1
|
Toft CJ, Sorenson AE, Schaeffer PM. A soft Tus-Ter interaction is hiding a fail-safe lock in the replication fork trap of Dickeya paradisiaca. Microbiol Res 2022; 263:127147. [PMID: 35914414 DOI: 10.1016/j.micres.2022.127147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022]
Abstract
A variety of replication fork traps have recently been characterised in Enterobacterales, unveiling two different types of architecture. Of these, the degenerate type II fork traps are commonly found in Enterobacteriaceae such as Escherichia coli. The newly characterised type I fork traps are found almost exclusively outside Enterobacteriaceae within Enterobacterales and include several archetypes of possible ancestral architectures. Dickeya paradisiaca harbours a somewhat degenerate type I fork trap with a unique Ter1 adjacent to tus gene on one side of the circular chromosome and three putative Ter2-4 sites on the other side of the fork trap. The two innermost Ter1 and Ter2 sites are only separated by 18 kb, which is the shortest distance between two innermost Ter sites of any chromosomal fork trap identified so far. Of note, the dif site is located between these two sites, coinciding with a sharp GC-skew flip. Here we examined and compared the binding modalities of E. coli and D. paradisiaca Tus proteins for these Ter sites. Surprisingly, while Ter1-3 were functional, no significant Tus binding was observed for Ter4 even in low salt conditions, which is in stark contrast with the significant non-specific protein-DNA interactions that occur with E. coli Tus. Even more surprising was the finding that D. paradisiaca Tus has a relatively moderate binding affinity to double-stranded Ter while retaining an extremely high affinity to Ter-lock sequences. Our data revealed major differences in the salt resistance and stability between the D. paradisiaca and E. coli Tus protein complexes, suggesting that while Tus protein evolution can be quite flexible regarding the initial Ter binding step, it requires a highly stringent purifying selection for its final locked complex formation.
Collapse
Affiliation(s)
- Casey J Toft
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia
| | - Alanna E Sorenson
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia
| | - Patrick M Schaeffer
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia.
| |
Collapse
|
2
|
Toft CJ, Sorenson AE, Schaeffer PM. Rise of the terminator protein tus: A versatile tool in the biotechnologist's toolbox. Anal Chim Acta 2022; 1213:339946. [DOI: 10.1016/j.aca.2022.339946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
|
3
|
Toft CJ, Moreau MJJ, Perutka J, Mandapati S, Enyeart P, Sorenson AE, Ellington AD, Schaeffer PM. Delineation of the Ancestral Tus-Dependent Replication Fork Trap. Int J Mol Sci 2021; 22:ijms222413533. [PMID: 34948327 PMCID: PMC8707476 DOI: 10.3390/ijms222413533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/28/2022] Open
Abstract
In Escherichia coli, DNA replication termination is orchestrated by two clusters of Ter sites forming a DNA replication fork trap when bound by Tus proteins. The formation of a ‘locked’ Tus–Ter complex is essential for halting incoming DNA replication forks. However, the absence of replication fork arrest at some Ter sites raised questions about their significance. In this study, we examined the genome-wide distribution of Tus and found that only the six innermost Ter sites (TerA–E and G) were significantly bound by Tus. We also found that a single ectopic insertion of TerB in its non-permissive orientation could not be achieved, advocating against a need for ‘back-up’ Ter sites. Finally, examination of the genomes of a variety of Enterobacterales revealed a new replication fork trap architecture mostly found outside the Enterobacteriaceae family. Taken together, our data enabled the delineation of a narrow ancestral Tus-dependent DNA replication fork trap consisting of only two Ter sites.
Collapse
Affiliation(s)
- Casey J. Toft
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia; (C.J.T.); (M.J.J.M.); (A.E.S.)
- Centre of Tropical Bioinformatics and Molecular Biology, James Cook University, Douglas, QLD 4811, Australia
| | - Morgane J. J. Moreau
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia; (C.J.T.); (M.J.J.M.); (A.E.S.)
| | - Jiri Perutka
- Institute for Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA; (J.P.); (S.M.); (P.E.); (A.D.E.)
| | - Savitri Mandapati
- Institute for Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA; (J.P.); (S.M.); (P.E.); (A.D.E.)
| | - Peter Enyeart
- Institute for Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA; (J.P.); (S.M.); (P.E.); (A.D.E.)
| | - Alanna E. Sorenson
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia; (C.J.T.); (M.J.J.M.); (A.E.S.)
| | - Andrew D. Ellington
- Institute for Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA; (J.P.); (S.M.); (P.E.); (A.D.E.)
| | - Patrick M. Schaeffer
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD 4811, Australia; (C.J.T.); (M.J.J.M.); (A.E.S.)
- Centre of Tropical Bioinformatics and Molecular Biology, James Cook University, Douglas, QLD 4811, Australia
- Correspondence: ; Tel.: +61-(0)-7-4781-4448; Fax: +61-(0)-7-4781-6078
| |
Collapse
|
4
|
Krismastuti FSH, Cavallaro A, Prieto-Simon B, Voelcker NH. Toward Multiplexing Detection of Wound Healing Biomarkers on Porous Silicon Resonant Microcavities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1500383. [PMID: 27812471 PMCID: PMC5067563 DOI: 10.1002/advs.201500383] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/17/2015] [Indexed: 06/06/2023]
Abstract
Bacterial wound infections can cause septicemia and lead to limb amputation or death. Therefore, early detection of bacteria is important in chronic wound management. Here, an optical biosensor based on porous silicon resonant microcavity (pSiRM) structure modified with fluorogenic peptide substrate is demonstrated to detect the presence of Sortase A (SrtA), a bacterial enzyme found in the cell membrane protein of Staphylococcus aureus. The combination of fluorescence enhancement effects of the pSiRM architecture with the incorporation of SrtA fluorogenic peptide substrate within the pSi matrix enables the sensing of SrtA with an outstanding limit of detection of 8 × 10-14 m. Modification of the pSiRM structure with microscale spots of two fluorogenic peptide substrates, one specific for SrtA and the other for matrix metalloproteinases, effectively demonstrates the feasibility to perform multiplexed biomarker analysis. The results in this study highlight the potential of the pSiRM sensing platform as a point-of-care diagnostic tool for biomarkers of bacterial wound infection.
