1
|
Dryahina K, Polášek M, Jašík J, Sovová K, Španěl P. Ion Chemistry in Dielectric Barrier Discharge Ionization: Recent Advances in Direct Gas Phase Analyses. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39506464 DOI: 10.1002/mas.21914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
Dielectric barrier discharge ionization (DBDI) sources, employing low-temperature plasma, have emerged as sensitive and efficient ionization tools with various atmospheric pressure ionization processes. In this review, we summarize a historical overview of the development of DBDI, highlighting key principles of gas-phase ion chemistry and the mechanisms underlying the ionization processes within the DBDI source. These processes start with the formation of reagent ions or metastable atoms from the discharge gas, which depends on the nature of the gas (helium, nitrogen, air) and on the presence of water vapor or other compounds or dopants. The processes of ionizing the analyte molecules are summarized, including Penning ionization, electron transfer, proton transfer and ligand switching from secondary hydrated hydronium ions. Presently, the DBDI-MS methods face a challenge in the accurate quantification of gaseous analytes, limiting its broader application in biological, environmental, and medical realms where relative quantification using standards is inherently complex for gaseous matrices. Finally, we propose future avenues of research to enhance the analytical capabilities of DBDI-MS.
Collapse
Affiliation(s)
- Kseniya Dryahina
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Miroslav Polášek
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Juraj Jašík
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Kristýna Sovová
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Sharma R, Nath PC, Lodh BK, Mukherjee J, Mahata N, Gopikrishna K, Tiwari ON, Bhunia B. Rapid and sensitive approaches for detecting food fraud: A review on prospects and challenges. Food Chem 2024; 454:139817. [PMID: 38805929 DOI: 10.1016/j.foodchem.2024.139817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Precise and reliable analytical techniques are required to guarantee food quality in light of the expanding concerns regarding food safety and quality. Because traditional procedures are expensive and time-consuming, quick food control techniques are required to ensure product quality. Various analytical techniques are used to identify and detect food fraud, including spectroscopy, chromatography, DNA barcoding, and inotrope ratio mass spectrometry (IRMS). Due to its quick findings, simplicity of use, high throughput, affordability, and non-destructive evaluations of numerous food matrices, NI spectroscopy and hyperspectral imaging are financially preferred in the food business. The applicability of this technology has increased with the development of chemometric techniques and near-infrared spectroscopy-based instruments. The current research also discusses the use of several multivariate analytical techniques in identifying food fraud, such as principal component analysis, partial least squares, cluster analysis, multivariate curve resolutions, and artificial intelligence.
Collapse
Affiliation(s)
- Ramesh Sharma
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India; Department of Food Technology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu-641062, India.
| | - Pinku Chandra Nath
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| | - Bibhab Kumar Lodh
- Department of Chemical Engineering, National Institute of Technology, Agartala-799046, India.
| | - Jayanti Mukherjee
- Department of Pharmaceutical Chemistry, CMR College of Pharmacy, Hyderabad- 501401, Telangana, India.
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur-713209.
| | - Konga Gopikrishna
- SEED Division, Department of Science and Technology, New Delhi, 110016, India.
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| |
Collapse
|
3
|
Bouza M, García-Martínez J, Gilbert-López B, Brandt S, García-Reyes JF, Molina-Díaz A, Franzke J. Dielectric Barrier Discharge Ionization Mechanisms: Polycyclic Aromatic Hydrocarbons as a Case of Study. Anal Chem 2023; 95:854-861. [PMID: 36538370 PMCID: PMC9850405 DOI: 10.1021/acs.analchem.2c03279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Dielectric barrier discharge ionization (DBDI) is a versatile tool for small-molecule mass spectrometry applications, helping cover from polar to low polar molecules. However, the plasma gas-phase interactions are highly complex and have been scarcely investigated. The ionization mechanisms of plasmas have long been assumed to be somewhat similar to atmospheric pressure chemical ionization (APCI). Here, we evaluated the ionization mechanisms of a two-ring DBDI ion source, using different discharge gases to analyze vaporized liquid samples. Polycyclic aromatic hydrocarbons (PAHs) were used as model analytes to assess the mechanisms' dominance: protonation, [M + H]+, or radical ion species formation, [M]·+. In the present work, two different ionization trends were observed for APCI and DBDI during the PAH analysis; the compounds with proton affinities (PA) over 856 kJ/mol were detected as [M + H]+ when APCI was used as ionization source. Meanwhile, independently of the PA, DBDI showed the prevalence of charge exchange reactions. The addition of dopants in the gas-phase region shifted the ionization mechanisms toward charge exchange reactions, facilitating the formation of [M]·+ ion species, showing anisole a significant boost of the PAH radical ion species signals, over nine times for Ar-Prop-DBDI analysis. The presence of high-energy metastable atoms (e.g., HeM) with high ionization potentials (IE = 19.80 eV) did not show boosted PAH abundances or extensive molecule fragmentation. Moreover, other species in the plasma jet region with closer and more appropriate IE, such as N2 B3Πg excited molecules, are likely responsible for PAH Penning ionization.
