1
|
Vincy A, Gaikwad Y, Agarwal H, Jain N, Vankayala R. A Label-Free and Ultrasensitive Prussian Blue-Based Dipstick Sensor for Bacterial and Biofilm Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14246-14255. [PMID: 37750674 DOI: 10.1021/acs.langmuir.3c01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Water and food contamination has become the major contributor to infections and deaths. However, rapid and sensitive bacterial detection still remains an unmet demand that has attracted widespread attention. Often water and food samples are sent out for laboratory testing to detect the presence of contamination, which is time-consuming and laborious. Herein, we have developed a highly sensitive, tenable, affordable, and robust (STAR) paper-based colorimetric dipstick sensor based on the principle of Prussian blue (PB) synthesis as an indicator of bacterial contamination. In the presence of bacteria, it leads to the formation of PB, a dye that acts as a colorimetric indicator. The intensity of the PB is the direct measure of the degree of contamination. The fabrication of the STAR dipstick sensor involves a simple and cost-effective process. The STAR dipstick sensor is ultrasensitive and can detect up to 101 CFU/mL of bacteria within minutes of contact with the test sample. The STAR dipstick sensor is fabricated using biodegradable components, which is speculated to facilitate quick and environmentally friendly degradation after each use. The sensor has been validated for its properties and capabilities at different pH to detect both Gram-positive and Gram-negative bacterial strains in real-time samples. The stability and degradation were also monitored. Comprehensively, the proposed STAR dipstick sensor can serve as a point-of-care device to detect bacterial contamination in a swift and sensitive manner.
Collapse
Affiliation(s)
- Antony Vincy
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India
| | - Yohan Gaikwad
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India
| | - Harshita Agarwal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India
- Centre for Emerging Technologies for Sustainable Development (CETSD), Indian Institute of Technology Jodhpur, Karwar 342030, India
| | - Raviraj Vankayala
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India
- Interdisciplinary Research Platform, Smart Healthcare, Indian Institute of Technology Jodhpur, Karwar 342030, India
| |
Collapse
|
2
|
Optical and Electrochemical Techniques for Point-of-Care Water Quality Monitoring: A review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
3
|
A novel, environmentally friendly dual-signal water toxicity biosensor developed through the continuous release of Fe3+. Biosens Bioelectron 2022; 220:114864. [DOI: 10.1016/j.bios.2022.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
4
|
Qian Z, Tan R, Zhang X, Leng Y, Chen Z. MnO2 Nanosheet-Based colorimetric sensor Array: Toward identification of organophosphorus pesticides. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Disposable and Low-Cost Colorimetric Sensors for Environmental Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228331. [PMID: 33187161 PMCID: PMC7697538 DOI: 10.3390/ijerph17228331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
Environmental contamination affects human health and reduces the quality of life. Therefore, the monitoring of water and air quality is important, ensuring that all areas are acquiescent with the current legislation. Colorimetric sensors deliver quick, naked-eye detection, low-cost, and adequate determination of environmental analytes. In particular, disposable sensors are cheap and easy-to-use devices for single-shot measurements. Due to increasing requests for in situ analysis or resource-limited zones, disposable sensors’ development has increased. This review provides a brief insight into low-cost and disposable colorimetric sensors currently used for environmental analysis. The advantages and disadvantages of different colorimetric devices for environmental analysis are discussed.
