu Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Hui Han
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Shengmei Song
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
10
|
Wang L, Hou X, Fang H, Yang X. Boronate-Based Fluorescent Probes as a Prominent Tool for H2O2 Sensing and Recognition. Curr Med Chem 2021; 29:2476-2489. [PMID: 34473614 DOI: 10.2174/0929867328666210902101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022]
Abstract
Given the crucial association of hydrogen peroxide with a wide-range of human diseases, this compound has currently earned the reputation of being popular biomolecular target. Although various of analytical methods have attracted our attention, fluorescent probes have been used as prominent tools to determine H2O2 to reflect the physiological and pathological conditions of biological systems, As the sensitive responsive portion of these probes, Boronate ester and boronic acid groups are vital reporter as the sensitive responsive part for H2O2 recognition. In this review, we summarized boronate ester/boronic acid group-based fluorescent probes for H2O2 reported from 2012 to 2020 and generally classify the fluorophores into six categories to exhaustively elaborate the design strategy and comprehensive systematic performance. We hope that this review will inspire the exploration of new fluorescent probes based on boronate ester/boronic acid groups for detection of H2O2 and other relevant analytes.
Collapse
Affiliation(s)
- Ling Wang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, China
| | - Xuben Hou
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, China
| | - Hao Fang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, China
| | - Xinying Yang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44, West Culture Road, 250012 Jinan, Shandong, China
| |
Collapse
|
11
|
Yang G, Wang G, Chen K, Yang D. Sensing of fluoride anion based on desilylation and intramolecular charge transfer of 2‐[2‐(tert‐butyl‐diphenyl‐silanyloxy)‐phenyl]‐4,5‐diphenyl‐1H‐imidazole. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Guang Yang
- Basic Teaching Department Jiaozuo University Jiaozuo China
| | - Gang Wang
- Basic Teaching Department Jiaozuo University Jiaozuo China
| | - Kaifeng Chen
- Basic Teaching Department Jiaozuo University Jiaozuo China
| | - Dapeng Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| |
Collapse
|
12
|
Dong L, Fu M, Liu L, Han HH, Zang Y, Chen GR, Li J, He XP, Vidal S. Supramolecular Assembly of TPE-Based Glycoclusters with Dicyanomethylene-4H-pyran (DM) Fluorescent Probes Improve Their Properties for Peroxynitrite Sensing and Cell Imaging. Chemistry 2020; 26:14445-14452. [PMID: 32864796 DOI: 10.1002/chem.202002772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 11/11/2022]
Abstract
Two red-emitting dicyanomethylene-4H-pyran (DM) based fluorescent probes were designed and used for peroxynitrite (ONOO- ) detection. Nevertheless, the aggregation-caused quenching effect diminished the fluorescence and restricted their further applications. To overcome this problem, tetraphenylethylene (TPE) based glycoclusters were used to self-assemble with these DM probes to obtain supramolecular water-soluble glyco-dots. This self-assembly strategy enhanced the fluorescence intensity, leading to an enhanced selectivity and activity of the resulting glyco-dot comparing to DM probes alone in PBS buffer. The glyco-dots also exhibited better results during fluorescence sensing of intracellular ONOO- than the probes alone, thereby offering scope for the development of other similar supramolecular glyco-systems for chemical biological studies.
Collapse
Affiliation(s)
- Lei Dong
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China.,Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2-Glycochimie, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, 1, Rue Victor Grignard, 69622, Villeurbanne, France
| | - Mengqi Fu
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| | - Lifang Liu
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189, Guo Shoujing Rd., Shanghai, 201203, P. R. China
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189, Guo Shoujing Rd., Shanghai, 201203, P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research, Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2-Glycochimie, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, 1, Rue Victor Grignard, 69622, Villeurbanne, France
| |
Collapse
|
13
|
Sikora A, Zielonka J, Dębowska K, Michalski R, Smulik-Izydorczyk R, Pięta J, Podsiadły R, Artelska A, Pierzchała K, Kalyanaraman B. Boronate-Based Probes for Biological Oxidants: A Novel Class of Molecular Tools for Redox Biology. Front Chem 2020; 8:580899. [PMID: 33102447 PMCID: PMC7545953 DOI: 10.3389/fchem.2020.580899] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/12/2020] [Indexed: 01/21/2023] Open
Abstract
Boronate-based molecular probes are emerging as one of the most effective tools for detection and quantitation of peroxynitrite and hydroperoxides. This review discusses the chemical reactivity of boronate compounds in the context of their use for detection of biological oxidants, and presents examples of the practical use of those probes in selected chemical, enzymatic, and biological systems. The particular reactivity of boronates toward nucleophilic oxidants makes them a distinct class of probes for redox biology studies. We focus on the recent progress in the design and application of boronate-based probes in redox studies and perspectives for further developments.