Collapse
Affiliation(s)
- Marcos Bouza
- Analytical
Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, 23071Jaén, Spain
| | - Julio García-Martínez
- Analytical
Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, 23071Jaén, Spain
| | - Bienvenida Gilbert-López
- Analytical
Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, 23071Jaén, Spain
| | - Sebastian Brandt
- ISAS—Leibniz
Institut für Analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, 44139Dortmund, Germany
| | - Juan F. García-Reyes
- Analytical
Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, 23071Jaén, Spain
| | - Antonio Molina-Díaz
- Analytical
Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, 23071Jaén, Spain
| | - Joachim Franzke
- ISAS—Leibniz
Institut für Analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, 44139Dortmund, Germany
| |
Collapse
|
4
|
Weber M, Wolf JC, Haisch C. Gas Chromatography-Atmospheric Pressure Inlet-Mass Spectrometer Utilizing Plasma-Based Soft Ionization for the Analysis of Saturated, Aliphatic Hydrocarbons. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1707-1715. [PMID: 34170138 DOI: 10.1021/jasms.0c00476] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Soft ionization by a chemical reaction in transfer (SICRIT) is applied to couple gas chromatography (GC) to a high-resolution atmospheric pressure inlet mass spectrometer. These instruments are generally used in combination with liquid chromatography systems (LC-MS). Ionization of alkanes is not possible here with conventional electrospray ionization. Alternatively, separate GC-electron ionization (EI)-MS is employed for the analysis of nonpolar substances like alkanes, however, with the inherent challenge of strong fragmentation. In the case of alkanes, the determination of molecular masses becomes nearly impossible in complex hydrocarbon mixtures because of the wealth of similar fragment ions and the absence of the molecular ion signal. SICRIT, a soft ionization technique based on dielectric barrier discharge (DBDI), produces characteristic oxidized cations from alkanes that can be directly correlated to their molecular mass. Isotope labeling experiments reveal an ionization mechanism via hydride abstraction and reaction with water. Soft ionization can be achieved for iso- and n-alkanes, with very little fragmentation, enabling the determination of their molecular mass. Calibrations for n-alkanes from C10 to C30 were performed exhibiting high linearity, reproducibility, and sensitivity with an average LOD of 69 pg (on column). Measurements of diesel fuel samples are compared to traditional GC-EI-MS. The presented method combines sensitivity and easy handling of a GC-EI-MS with the determination of molecular mass commonly only achieved with field ionization (FI)-MS, while using existing and highly optimized mass spectrometers commonly coupled with LC. Additionally, many other analytes such as (alkylated-) PAHs could be detected simultaneously in the diesel sample.
Collapse
Affiliation(s)
- Markus Weber
- Department of Analytical Chemistry and Water Chemistry, Technical University of Munich, 81377 Munich, Germany
- Plasmion GmbH, 86167 Augsburg, Germany
| | | | - Christoph Haisch
- Department of Analytical Chemistry and Water Chemistry, Technical University of Munich, 81377 Munich, Germany
| |
Collapse
|
5
|
Brecht D, Uteschil F, Schmitz OJ. Development of an inverse low-temperature plasma ionization source for liquid chromatography/mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9071. [PMID: 33625792 DOI: 10.1002/rcm.9071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE An argon inverse low-temperature plasma (iLTP) ionization source for liquid chromatography/tandem mass spectrometry was developed. The iLTP is constructed from simple chromatographic supply materials and is implemented into an atmospheric pressure chemical ionization (APCI) source replacing the APCI discharge needle electrode. The newly developed ion source was coupled to an ultra-high-performance liquid chromatography (UHPLC) system. METHODS The argon iLTP was characterized by optical emission spectroscopy. The soft ionization of selected standards was also demonstrated by direct infusion experiments. In addition to the use of argon as the discharge gas, helium, synthetic air, and oxygen were used, which were tested for their performance using testosterone and vitamin D3 . RESULTS Spectroscopic measurements of the argon plasma were conducted, demonstrating the main emission band of argon metastables with corresponding energies of 11.53 eV and 11.72 eV. Infusion experiments indicate a gentle ionization by iLTP, e.g. caffeine, testosterone, reserpine, vitamin D3 , and 25-hydroxyvitamin D3 , which resulted in the corresponding protonated molecules. The splitless coupling with UHPLC (possible flow rates >1000 μL min-1 ) shows promising results in interday repeatability (n = 10) for the substances with a relative standard deviation of less than 5% and limits of detection for caffeine, testosterone, reserpine, vitamin D3 , and 25-hydroxyvitamin D3 of 10 ng L-1 , 50 ng L-1 , 500 ng L-1 , 5 μg L-1 , and 5 μg L-1 , respectively. CONCLUSIONS The argon iLTP ion source presented in this work shows promising approaches in the field of ionization of small organic molecules. The mechanism related to the discharge gas argon has not been elucidated so far and further investigations are needed. The iLTP ion source shows a very good performance with UHPLC coupling, even at increased flow rates. It could be shown that an argon iLTP can compete with the helium dielectric barrier discharge (DBD) preferred in the literature, making it a more economical choice.