Collapse
Affiliation(s)
- Fransiska Sri Herwahyu Krismastuti
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology Future Industries Institute University of South Australia Mawson Lakes, Adelaide South Australia 5095 Australia
| | - Alex Cavallaro
- Future Industries Institute University of South Australia Mawson Lakes South Australia 5095 Australia
| | - Beatriz Prieto-Simon
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology Future Industries Institute University of South Australia Mawson Lakes, Adelaide South Australia 5095 Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology Future Industries Institute University of South Australia Mawson Lakes, Adelaide South Australia 5095 Australia
| |
Collapse
|
5
|
Abstract
Polymerase chain reaction-amplified immunoassay (immuno-PCR, iPCR) is a method that combines the specificity of an immunological detection method and the sensitivity of a nucleic acid amplification method. In this way, immuno-PCR uses a minimum amount of sample, and allows the detection of rare diseases and those diseases in very early stage (i.e. infectious diseases, degenerative disorders, or neoplastic diseases). The present review was aimed to describe this new methodology and applications to the early detection of cancer and non-cancer related diseases, and discuss about the possibility to detect diverse biomarkers of oncology disorders, such as breast, gastric, colorectal and nasopharynx cancer, and other factors related to the growth of the neoplastic disease.
Collapse
Affiliation(s)
- Anna Luiza F V Assumpção
- a Department of Pathobiological Science, School of Veterinary Medicine , University of Wisconsin-Madison , Madison , WI , USA
| | - Rodrigo C da Silva
- b Department of Pathobiology and Population Medicine, College of Veterinary Medicine , Mississippi State University , Mississippi State , MS , USA
| |
Collapse
|
6
|
Chang L, Li J, Wang L. Immuno-PCR: An ultrasensitive immunoassay for biomolecular detection. Anal Chim Acta 2016; 910:12-24. [DOI: 10.1016/j.aca.2015.12.039] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 12/29/2015] [Accepted: 12/31/2015] [Indexed: 12/11/2022]
|
7
|
Tus-Ter-lock immuno-PCR assays for the sensitive detection of tropomyosin-specific IgE antibodies. Bioanalysis 2014; 6:465-76. [PMID: 24568350 DOI: 10.4155/bio.13.315] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The increasing prevalence of food allergies requires development of specific and sensitive tests capable of identifying the allergen responsible for the disease. The development of serologic tests that can detect specific IgE antibodies to allergenic proteins would, therefore, be highly received. RESULTS Here we present two new quantitative immuno-PCR assays for the sensitive detection of antibodies specific to the shrimp allergen tropomyosin. Both assays are based on the self-assembling Tus-Ter-lock protein-DNA conjugation system. Significantly elevated levels of tropomyosin-specific IgE were detected in sera from patients allergic to shrimp. CONCLUSION This is the first time an allergenic protein has been fused with Tus to enable specific IgE antibody detection in human sera by quantitative immuno-PCR.
Collapse
|
8
|
Lv Z, Liu J, Bai W, Yang S, Chen A. A simple and sensitive label-free fluorescent approach for protein detection based on a Perylene probe and aptamer. Biosens Bioelectron 2014; 64:530-4. [PMID: 25310484 DOI: 10.1016/j.bios.2014.09.095] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 09/30/2014] [Accepted: 09/30/2014] [Indexed: 01/11/2023]
Abstract
Highly sensitive detection of proteins is of great importance for effective clinical diagnosis and biomedical research. However, so far most detection methods rely on antibody-based immunoassays and are usually laborious and time-consuming with poor sensitivity. Here, we developed a simple and ultra-sensitive method to detect a biomarker protein-thrombin by taking advantage of the fluorescent probe Perylene tetracarboxylic acid diimide (PTCDI) derivatives and thrombin aptamer. The water-soluble dye PTCDI shows strong fluorescence in buffer solution for the existence of free dye monomer, but becomes weak after aggregation through self-assembly on nucleic acid aptamer. In the presence of thrombin, it specifically binds to thrombin aptamer which causes the conformational transition between aptamer and PTCDI and results in a significant fluorescence recovery. The results showed that as low as 40 pM of thrombin could be detected by this method. The high sensitivity of the developed sensing system mainly attributes to the ultra-sensitivity of the fluorescence intensity changes of PTCDI. With the specificity of aptamer, the assay exhibited high selectivity for thrombin against three other proteins (bovine serum albumin, lysozyme, mouse IgG) and 1% diluted fetal bovine serum. The detection method might be extended to sensitive detection of a variety of proteins for its advantages of isothermal conditions required, simple and rapid without multiple separation and washing steps.
Collapse
Affiliation(s)
- Zhenzhen Lv
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China; College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jinchuan Liu
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Wenhui Bai
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Shuming Yang
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Ailiang Chen
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
9
|
Moreau MJJ, Morin I, Askin SP, Cooper A, Moreland NJ, Vasudevan SG, Schaeffer PM. Rapid determination of protein stability and ligand binding by differential scanning fluorimetry of GFP-tagged proteins. RSC Adv 2012. [DOI: 10.1039/c2ra22368f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|