Collapse
Affiliation(s)
- Adam Sikora
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Karolina Dębowska
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Michalski
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Renata Smulik-Izydorczyk
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jakub Pięta
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Podsiadły
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | - Angelika Artelska
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Karolina Pierzchała
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
14
|
Abstract
Peroxynitrite (PNT) is a highly reactive oxidant that plays a key role in the destruction of foreign pathogens by specific phagocytic immune cells such as macrophages. However, when its production is dysregulated, this oxidant can contribute to cardiovascular disease, neurological diseases, and cancer. To facilitate the detection of PNT in living cells, we designed and synthesized a fluorescent sensor termed PS3 that accumulates in membranes of the endoplasmic reticulum (ER). This subcellular targeting enhances the proximity of PS3 to the phagosome of macrophages where PNT is generated. When PS3-treated macrophages are stimulated with 10 µm opsonized tentagel microspheres, antibody-dependent cellular phagocytosis (ADCP) of these particles results in production of endogenous PNT, oxidative cleavage of the fluorescence-quenching phenolic side chain of PS3, and increased fluorescence that can be detected by confocal laser scanning microscopy, flow cytometry, and other assays. We describe methods for the synthesis of PS3 and evaluation of its photophysical properties, selectivity, and reactivity. We further report differential production of PNT during ADCP by the phagocytic cell lines RAW 264.7, J774A.1, and THP-1, as detected by confocal microscopy and changes in fluorescence intensity on 96-well plates. This approach may be useful for identification of modulators of PNT and related studies of ADCP.
Collapse
|
15
|
Wang G, Wang Y, Wang C, Huang C, Jia N. A new long-wavelength fluorescent probe for tracking peroxynitrite in live cells and inflammatory sites of zebrafish. Analyst 2020; 145:828-835. [DOI: 10.1039/c9an01934k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Design of a long-wavelength fluorescent probe for tracking peroxynitrite in live cells and inflammatory sites of zebrafish.
Collapse
Affiliation(s)
- Guanyang Wang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
| | - Yang Wang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
| | - Chengcheng Wang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
| | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
| | - Nengqin Jia
- The Education Ministry Key Laboratory of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
| |
Collapse
|
16
|
Li Z, Liu C, Yu C, Chen Y, Jia P, Zhu H, Zhang X, Yu Y, Zhu B, Sheng W. A highly selective and sensitive red-emitting fluorescent probe for visualization of endogenous peroxynitrite in living cells and zebrafish. Analyst 2019; 144:3442-3449. [PMID: 31020958 DOI: 10.1039/c9an00347a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Peroxynitrite (ONOO-) has been proven to participate in various physiological and pathological processes, and may also be a contributing factor in many diseases. In view of this, there is a need to develop detection tools for unambiguously tracking a small amount of endogenous ONOO- to reveal its exact mechanisms. In this paper, a colorimetric and red-emitting fluorescent probe Red-PN, based on a rhodamine-type fluorophore and hydrazide reactive site is described. The probe Red-PN possesses the advantages of rapid response (within 5 s), visual color change (from colorless to pink), preeminent sensitivity (detection limit = 4.3 nM) and selectivity. Because of these outstanding performances, it was possible to accurately detect endogenous ONOO-. It was encouraging that the probe Red-PN could be used effectively for tracking the relatively low levels of endogenous and exogenous ONOO- in living cells and zebrafish. Thus, it is envisioned that the probe Red-PN would have promising prospects in applications for imaging ONOO- in a variety of biological settings.
Collapse
Affiliation(s)
- Zilu Li
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Liu C, Zhang X, Li Z, Chen Y, Zhuang Z, Jia P, Zhu H, Yu Y, Zhu B, Sheng W. Novel Dimethylhydrazine-Derived Spirolactam Fluorescent Chemodosimeter for Tracing Basal Peroxynitrite in Live Cells and Zebrafish. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6407-6413. [PMID: 31083940 DOI: 10.1021/acs.jafc.9b01298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The precise cellular function of peroxynitrite (ONOO-) in biosystems remains elusive, primarily owing to being short of ultrasensitive techniques for monitoring its intracellular distribution. In this work, a novel rhodamine B cyclic 1,2-dimethylhydrazine fluorescent chemodosimeter RDMH-PN for highly specific and ultrasensitive monitoring of basal ONOO- in biosystems was rationally designed. The fluorescence titration experiments demonstrated that RDMH-PN was capable of quantitatively detecting 0-100 nM ONOO- (limit of detection = 0.68 nM). In addition, RDMH-PN has outstanding performances of ultrafast measurement, naked-eye detection, and preeminent selectivity toward ONOO- to accurately detect intracellular basal ONOO-. Finally, it has been confirmed that RDMH-PN could not only map the intracellular basal ONOO- level by inhibition tests but also trace the fluctuations of endogenous and exogenous ONOO- levels with diverse stimulations in live cells and zebrafish.