Collapse
Affiliation(s)
- Dominik Brecht
- Department of Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5, Essen, 45141, Germany
| | - Florian Uteschil
- Department of Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5, Essen, 45141, Germany
| | - Oliver J Schmitz
- Department of Applied Analytical Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5, Essen, 45141, Germany
| |
Collapse
|
6
|
Ahmed E, Xiao D, Dumlao MC, Steel CC, Schmidtke LM, Fletcher J, Donald WA. Nanosecond Pulsed Dielectric Barrier Discharge Ionization Mass Spectrometry. Anal Chem 2020; 92:4468-4474. [PMID: 32083845 DOI: 10.1021/acs.analchem.9b05491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dielectric barrier discharge ionization (DBDI) is an emerging technique for ionizing volatile molecules directly from complex mixtures for sensitive detection by mass spectrometry (MS). In conventional DBDI, a high frequency and high voltage waveform with pulse widths of ∼50 μs (and ∼50 μs between pulses) is applied across a dielectric barrier and a gas to generate "low temperature plasma." Although such a source has the advantages of being compact, economical, robust, and sensitive, background ions from the ambient environment can be formed in high abundances, which limits performance. Here, we demonstrate that high voltage pulse widths as narrow as 100 ns with a pulse-to-pulse delay of ∼900 μs can significantly reduce background chemical noise and increase ion signal. Compared to microsecond pulses, ∼800 ns pulses can be used to increase the signal-to-noise and signal-to-background chemical noise ratios in DBDI-MS by up to 172% and 1300% for six analytes, including dimethyl methylphosphonate (DMMP), 3-octanone, and perfluorooctanoic acid. Using nanosecond pulses, the detection limit for DMMP and PFOA in human blood plasma can be lowered by more than a factor of 2 in comparison to microsecond pulses. In "nanopulsed" plasma ionization, the extent of internal energy deposition is as low as or lower than in electrospray ionization and micropulsed plasma ionization based on thermometer ion measurements. Overall, nanosecond high-voltage pulsing can be used to significantly improve the performance of DBDI-MS and potentially other ion sources involving high voltage waveforms.
Collapse
Affiliation(s)
- Ezaz Ahmed
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Dan Xiao
- School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, New South Wales, Australia
| | - Morphy C Dumlao
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia.,School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia.,National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, New South Wales, Australia.,Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Christopher C Steel
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia.,National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Leigh M Schmidtke
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia.,National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, New South Wales, Australia.,Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, South Australia, Australia
| | - John Fletcher
- School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, New South Wales, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Huba AK, Mirabelli MF, Zenobi R. Understanding and Optimizing the Ionization of Polycyclic Aromatic Hydrocarbons in Dielectric Barrier Discharge Sources. Anal Chem 2019; 91:10694-10701. [DOI: 10.1021/acs.analchem.9b02044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Anna Katarina Huba
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Mario F. Mirabelli
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
8
|
Shao B, Li H, Shen J, Wu Y. Nontargeted Detection Methods for Food Safety and Integrity. Annu Rev Food Sci Technol 2019; 10:429-455. [DOI: 10.1146/annurev-food-032818-121233] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nontargeted workflows for chemical hazard analyses are highly desirable in the food safety and integrity fields to ensure human health. Two different analytical strategies, nontargeted metabolomics and chemical database filtering, can be used to screen unknown contaminants in food matrices. Sufficient mass and chromatographic resolutions are necessary for the detection of compounds and subsequent componentization and interpretation of candidate ions. Analytical chemistry–based technologies, including gas chromatography–mass spectrometry (GC-MS), liquid chromatography–mass spectrometry (LC-MS), nuclear magnetic resonance (NMR), and capillary electrophoresis–mass spectrometry (CE-MS), combined with chemometrics analysis are being used to generate molecular formulas of compounds of interest. The construction of a chemical database plays a crucial role in nontargeted detection. This review provides an overview of the current sample preparation, analytical chemistry–based techniques, and data analysis as well as the limitations and challenges of nontargeted detection methods for analyzing complex food matrices. Improvements in sample preparation and analytical platforms may enhance the relevance of food authenticity, quality, and safety.