Collapse
Affiliation(s)
- Caiyun Liu
- School of Water Conservancy and Environment , University of Jinan , Jinan , Shandong 250022 , People's Republic of China
| | - Xue Zhang
- School of Water Conservancy and Environment , University of Jinan , Jinan , Shandong 250022 , People's Republic of China
| | - Zilu Li
- School of Water Conservancy and Environment , University of Jinan , Jinan , Shandong 250022 , People's Republic of China
| | - Yanan Chen
- School of Water Conservancy and Environment , University of Jinan , Jinan , Shandong 250022 , People's Republic of China
| | - Zihan Zhuang
- School of Water Conservancy and Environment , University of Jinan , Jinan , Shandong 250022 , People's Republic of China
| | - Pan Jia
- School of Water Conservancy and Environment , University of Jinan , Jinan , Shandong 250022 , People's Republic of China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment , University of Jinan , Jinan , Shandong 250022 , People's Republic of China
| | - Yamin Yu
- School of Water Conservancy and Environment , University of Jinan , Jinan , Shandong 250022 , People's Republic of China
| | - Baocun Zhu
- School of Water Conservancy and Environment , University of Jinan , Jinan , Shandong 250022 , People's Republic of China
| | - Wenlong Sheng
- Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , Shandong 250103 , People's Republic of China
| |
Collapse
|
18
|
Yang D, Zhao Z, Jia M, Song X, Zhang Q, Zhang T. The investigation of proton transfer and fluorescence‐sensing mechanisms of [2‐(2‐hydroxy‐phenyl)‐1H‐benzoimidazol‐5‐yl]‐phenyl‐methanone. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dapeng Yang
- College of Physics and ElectronicsNorth China University of Water Resources and Electric Power Zhengzhou P. R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Zhongjian Zhao
- Office of Teaching AffairsNorth China University of Water Resources and Electric Power Zhengzhou P. R. China
| | - Min Jia
- College of Physics and ElectronicsNorth China University of Water Resources and Electric Power Zhengzhou P. R. China
| | - Xiaoyan Song
- College of Physics and ElectronicsNorth China University of Water Resources and Electric Power Zhengzhou P. R. China
| | - Qiaoli Zhang
- College of Physics and ElectronicsNorth China University of Water Resources and Electric Power Zhengzhou P. R. China
| | - Tianjie Zhang
- College of Physics and ElectronicsNorth China University of Water Resources and Electric Power Zhengzhou P. R. China
| |
Collapse
|
19
|
Abstract
SIGNIFICANCE Cellular reactive oxygen species (ROS) mediate redox signaling cascades that are critical to numerous physiological and pathological processes. Analytical methods to monitor cellular ROS levels and proteomic platforms to identify oxidative post-translational modifications (PTMs) of proteins are critical to understanding the triggers and consequences of redox signaling. Recent Advances: The prevalence and significance of redox signaling has recently been illuminated through the use of chemical probes that allow for sensitive detection of cellular ROS levels and proteomic dissection of oxidative PTMs directly in living cells. CRITICAL ISSUES In this review, we provide a comprehensive overview of chemical probes that are available for monitoring ROS and oxidative PTMs, and we highlight the advantages and limitations of these methods. FUTURE DIRECTIONS Despite significant advances in chemical probes, the low levels of cellular ROS and low stoichiometry of oxidative PTMs present challenges for accurately measuring the extent and dynamics of ROS generation and redox signaling. Further improvements in sensitivity and ability to spatially and temporally control readouts are essential to fully illuminate cellular redox signaling.
Collapse
Affiliation(s)
- Masahiro Abo
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts
| | | |
Collapse
|
20
|
Wang Z, Wu L, Wang Y, Zhang M, Zhao Z, Liu C, Duan Q, Jia P, Zhu B. A highly selective and ultrasensitive ratiometric fluorescent probe for peroxynitrite and its two-photon bioimaging applications. Anal Chim Acta 2019; 1049:219-225. [DOI: 10.1016/j.aca.2018.05.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/30/2022]
|
21
|
Prolo C, Rios N, Piacenza L, Álvarez MN, Radi R. Fluorescence and chemiluminescence approaches for peroxynitrite detection. Free Radic Biol Med 2018; 128:59-68. [PMID: 29454880 DOI: 10.1016/j.freeradbiomed.2018.02.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/07/2018] [Accepted: 02/12/2018] [Indexed: 12/23/2022]
Abstract
In the last two decades, there has been a significant advance in understanding the biochemistry of peroxynitrite, an endogenously-produced oxidant and nucleophile. Its relevance as a mediator in several pathologic states and the aging process together with its transient character and low steady-state concentration, motivated the development of a variety of techniques for its unambiguous detection and estimation. Among these, fluorescence and chemiluminescence approaches have represented important tools with enhanced sensitivity but usual limited specificity. In this review, we analyze selected examples of molecular probes that permit the detection of peroxynitrite by fluorescence and chemiluminescence, disclosing their mechanism of reaction with either peroxynitrite or peroxynitrite-derived radicals. Indeed, probes have been divided into 1) redox probes that yield products by a free radical mechanism, and 2) electrophilic probes that evolve to products secondary to the nucleophilic attack by peroxynitrite. Overall, boronate-based compounds are emerging as preferred probes for the sensitive and specific detection and quantitation. Moreover, novel strategies involving genetically-modified fluorescent proteins with the incorporation of unnatural amino acids have been recently described as peroxynitrite sensors. This review analyzes the most commonly used fluorescence and chemiluminescence approaches for peroxynitrite detection and provides some guidelines for appropriate experimental design and data interpretation, including how to estimate peroxynitrite formation rates in cells.