Collapse
Affiliation(s)
- Bing Shao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hui Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongning Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| |
Collapse
|
9
|
Gilbert-López B, Lara-Ortega FJ, Robles-Molina J, Brandt S, Schütz A, Moreno-González D, García-Reyes JF, Molina-Díaz A, Franzke J. Detection of multiclass explosives and related compounds in soil and water by liquid chromatography-dielectric barrier discharge ionization-mass spectrometry. Anal Bioanal Chem 2019; 411:4785-4796. [DOI: 10.1007/s00216-019-01627-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
|
10
|
Mirabelli MF, Gionfriddo E, Pawliszyn J, Zenobi R. Fast screening of illicit drugs in beverages and biological fluids by direct coupling of thin film microextraction to dielectric barrier discharge ionization-mass spectrometry. Analyst 2019; 144:2788-2796. [DOI: 10.1039/c8an02448k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A direct and fast method for quantification of illicit drugs in beverages and biological fluids was developed, using dielectric barrier discharge ionization in combination with high-resolution MS.
Collapse
Affiliation(s)
- Mario F. Mirabelli
- ETH Zurich
- Department of Chemistry and Applied Biosciences
- 8093 Zurich
- Switzerland
| | | | | | - Renato Zenobi
- ETH Zurich
- Department of Chemistry and Applied Biosciences
- 8093 Zurich
- Switzerland
| |
Collapse
|
11
|
Lara-Ortega FJ, Robles-Molina J, Brandt S, Schütz A, Gilbert-López B, Molina-Díaz A, García-Reyes JF, Franzke J. Use of dielectric barrier discharge ionization to minimize matrix effects and expand coverage in pesticide residue analysis by liquid chromatography-mass spectrometry. Anal Chim Acta 2018; 1020:76-85. [DOI: 10.1016/j.aca.2018.02.077] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 12/31/2022]
|
12
|
Xu S, Zhang Y, Xu L, Bai Y, Liu H. Online coupling techniques in ambient mass spectrometry. Analyst 2018; 141:5913-5921. [PMID: 27704091 DOI: 10.1039/c6an01705c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since ambient mass spectrometry (AMS) has been proven to have low matrix effects and high salt tolerance, great efforts have been made for online coupling of several analytical techniques with AMS. These analytical techniques include gas chromatography (GC), liquid chromatography (LC), capillary electrophoresis (CE), surface plasmon resonance (SPR), and electrochemistry flow cells. Various ambient ionization sources, represented by desorption electrospray ionization (DESI) and direct analysis in real time (DART), have been utilized as interfaces for the online coupling techniques. Herein, we summarized the advances in these online coupling methods. Close attention has been paid to different interface setups for coupling, as well as limits of detection, tolerance to different matrices, and applications of these new coupling techniques.
Collapse
Affiliation(s)
- Shuting Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| | - Yiding Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| | - Linnan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. Chain.
| |
Collapse
|
13
|
LC/MS analysis of vitamin D metabolites by dielectric barrier discharge ionization and a comparison with electrospray ionization and atmospheric pressure chemical ionization. Anal Bioanal Chem 2018; 410:4905-4911. [DOI: 10.1007/s00216-018-1137-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/02/2018] [Accepted: 05/09/2018] [Indexed: 10/16/2022]
|
14
|
Schütz A, Lara-Ortega FJ, Klute FD, Brandt S, Schilling M, Michels A, Veza D, Horvatic V, García-Reyes JF, Franzke J. Soft Argon–Propane Dielectric Barrier Discharge Ionization. Anal Chem 2018; 90:3537-3542. [DOI: 10.1021/acs.analchem.7b05390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander Schütz
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Felipe J. Lara-Ortega
- Analytical Chemistry Research Group, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Felix David Klute
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Sebastian Brandt
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Michael Schilling
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Antje Michels
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Damir Veza
- Department of Physics, Faculty of Science, University of Zagreb, Bijenicka 32, 10000 Zagreb, Croatia
| | | | - Juan F. García-Reyes
- Analytical Chemistry Research Group, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Joachim Franzke
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| |
Collapse
|
15
|
Chen Z, Yang Y, Tao H, Liao L, Li Y, Zhang Z. Direct Analysis in Real-time Mass Spectrometry for Rapid Identification of Traditional Chinese Medicines with Coumarins as Primary Characteristics. PHYTOCHEMICAL ANALYSIS : PCA 2017; 28:137-143. [PMID: 27880856 DOI: 10.1002/pca.2650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
INTRODUCTION The increasing popularity of traditional Chinese medicines (TCMs) necessitates rapid and reliable methods for controlling their quality. Direct analysis in real-time mass spectrometry (DART-MS) represents a novel approach to analysing TCMs. OBJECTIVE To develop a quick and reliable method of identifying TCMs with coumarins as primary characteristics. METHODOLOGY DART-MS coupled with ion trap mass spectrometry was employed to rapidly identify TCMs with coumarins as primary characteristics and to explore the ionisation mechanisms of simple coumarins, furocoumarins and pyranocoumarins in detail. With minimal sample pretreatment, mass spectra of Fraxini Cortex, Angelicae Pubescentis Radix, Peucedani Radix and Psoraleae Fructus samples were obtained within seconds. The operating parameters of the DART ion source (e.g. grid electrode voltage and ionisation gas temperature) were carefully investigated to obtain high-quality mass spectra. The mass spectra of samples and DART-MS/MS spectra of marker compounds were used to identify sample materials. RESULTS Successful authentication was achieved by analysing the same materials of different origins. Some simple coumarins, furocoumarins and pyranocoumarins can be directly detected by DART-MS as marker compounds. CONCLUSION Our results demonstrated that DART-MS can provide a rapid and reliable method for the identification of TCMs containing different configurations of coumarins; the method may also be applicable to other plants. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zhiyong Chen
- Shaanxi Provincial Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, PR China
- The MOE Key Laboratory for Standardisation of Chinese Medicines and the Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, PR China
| | - Yuanyuan Yang
- The MOE Key Laboratory for Standardisation of Chinese Medicines and the Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, PR China
| | - Hongxun Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, PR China
| | - Liping Liao
- The MOE Key Laboratory for Standardisation of Chinese Medicines and the Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, PR China
- Shanghai R&D Centre for Standardisation of Chinese Medicines, Shanghai, 201210, PR China
| | - Ye Li
- Shaanxi Provincial Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, 710003, PR China
| | - Zijia Zhang
- The MOE Key Laboratory for Standardisation of Chinese Medicines and the Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, PR China
- Shanghai R&D Centre for Standardisation of Chinese Medicines, Shanghai, 201210, PR China
| |
Collapse
|
16
|
Guo T, Yong W, Jin Y, Zhang L, Liu J, Wang S, Chen Q, Dong Y, Su H, Tan T. Applications of DART-MS for food quality and safety assurance in food supply chain. MASS SPECTROMETRY REVIEWS 2017; 36:161-187. [PMID: 25975720 DOI: 10.1002/mas.21466] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 05/21/2023]
Abstract
Direct analysis in real time (DART) represents a new generation of ion source which is used for rapid ionization of small molecules under ambient conditions. The combination of DART and various mass spectrometers allows analyzing multiple food samples with simple or no sample treatment, or in conjunction with prevailing protocolized sample preparation methods. Abundant applications by DART-MS have been reviewed in this paper. The DART-MS strategy applied to food supply chain (FSC), including production, processing, and storage and transportation, provides a comprehensive solution to various food components, contaminants, authenticity, and traceability. Additionally, typical applications available in food analysis by other ambient ionization mass spectrometers were summarized, and fundamentals mainly including mechanisms, devices, and parameters were discussed as well. © 2015 Wiley Periodicals, Inc. Mass Spec Rev. 36:161-187, 2017.
Collapse
Affiliation(s)
- Tianyang Guo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Wei Yong
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, P.R. China
| | - Yong Jin
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, P.R. China
| | - Liya Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Jiahui Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Sai Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Qilong Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yiyang Dong
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
17
|
Mirabelli MF, Wolf JC, Zenobi R. Atmospheric pressure soft ionization for gas chromatography with dielectric barrier discharge ionization-mass spectrometry (GC-DBDI-MS). Analyst 2017; 142:1909-1915. [DOI: 10.1039/c7an00245a] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this study, a gas chromatography (GC) system was interfaced to a high-resolution Orbitrap mass spectrometer by means of an active capillary plasma ionization source, based on dielectric barrier discharge ionization (DBDI).