Collapse
Affiliation(s)
- Carolina Prolo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Natalia Rios
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucia Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - María Noel Álvarez
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
22
|
Zielonka J, Kalyanaraman B. Small-molecule luminescent probes for the detection of cellular oxidizing and nitrating species. Free Radic Biol Med 2018; 128:3-22. [PMID: 29567392 PMCID: PMC6146080 DOI: 10.1016/j.freeradbiomed.2018.03.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 01/24/2023]
Abstract
Reactive oxygen species (ROS) have been implicated in both pathogenic cellular damage events and physiological cellular redox signaling and regulation. To unravel the biological role of ROS, it is very important to be able to detect and identify the species involved. In this review, we introduce the reader to the methods of detection of ROS using luminescent (fluorescent, chemiluminescent, and bioluminescent) probes and discuss typical limitations of those probes. We review the most widely used probes, state-of-the-art assays, and the new, promising approaches for rigorous detection and identification of superoxide radical anion, hydrogen peroxide, and peroxynitrite. The combination of real-time monitoring of the dynamics of ROS in cells and the identification of the specific products formed from the probes will reveal the role of specific types of ROS in cellular function and dysfunction. Understanding the molecular mechanisms involving ROS may help with the development of new therapeutics for several diseases involving dysregulated cellular redox status.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
23
|
Pak YL, Park SJ, Song G, Yim Y, Kang H, Kim HM, Bouffard J, Yoon J. Endoplasmic Reticulum-Targeted Ratiometric N-Heterocyclic Carbene Borane Probe for Two-Photon Microscopic Imaging of Hypochlorous Acid. Anal Chem 2018; 90:12937-12943. [DOI: 10.1021/acs.analchem.8b03565] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yen Leng Pak
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | | | | | - Yubin Yim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | | | | | - Jean Bouffard
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
24
|
Jiang X, Wang L, Carroll SL, Chen J, Wang MC, Wang J. Challenges and Opportunities for Small-Molecule Fluorescent Probes in Redox Biology Applications. Antioxid Redox Signal 2018; 29:518-540. [PMID: 29320869 PMCID: PMC6056262 DOI: 10.1089/ars.2017.7491] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/07/2018] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE The concentrations of reactive oxygen/nitrogen species (ROS/RNS) are critical to various biochemical processes. Small-molecule fluorescent probes have been widely used to detect and/or quantify ROS/RNS in many redox biology studies and serve as an important complementary to protein-based sensors with unique applications. Recent Advances: New sensing reactions have emerged in probe development, allowing more selective and quantitative detection of ROS/RNS, especially in live cells. Improvements have been made in sensing reactions, fluorophores, and bioavailability of probe molecules. CRITICAL ISSUES In this review, we will not only summarize redox-related small-molecule fluorescent probes but also lay out the challenges of designing probes to help redox biologists independently evaluate the quality of reported small-molecule fluorescent probes, especially in the chemistry literature. We specifically highlight the advantages of reversibility in sensing reactions and its applications in ratiometric probe design for quantitative measurements in living cells. In addition, we compare the advantages and disadvantages of small-molecule probes and protein-based probes. FUTURE DIRECTIONS The low physiological relevant concentrations of most ROS/RNS call for new sensing reactions with better selectivity, kinetics, and reversibility; fluorophores with high quantum yield, wide wavelength coverage, and Stokes shifts; and structural design with good aqueous solubility, membrane permeability, low protein interference, and organelle specificity. Antioxid. Redox Signal. 29, 518-540.
Collapse
Affiliation(s)
- Xiqian Jiang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas
| | - Lingfei Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas
| | - Shaina L. Carroll
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas
| | - Jianwei Chen
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas
| | - Meng C. Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
25
|
Cheng P, Zhang J, Huang J, Miao Q, Xu C, Pu K. Near-infrared fluorescence probes to detect reactive oxygen species for keloid diagnosis. Chem Sci 2018; 9:6340-6347. [PMID: 30310562 PMCID: PMC6115726 DOI: 10.1039/c8sc01865k] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/16/2018] [Indexed: 12/19/2022] Open
Abstract
Development of molecular probes for the detection of reactive oxygen and nitrogen species (RONS) is important for the pathology and diagnosis of diseases. Although an abnormally high RONS level has been identified in keloids - a benign dermal tumour developed after lesion, the ability of employing RONS probes for keloid detection has not yet been exploited. Herein, we report two near-infrared (NIR) fluorescent probes (CyTF and CyBA) that can specifically distinguish keloid fibroblasts from normal dermal fibroblasts. Both CyTF and CyBA show a 15-fold NIR fluorescence enhancement at 717 nm upon reaction with RONS. However, because CyTF has higher specificity towards ONOO- than CyBA, CyTF can detect stimulated fibroblasts in a more sensitive way, showing 3.76 and 2.26-fold fluorescence increments in TGF-β1 stimulated dermal fibroblasts and keloid fibroblasts, respectively. Furthermore, CyTF permits specific detection of implanted keloid fibroblasts in a xenograft live mouse model. Our work thus developed a new optical imaging approach that has the potential for early diagnosis and drug screening of keloids.
Collapse
Affiliation(s)
- Penghui Cheng
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 637457 Singapore .
| | - Jianjian Zhang
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 637457 Singapore .