Collapse
Affiliation(s)
- Mario F. Mirabelli
- ETH Zurich
- Department of Chemistry and Applied Biosciences
- CH-8093 Zürich
- Switzerland
| | - Jan-Christoph Wolf
- ETH Zurich
- Department of Chemistry and Applied Biosciences
- CH-8093 Zürich
- Switzerland
| | - Renato Zenobi
- ETH Zurich
- Department of Chemistry and Applied Biosciences
- CH-8093 Zürich
- Switzerland
| |
Collapse
|
18
|
Black C, Chevallier OP, Elliott CT. The current and potential applications of Ambient Mass Spectrometry in detecting food fraud. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.06.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Zhang Y, Ai W, Bai Y, Zhou Y, Wen L, Zhang X, Liu H. An interface for online coupling capillary electrophoresis to dielectric barrier discharge ionization mass spectrometry. Anal Bioanal Chem 2016; 408:8655-8661. [DOI: 10.1007/s00216-016-9822-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/17/2016] [Accepted: 07/21/2016] [Indexed: 12/11/2022]
|
20
|
Keelor JD, Farnsworth PB, L Weber A, Abbott-Lyon H, Fernández FM. Multimodal Vacuum-Assisted Plasma Ion (VaPI) Source with Transmission Mode and Laser Ablation Sampling Capabilities. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:897-907. [PMID: 26883531 DOI: 10.1007/s13361-016-1354-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
We have developed a multimodal ion source design that can be configured on the fly for various analysis modes, designed for more efficient and reproducible sampling at the mass spectrometer atmospheric pressure (AP) interface in a number of different applications. This vacuum-assisted plasma ionization (VaPI) source features interchangeable transmission mode and laser ablation sampling geometries. Operating in both AC and DC power regimes with similar results, the ion source was optimized for parameters including helium flow rate and gas temperature using transmission mode to analyze volatile standards and drug tablets. Using laser ablation, matrix effects were studied, and the source was used to monitor the products of model prebiotic synthetic reactions.
Collapse
Affiliation(s)
- Joel D Keelor
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Paul B Farnsworth
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | | | - Heather Abbott-Lyon
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
21
|
Klute FD, Michels A, Schütz A, Vadla C, Horvatic V, Franzke J. Capillary Dielectric Barrier Discharge: Transition from Soft Ionization to Dissociative Plasma. Anal Chem 2016; 88:4701-5. [DOI: 10.1021/acs.analchem.5b04605] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Felix David Klute
- ISAS—Leibniz Institut für analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Antje Michels
- ISAS—Leibniz Institut für analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Alexander Schütz
- ISAS—Leibniz Institut für analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Cedomil Vadla
- Institute of Physics, Bijenicka
46, 10000 Zagreb, Croatia
| | | | - Joachim Franzke
- ISAS—Leibniz Institut für analytische Wissenschaften, Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| |
Collapse
|
22
|
Mirabelli MF, Wolf JC, Zenobi R. Pesticide analysis at ppt concentration levels: coupling nano-liquid chromatography with dielectric barrier discharge ionization-mass spectrometry. Anal Bioanal Chem 2016; 408:3425-34. [DOI: 10.1007/s00216-016-9419-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/25/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
|
23
|
Zhang Y, Xu S, Wen L, Bai Y, Niu L, Song D, Liu H. A dielectric barrier discharge ionization based interface for online coupling surface plasmon resonance with mass spectrometry. Analyst 2016; 141:3343-8. [DOI: 10.1039/c6an00561f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Smoluch M, Mielczarek P, Silberring J. Plasma-based ambient ionization mass spectrometry in bioanalytical sciences. MASS SPECTROMETRY REVIEWS 2016; 35:22-34. [PMID: 25988731 DOI: 10.1002/mas.21460] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/24/2014] [Indexed: 05/28/2023]
Abstract
Plasma-based ambient ionization mass spectrometry techniques are gaining growing interest due to their specific features, such as the need for little or no sample preparation, its high analysis speed, and the ambient experimental conditions. Samples can be analyzed in gas, liquid, or solid forms. These techniques allow for a wide range of applications, like warfare agent detection, chemical reaction control, mass spectrometry imaging, polymer identification, and food safety monitoring, as well as applications in biomedical science, e.g., drug and pharmaceutical analysis, medical diagnostics, biochemical analysis, etc. Until now, the main drawback of plasma-based techniques is their quantitative aspect, but a lot of efforts have been done to improve this obstacle.