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education , College of Chemistry and Materials Science , Northwest University , Xi'an , Shaanxi 710127 , People's Republic of China
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 637457 Singapore .
| | - Qingqing Miao
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 637457 Singapore .
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 637457 Singapore .
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 637457 Singapore .
| |
Collapse
|
26
|
Lee D, Lim CS, Ko G, Kim D, Cho MK, Nam SJ, Kim HM, Yoon J. A Two-Photon Fluorescent Probe for Imaging Endogenous ONOO - near NMDA Receptors in Neuronal Cells and Hippocampal Tissues. Anal Chem 2018; 90:9347-9352. [PMID: 29968465 DOI: 10.1021/acs.analchem.8b01960] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this study, we developed a two-photon fluorescent probe for detection of peroxynitrite (ONOO-) near the N-methyl-d-aspartate (NMDA) receptor. This naphthalimide-based probe contains a boronic acid reactive group and an ifenprodil-like tail, which serves as an NMDA receptor targeting unit. The probe displays high sensitivity and selectivity, along with a fast response time in aqueous solution. More importantly, the probe can be employed along with two-photon fluorescence microscopy to detect endogenous ONOO- near NMDA receptors in neuronal cells as well as in hippocampal tissues. The results suggest that the probe has the potential of serving as a useful imaging tool for studying ONOO- related diseases in the nervous system.
Collapse
Affiliation(s)
- Dayoung Lee
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 120-750 , Korea
| | - Chang Su Lim
- Department of Energy Systems Research , Ajou University , Suwon 443-749 , Korea
| | - Gyeongju Ko
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 120-750 , Korea
| | - Dayoung Kim
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 120-750 , Korea
| | - Myoung Ki Cho
- Department of Energy Systems Research , Ajou University , Suwon 443-749 , Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 120-750 , Korea
| | - Hwan Myung Kim
- Department of Energy Systems Research , Ajou University , Suwon 443-749 , Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 120-750 , Korea
| |
Collapse
|
27
|
Guo Y, Lu G, Zhuo J, Wang J, Li X, Zhang Z. A visible-near-infrared fluorescent probe for peroxynitrite with large pseudo-Stokes and emission shift via through-bond energy and charge transfers controlled by energy matching. J Mater Chem B 2018; 6:2489-2496. [PMID: 32254466 DOI: 10.1039/c8tb00452h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We reported a visible-near-infrared fluorescent probe for peroxynitrite detection with large pseudo-Stokes and emission shifts, based on through-bond energy transfer (TBET) in combination with intramolecular charge transfer (ICT). Pyrene was chosen as a fluorophore (acceptor), which has monomer/excimer fluorescence characteristics. A conjugated 1,2-dimethylenehydrazine structure was a linker and phenyl boronate was selected as a reaction site (donor) to design the probe (Py-PhB) using the chemical transformation from boronate to phenol, which results in the increase of the energy of the donor to match the energy of the acceptor and simultaneously achieves TBET and ICT between the donor (phenolate) and the acceptor (pyrene), leading to a fluorescence 'OFF-ON' in a red-shifted region and a large emission shift. The results show that the probe exhibits high selectivity to ONOO- with a detection limit of 3.54 μM. Favorable ICT from phenolate to pyrene makes the probe possess a large monomer emission shift (183 nm), red-shifted to organe-red light (598 nm). TBET ensures the probe with a large pseudo-Stokes shift of 244 nm. Furthermore, its excimer emits a near-infrared light (720 nm), which is extremely beneficial for bioimaging. In short, this probe offers a novel design strategy for designing the TBET fluorescent sensors emitting red or NIR light with large pseudo-Stokes and emission shifts.
Collapse
Affiliation(s)
- Yuxin Guo
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, Liaoning 114051, P. R. China.