Collapse
Affiliation(s)
- Marek Smoluch
- Faculty of Materials Science and Ceramics, Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
| | - Przemyslaw Mielczarek
- Faculty of Materials Science and Ceramics, Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059, Krakow, Poland
| | - Jerzy Silberring
- Faculty of Materials Science and Ceramics, Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Sklodowskiej St. 34, 41-819, Zabrze, Poland
| |
Collapse
|
25
|
Validated analytical methodology for the simultaneous determination of a wide range of pesticides in human blood using GC–MS/MS and LC–ESI/MS/MS and its application in two poisoning cases. Sci Justice 2015; 55:307-15. [DOI: 10.1016/j.scijus.2015.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 11/24/2022]
|
26
|
Ding X, Duan Y. Plasma-based ambient mass spectrometry techniques: The current status and future prospective. MASS SPECTROMETRY REVIEWS 2015; 34:449-73. [PMID: 24338668 DOI: 10.1002/mas.21415] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 05/21/2023]
Abstract
Plasma-based ambient mass spectrometry is emerging as a frontier technology for direct analysis of sample that employs low-energy plasma as the ionization reagent. The versatile sources of ambient mass spectrometry (MS) can be classified according to the plasma formation approaches; namely, corona discharge, glow discharge, dielectric barrier discharge, and microwave-induced discharge. These techniques allow pretreatment-free detection of samples, ranging from biological materials (e.g., flies, bacteria, plants, tissues, peptides, metabolites, and lipids) to pharmaceuticals, food-stuffs, polymers, chemical warfare reagents, and daily-use chemicals. In most cases, plasma-based ambient MS performs well as a qualitative tool and as an analyzer for semi-quantitation. Herein, we provide an overview of the key concepts, mechanisms, and applications of plasma-based ambient MS techniques, and discuss the challenges and outlook.
Collapse
Affiliation(s)
- Xuelu Ding
- Research Center of Analytical Instrumentation, Analytical Testing Center and College of Chemistry, Sichuan University, Chengdu, China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Analytical Testing Center and College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Electrochemical generation of selegiline metabolites coupled to mass spectrometry. J Chromatogr A 2015; 1389:96-103. [DOI: 10.1016/j.chroma.2015.02.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/08/2015] [Accepted: 02/14/2015] [Indexed: 11/20/2022]
|
28
|
Curtis M, Keelor JD, Jones CM, Pittman JJ, Jones PR, Sparkman OD, Fernández FM. Schlieren visualization of fluid dynamics effects in direct analysis in real time mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:431-439. [PMID: 26349465 DOI: 10.1002/rcm.7119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 06/05/2023]
Abstract
RATIONALE The success of ambient analysis using plasma-based ion sources depends heavily on fluid dynamics and mass transport efficiency in the sample region. To help characterize the influence of these determining factors, visualization of the gas flow profile for a Direct Analysis in Real Time (DART) ion source at the mass spectrometer atmospheric pressure (AP) interface was performed using the Schlieren technique. METHODS The DART helium flow pattern was imaged in model systems incorporating different interface designs, i.e. skimmer or capillary inlet, and for sampling strategies using several types of traditional DART sample probes including a glass capillary, swab, and drug tablet. Notably, Schlieren experiments were conducted on instruments equipped with the gas-ion separator tube (GIST) adapter and Vapur® pump, and on setups featuring the transmission mode (TM) DART module used in standard practice. RESULTS DART sources were seen to expel a collimated, highly laminar helium stream across interface distances up to ~8 cm. The helium stream was robust to the influence of gas temperature (50-500 °C) and flow rate (≤3.5 L min(-1) ), but considerable DART gas deflection or full disruption was observed in each sampling scenario. The severity of the flow disturbance depended on probe size and placement, the GIST/Vapur® settings, or counter-current gas movements present at the interface. CONCLUSIONS The real-time Schlieren visualizations introduced in this work provide new insight on the fluid dynamics within the DART-MS sample gap while also helping to identify those experimental parameters requiring optimization for improved transmission.
Collapse
Affiliation(s)
- Matthew Curtis
- Department of Chemistry, Pacific Mass Spectrometry Facility, University of the Pacific, Stockton, CA, 95211, USA
| | - Joel D Keelor
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Christina M Jones
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jennifer J Pittman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Patrick R Jones
- Department of Chemistry, Pacific Mass Spectrometry Facility, University of the Pacific, Stockton, CA, 95211, USA
| | - O David Sparkman
- Department of Chemistry, Pacific Mass Spectrometry Facility, University of the Pacific, Stockton, CA, 95211, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
29
|
Guo C, Tang F, Chen J, Wang X, Zhang S, Zhang X. Development of dielectric-barrier-discharge ionization. Anal Bioanal Chem 2014; 407:2345-64. [DOI: 10.1007/s00216-014-8281-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
|
30
|
Albert A, Shelley JT, Engelhard C. Plasma-based ambient desorption/ionization mass spectrometry: state-of-the-art in qualitative and quantitative analysis. Anal Bioanal Chem 2014; 406:6111-27. [DOI: 10.1007/s00216-014-7989-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/13/2014] [Accepted: 06/23/2014] [Indexed: 01/23/2023]
|
31
|
Castro-Puyana M, Herrero M. Metabolomics approaches based on mass spectrometry for food safety, quality and traceability. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.05.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
|
33
|
Meyer C, Müller S, Gilbert-Lopez B, Franzke J. Impact of homogeneous and filamentary discharge modes on the efficiency of dielectric barrier discharge ionization mass spectrometry. Anal Bioanal Chem 2013; 405:4729-35. [DOI: 10.1007/s00216-013-6902-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 11/25/2022]
|
34
|
Gilbert-López B, Schilling M, Ahlmann N, Michels A, Hayen H, Molina-Díaz A, García-Reyes JF, Franzke J. Ambient Diode Laser Desorption Dielectric Barrier Discharge Ionization Mass Spectrometry of Nonvolatile Chemicals. Anal Chem 2013; 85:3174-82. [DOI: 10.1021/ac303452w] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bienvenida Gilbert-López
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Michael Schilling
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Norman Ahlmann
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Antje Michels
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Heiko Hayen
- Department of Food Chemistry, University of Wuppertal, 42119 Wuppertal, Germany
| | - Antonio Molina-Díaz
- Analytical Chemistry Research
Group (FQM-323), Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, Edif.