| | | | | | | | | | | |
Collapse
|
28
|
Li H, Ma H. New progress in spectroscopic probes for reactive oxygen species. JOURNAL OF ANALYSIS AND TESTING 2018. [DOI: 10.1007/s41664-018-0049-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
29
|
Pak YL, Park SJ, Wu D, Cheon B, Kim HM, Bouffard J, Yoon J. N-Heterocyclic Carbene Boranes as Reactive Oxygen Species-Responsive Materials: Application to the Two-Photon Imaging of Hypochlorous Acid in Living Cells and Tissues. Angew Chem Int Ed Engl 2018; 57:1567-1571. [DOI: 10.1002/anie.201711188] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/08/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Yen Leng Pak
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - Sang Jun Park
- Department of Chemistry and Energy Systems Research; Ajou University; Suwon 443-749 Korea
| | - Di Wu
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - BoHyun Cheon
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - Hwan Myung Kim
- Department of Chemistry and Energy Systems Research; Ajou University; Suwon 443-749 Korea
| | - Jean Bouffard
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| |
Collapse
|
30
|
Pak YL, Park SJ, Wu D, Cheon B, Kim HM, Bouffard J, Yoon J. N-Heterocyclic Carbene Boranes as Reactive Oxygen Species-Responsive Materials: Application to the Two-Photon Imaging of Hypochlorous Acid in Living Cells and Tissues. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711188] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yen Leng Pak
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - Sang Jun Park
- Department of Chemistry and Energy Systems Research; Ajou University; Suwon 443-749 Korea
| | - Di Wu
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - BoHyun Cheon
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - Hwan Myung Kim
- Department of Chemistry and Energy Systems Research; Ajou University; Suwon 443-749 Korea
| | - Jean Bouffard
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science (BK 21 Plus); Ewha Womans University; Seoul 03760 Korea
| |
Collapse
|
31
|
Li GY, Han KL. The sensing mechanism studies of the fluorescent probes with electronically excited state calculations. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1351] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guang-Yue Li
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian China
- College of Chemical Engineering; North China University of Science and Technology; Tangshan China
| | - Ke-Li Han
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian China
| |
Collapse
|
32
|
Wu D, Ryu JC, Chung YW, Lee D, Ryu JH, Yoon JH, Yoon J. A Far-Red-Emitting Fluorescence Probe for Sensitive and Selective Detection of Peroxynitrite in Live Cells and Tissues. Anal Chem 2017; 89:10924-10931. [DOI: 10.1021/acs.analchem.7b02707] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Di Wu
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | | | | | - Dayoung Lee
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | | | | | - Juyoung Yoon
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| |
Collapse
|
33
|
Reaction-based small-molecule fluorescent probes for dynamic detection of ROS and transient redox changes in living cells and small animals. J Mol Cell Cardiol 2017; 110:96-108. [DOI: 10.1016/j.yjmcc.2017.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/15/2017] [Accepted: 07/20/2017] [Indexed: 01/28/2023]
|
34
|
Palanisamy S, Wu PY, Wu SC, Chen YJ, Tzou SC, Wang CH, Chen CY, Wang YM. In vitro and in vivo imaging of peroxynitrite by a ratiometric boronate-based fluorescent probe. Biosens Bioelectron 2017; 91:849-856. [DOI: 10.1016/j.bios.2017.01.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/23/2016] [Accepted: 01/13/2017] [Indexed: 01/01/2023]
|
35
|
Chen Q, Xing P, Xu Y, Li H, Sun S. A Selective Fluorescent Sensor for Fast Detection of Hydrogen Sulfide in Red Wine. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Qiwen Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology; College of Science, Northwest A&F University, Xinong Road 22; Yangling Shaanxi 712100 China
| | - Panfei Xing
- Shaanxi Key Laboratory of Natural Products & Chemical Biology; College of Science, Northwest A&F University, Xinong Road 22; Yangling Shaanxi 712100 China
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology; College of Science, Northwest A&F University, Xinong Road 22; Yangling Shaanxi 712100 China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology; College of Science, Northwest A&F University, Xinong Road 22; Yangling Shaanxi 712100 China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology; College of Science, Northwest A&F University, Xinong Road 22; Yangling Shaanxi 712100 China
| |
Collapse
|
36
|
Li KB, Dong L, Zhang S, Shi W, Jia WP, Han DM. Fluorogenic boronate-based probe-lactulose complex for full-aqueous analysis of peroxynitrite. Talanta 2017; 165:593-597. [PMID: 28153303 DOI: 10.1016/j.talanta.2017.01.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 11/20/2022]
Abstract
A selective fluorogenic boronate-based probe-lactulose complex was evaluated for the rapid analysis of peroxynitrite (ONOO-) based on a reaction-based indicator displacement assay (RIA). The probe was synthesised by a simple nucleophilic substitution reaction between a boronic acid moiety and a well known laser dye, DCM. Fluorescence analyses showed that the probe had an off-on response to lactulose, forming a fluorogenic probe-lactulose complex. The subsequent addition of ONOO- selectively quenched the fluorescence of the complex over other Reactive Oxygen/ Nitrogen Species (ROS/RNS) tested. The complex can be applied for the rapid determination of ONOO- in full aqueous solution with good linear range, and has also proven suitable for monitoring ONOO- in living cells and real water samples.
Collapse
Affiliation(s)
- Kai-Bin Li
- Department of Chemistry, Taizhou University, Jiaojiang 318000, PR China.
| | - Lei Dong
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires,, Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Siqi Zhang
- Department of Chemistry, Taizhou University, Jiaojiang 318000, PR China
| | - Wei Shi
- Department of Chemistry, Taizhou University, Jiaojiang 318000, PR China
| | - Wen-Ping Jia
- Department of Chemistry, Taizhou University, Jiaojiang 318000, PR China
| | - De-Man Han
- Department of Chemistry, Taizhou University, Jiaojiang 318000, PR China.
| |
Collapse
|
37
|
Li X, Hou J, Peng C, Chen L, Liu W, Liu Y. A 1,8-naphthalimide-based fluorescent probe for selective and sensitive detection of peroxynitrite and its applications in living cell imaging. RSC Adv 2017. [DOI: 10.1039/c7ra04317a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
An “off–on” fluorescent probe for sensitive and selective detection of peroxynitrite was synthesized and showed good photostability and low cytotoxicity.
Collapse
Affiliation(s)
- Xiulan Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Jingli Hou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Chao Peng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Li Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Wenbo Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| |
Collapse
|
38
|
Wang J, Guo X, Jia L. A simple method for the determination of benzoic acid based on room temperature phosphorescence of 1-bromopyrene/γ-cyclodextrin complex in water. Talanta 2017; 162:423-427. [DOI: 10.1016/j.talanta.2016.10.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 11/30/2022]
|
39
|
Mulay SV, Kim Y, Lee KJ, Yudhistira T, Park HS, Churchill DG. A fluorogenic and red-shifted diphenyl phosphinate-based probe for selective peroxynitrite detection as demonstrated in fixed cells. NEW J CHEM 2017. [DOI: 10.1039/c7nj02530k] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new dicyanomethylene-4H-pyran-based fluorescent probe has been designed, synthesized and characterized. It shows selective “TURN-ON” fluorescence response upon reaction with ONOO−.
Collapse
Affiliation(s)
- Sandip V. Mulay
- Center for Catalytic Hydrocarbon Functionalizations
- Institute for Basic Science (IBS)
- Daejeon
- Republic of Korea
- Molecular Logic Gate Laboratory
| | - Youngsam Kim
- Center for Catalytic Hydrocarbon Functionalizations
- Institute for Basic Science (IBS)
- Daejeon
- Republic of Korea
- Molecular Logic Gate Laboratory
| | - Kyung Jin Lee
- Molecular Synthetic Biology Laboratory
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
| | - Tesla Yudhistira
- Molecular Logic Gate Laboratory
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
| | - Hee-Sung Park
- Molecular Synthetic Biology Laboratory
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon
- Republic of Korea
| | - David G. Churchill
- Center for Catalytic Hydrocarbon Functionalizations
- Institute for Basic Science (IBS)
- Daejeon
- Republic of Korea
- Molecular Logic Gate Laboratory
| |
Collapse
|
40
|
Ríos N, Prolo C, Álvarez MN, Piacenza L, Radi R. Peroxynitrite Formation and Detection in Living Cells. Nitric Oxide 2017. [DOI: 10.1016/b978-0-12-804273-1.00021-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Cao J, Fan J, Sun W, Guo Y, Wu H, Peng X. The photoprocess effects of an amino group located at different positions along the polymethine chain in indodicarbocyanine dyes. RSC Adv 2017. [DOI: 10.1039/c7ra04556e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The amino group is a-ICT in the even position but is the ICT in the odd position.
Collapse
Affiliation(s)
- Jianfang Cao
- School of Chemical and Environmental Engineering
- Liaoning University of Technology
- Jinzhou 121001
- China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Yu Guo
- School of Chemical and Environmental Engineering
- Liaoning University of Technology
- Jinzhou 121001
- China
| | - Hongmei Wu
- School of Chemical and Environmental Engineering
- Liaoning University of Technology
- Jinzhou 121001
- China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
42
|
Wang HS. Development of fluorescent and luminescent probes for reactive oxygen species. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.09.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
Peroxynitrite Sensor Based on a Screen Printed Carbon Electrode Modified with a Poly(2,6-dihydroxynaphthalene) Film. SENSORS 2016; 16:s16111975. [PMID: 27886072 PMCID: PMC5134633 DOI: 10.3390/s16111975] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 01/29/2023]
Abstract
For the first time the electropolymerization of 2,6-dihydroxynaphthalene (2,6-DHN) on a screen printed carbon electrode (SPCE) was investigated and evaluated for peroxynitrite (PON) detection. Cyclic voltammetry was used to electrodeposit the poly(2,6-DHN) on the carbon electrode surface. The surface morphology and structure of poly(2,6-DHN) film were investigated by SEM and FTIR analysis, and the electrochemical features by cyclic voltammetry. The poly(2,6-DHN)/SPCE sensor showed excellent electrocatalytic activity for PON oxidation in alkaline solutions at very low potentials (0-100 mV vs. Ag/AgCl pseudoreference). An amperometric FIA (flow injection analysis) system based on the developed sensor was optimized for PON measurements and a linear concentration range from 2 to 300 μM PON, with a LOD of 0.2 μM, was achieved. The optimized sensor inserted in the FIA system exhibited good sensitivity (4.12 nA·μM-1), selectivity, stability and intra-/inter-electrode reproducibility for PON determination.
Collapse
|
44
|
A new class of fast-response and highly selective fluorescent probes for visualizing peroxynitrite in live cells, subcellular organelles, and kidney tissue of diabetic rats. Biomaterials 2016; 107:33-43. [DOI: 10.1016/j.biomaterials.2016.08.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 11/23/2022]
|
45
|
Carbon nanodots as fluorescent platforms for recognition of fluoride ion via the inner filter effect of simple arylboronic acids. Experimental and theoretical investigations. J Fluor Chem 2016. [DOI: 10.1016/j.jfluchem.2016.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Chu TS, Lü R, Liu BT. Reversibly monitoring oxidation and reduction events in living biological systems: Recent development of redox-responsive reversible NIR biosensors and their applications in in vitro/in vivo fluorescence imaging. Biosens Bioelectron 2016; 86:643-655. [PMID: 27471155 DOI: 10.1016/j.bios.2016.07.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/25/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022]
Abstract
Reactive oxygen species (ROS) and changes in their redox cycles have great therapeutic potential for treating serious redox-related human diseases such as acute and chronic inflammation, diabetes, cancer and neurodegenerative disorders. This article presents a survey of the recently (2011-2016) developed NIR small-molecule biosensors for reversibly monitoring oxidation and reduction events in living cells and small animals through in vitro/in vivo fluorescence imaging. Emission and absorption profile, design strategy and fluorescence sensing mechanism, ROS selectivity and sensitivity, reversibility, ability of subcellular location and cytotoxicity are discussed for the NIR small-molecule biosensors capable of quantitatively, continuously and reversibly detecting transient ROS burst and redox changes at cellular level.