B-3, 23071 Jaén, Spain
| | - Juan F. García-Reyes
- Analytical Chemistry Research
Group (FQM-323), Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, Edif.
B-3, 23071 Jaén, Spain
| | - Joachim Franzke
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| |
Collapse
|
35
|
Vortmann B, Nowak S, Engelhard C. Rapid Characterization of Lithium Ion Battery Electrolytes and Thermal Aging Products by Low-Temperature Plasma Ambient Ionization High-Resolution Mass Spectrometry. Anal Chem 2013; 85:3433-8. [DOI: 10.1021/ac4001404] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Britta Vortmann
- Institute of Inorganic and Analytical
Chemistry, University of Muenster, Corrensstr.
30, D-48149 Muenster, Germany
| | - Sascha Nowak
- MEET Battery Research Center,
Institute of Physical Chemistry, University of Muenster, Corrensstr. 46, D-48149 Muenster, Germany
| | - Carsten Engelhard
- Institute of Inorganic and Analytical
Chemistry, University of Muenster, Corrensstr.
30, D-48149 Muenster, Germany
| |
Collapse
|
36
|
Gilbert-López B, Geltenpoth H, Meyer C, Michels A, Hayen H, Molina-Díaz A, García-Reyes JF, Franzke J. Performance of dielectric barrier discharge ionization mass spectrometry for pesticide testing: a comparison with atmospheric pressure chemical ionization and electrospray ionization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:419-429. [PMID: 23280973 DOI: 10.1002/rcm.6469] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/13/2012] [Accepted: 11/14/2012] [Indexed: 06/01/2023]
Abstract
RATIONALE The present study reports on the evaluation of dielectric barrier discharge microplasma ionization (DBDI) for liquid chromatography/high resolution mass spectrometry (LC/HRMS) analyses of pesticide residues in fruit and vegetables. Ionization, fragmentation, analytical performance and matrix effects displayed by LC/DBDI-MS were critically evaluated and compared with both atmospheric pressure chemical ionization (APCI) and electrospray (ESI), using a set of over 40 representative multiclass pesticides. METHODS Sample preparation was accomplished using standard QuEChERS procedure and the identification and quantitation of the pesticides tested accomplished by means of LC/MS with a hybrid linear quadrupole ion trap (LIT)-Fourier transform ion cyclotron resonance (FTICR) mass spectrometer operated in full-scan positive ion mode using DBDI, APCI and ESI sources. RESULTS The developed LC/DBDI-MS method allowed the screening of 43 pesticides in three different vegetable matrices: apple, orange and tomato. Minor matrix effects (i.e. signal suppression or enhancement ≤20%) were observed in most of the studied compounds: 95%, 70% and 81% of the studied compounds showed minor matrix effects in extracts of apple, orange and tomato, respectively. The results of the analysis of spiked orange extracts showed that the sensitivity obtained with LC/DBDI-MS is appropriate for multi-residue analysis of pesticide residues in fruit and vegetable samples. The limits of quantitation (LOQs) obtained for most of the studied pesticides were in compliance with the European Regulation 396/2005 (and subsequent updates) on food commodities (default maximum residue level of 10 µg kg(-1)). CONCLUSIONS Comparative studies with commercial sources demonstrate the suitability of DBDI as an ionization technique for residue analysis, because of the combination of the following two advantages: (1) the use of DBDI provides minimized matrix effects compared with APCI, and (2) improved the detection - in terms of sensitivity - of selected compounds that are not easily ionized by ESI, such as parathion.
Collapse
Affiliation(s)
- Bienvenida Gilbert-López
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Xiao S, Qian S, Wang Y, Zhang Y, Cheng Y. Compound coverage enhancement of electrospray ionization mass spectrometry through the addition of a homemade needle. Analyst 2013; 138:1772-8. [DOI: 10.1039/c2an36656h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|