Collapse
Affiliation(s)
- Tian-Shu Chu
- Institute for Computational Sciences and Engineering, Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory and College of Physics, Qingdao University, Qingdao, 266071 China; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 People's Republic of China.
| | - Rui Lü
- Laboratory of Pathogenic Biology, Medical College, Qingdao University, Qingdao, 266071 China
| | - Bai-Tong Liu
- College of Chemical Science and Engineering, Qingdao University, Qingdao, 266071 China; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 People's Republic of China
| |
Collapse
|
47
|
Liao YX, Yang ZX, Li K, Yu XQ. A Highly Selective Ratiometric Fluorescent Probe for Peroxynitrite Detection in Aqueous Media. CHEM LETT 2016. [DOI: 10.1246/cl.160213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ye-Xin Liao
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University
| | - Zhao-Xuan Yang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University
| |
Collapse
|
48
|
Dębowska K, Dębski D, Michałowski B, Dybala-Defratyka A, Wójcik T, Michalski R, Jakubowska M, Selmi A, Smulik R, Piotrowski Ł, Adamus J, Marcinek A, Chlopicki S, Sikora A. Characterization of Fluorescein-Based Monoboronate Probe and Its Application to the Detection of Peroxynitrite in Endothelial Cells Treated with Doxorubicin. Chem Res Toxicol 2016; 29:735-46. [PMID: 27081868 DOI: 10.1021/acs.chemrestox.5b00431] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Boronate probes have emerged recently as a versatile tool for the detection of reactive oxygen and nitrogen species. Here, we present the characterization of a fluorescein-based monoboronate probe, a 4-(pinacol boronate)benzyl derivative of fluorescein methyl ester (FBBE), that proved to be useful to detect peroxynitrite in cell culture experiments. The reactivity of FBBE toward peroxynitrite as well hypochlorite, hydrogen peroxide, and tyrosyl hydroperoxide was determined. Second-order rate constants of the reactions of FBBE with peroxynitrite, HOCl, and H2O2 at pH 7.4 were equal to (2.8 ± 0.2) × 10(5) M(-1) s(-1), (8.6 ± 0.5) × 10(3) M(-1) s(-1), and (0.96 ± 0.03) M(-1) s(-1), respectively. The presence of glutathione completely blocked the oxidation of the probe by HOCl and significantly inhibited its oxidation by H2O2 and tyrosyl hydroperoxide but not by peroxynitrite. The oxidative conversion of the probe was also studied in the systems generating singlet oxygen, superoxide radical anion, and nitric oxide in the presence and absence of glutathione. Spectroscopic characterization of FBBE and its oxidation product has been also performed. The differences in the reactivity pattern were supported by DFT quantum mechanical calculations. Finally, the FBBE probe was used to study the oxidative stress in endothelial cells (Ea.hy926) incubated with doxorubicin, a quinone anthracycline antibiotic. In endothelial cells pretreated with doxorubicin, FBBE was oxidized, and this effect was reversed by PEG-SOD and L-NAME but not by catalase.
Collapse
Affiliation(s)
- Karolina Dębowska
- Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz, Poland
| | - Dawid Dębski
- Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz, Poland
| | - Bartosz Michałowski
- Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz, Poland
| | | | - Tomasz Wójcik
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University , Kraków, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz, Poland
| | - Małgorzata Jakubowska
- Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz, Poland
| | - Anna Selmi
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University , Kraków, Poland
| | - Renata Smulik
- Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz, Poland
| | - Łukasz Piotrowski
- Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz, Poland
| | - Jan Adamus
- Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz, Poland
| | - Andrzej Marcinek
- Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University , Kraków, Poland.,Chair of Pharmacology, Jagiellonian University Medical College , Kraków, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology , Lodz, Poland
| |
Collapse
|
49
|
Xu Z, Xu L. Fluorescent probes for the selective detection of chemical species inside mitochondria. Chem Commun (Camb) 2016; 52:1094-119. [DOI: 10.1039/c5cc09248e] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This feature article systematically summarizes the development of fluorescent probes for the selective detection of chemical species inside mitochondria.
Collapse
Affiliation(s)
- Zheng Xu
- Chongqing Key Laboratory of Environmental Materials and Remediation Technology
- College of Materials and Chemical Engineering
- Chongqing University of Arts and Sciences
- Chongqing
- China
| | - Lin Xu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| |
Collapse
|
50
|
Chen X, Wang F, Hyun JY, Wei T, Qiang J, Ren X, Shin I, Yoon J. Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 2016; 45:2976-3016. [DOI: 10.1039/c6cs00192k] [Citation(s) in RCA: 849] [Impact Index Per Article: 106.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|