Collapse
|
6
|
Fang D, Gao G, Yang Y, Wang Y, Gao L, Zhi J. Redox Mediator‐Based Microbial Biosensors for Acute Water Toxicity Assessment: A Critical Review. ChemElectroChem 2020. [DOI: 10.1002/celc.202000367] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Deyu Fang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 PR China
- Current address: Ningde Amperex Technology Limited (ATL) Ningde 352100 PR China
| | - Guanyue Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yajie Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yu Wang
- Beijing Center for Physical and Chemical Analysis Beijing 100089 PR China
| | - Lijuan Gao
- Beijing Center for Physical and Chemical Analysis Beijing 100089 PR China
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| |
Collapse
|
7
|
Vigués N, Pujol-Vila F, Macanás J, Muñoz M, Muñoz-Berbel X, Mas J. Fast fabrication of reusable polyethersulfone microbial biosensors through biocompatible phase separation. Talanta 2020; 206:120192. [PMID: 31514850 DOI: 10.1016/j.talanta.2019.120192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/18/2019] [Accepted: 07/28/2019] [Indexed: 10/26/2022]
Abstract
In biosensors fabrication, entrapment in polymeric matrices allows efficient immobilization of the biorecognition elements without compromising their structure and activity. When considering living cells, the biocompatibility of both the matrix and the polymerization procedure are additional critical factors. Bio-polymeric gels (e.g. alginate) are biocompatible and polymerize under mild conditions, but they have poor stability. Most synthetic polymers (e.g. PVA), on the other hand, present improved stability at the expense of complex protocols involving chemical/physical treatments that decrease their biological compatibility. In an attempt to explore new solutions to this problem we have developed a procedure for the immobilization of bacterial cells in polyethersulfone (PES) using phase separation. The technology has been tested successfully in the construction of a bacterial biosensor for toxicity assessment. Biosensors were coated with a 300 μm bacteria-containing PES membrane, using non-solvent induced phase separation (membrane thickness ≈ 300 μm). With this method, up to 2.3 × 106 cells were immobilized in the electrode surface with an entrapment efficiency of 8.2%, without compromising cell integrity or viability. Biosensing was performed electrochemically through ferricyanide respirometry, with metabolically-active entrapped bacteria reducing ferricyanide in the presence of glucose. PES biosensors showed good stability and reusability during dry frozen storage for up to 1 month. The analytical performance of the sensors was assessed carrying out a toxicity assay in which 3,5-dichlorophenol (DCP) was used as a model toxic compound. The biosensor provided a concentration-dependent response to DCP with half-maximal effective concentration (EC50) of 9.2 ppm, well in agreement with reported values. This entrapment methodology is susceptible of mass production and allows easy and repetitive production of robust and sensitive bacterial biosensors.
Collapse
Affiliation(s)
- N Vigués
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.
| | - F Pujol-Vila
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - J Macanás
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, Spain
| | - M Muñoz
- Department of Chemistry, Universitat Autònoma de Barcelona, UAB, Spain
| | - X Muñoz-Berbel
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra, Barcelona, Spain
| | - J Mas
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| |
Collapse
|
8
|
Wasito H, Fatoni A, Hermawan D, Susilowati SS. Immobilized bacterial biosensor for rapid and effective monitoring of acute toxicity in water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:205-209. [PMID: 30529914 DOI: 10.1016/j.ecoenv.2018.11.141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The use of biosensors by using microorganisms such as bacteria have short life cycles and provide other advantages. One colorimetric biosensor technique that has been developed is the use of a biosensor utilizing the incorporation of Prussian blue formation reactions mediated by E. coli bioreactors with ferricyanide. Immobilization is a method that allows the bacteria can be used for long-term without reducing its ability as bioreceptor. This study aimed to develop a novel and rapid immobilized bacterial biosensor for the detection of toxic compound in water and to evaluate their analytical performances. Immobilization of E. coli performed by trapping method using alginate material support. The bacterial suspension was mixed with sodium alginate (1:1 v/v), and the mixture was continuously dropped in CaCl2 solution to be a form of beads. The beads were used as bioreceptor to detect toxicants regarding cadmium, arsenic, mercury, chromium and lead solutions with Prussian blue as a colorimetric indicator. The linearity and sensitivity of detection of beads to the toxicants were tested, the stability of repeated use and storage were evaluated as well. The results showed that E. coli could be immobilized using alginate with response value was correlated with toxic concentration. The developed biosensor was more stable when used repeatedly and could be stored in a long time. The immobilization of E. coli in calcium alginate bead was successfully performed as a biosensor system for monitoring acute toxicity in water.
Collapse
Affiliation(s)
- Hendri Wasito
- Department of Pharmacy, Faculty of Health Sciences, Jenderal Soedirman University, Purwokerto 53123, Indonesia; Biosensory Technology Division, Center for Maritime Biosciences Studies, Jenderal Soedirman University, Purwokerto 53123, Indonesia.
| | - Amin Fatoni
- Department of Chemistry, Faculty of Mathematics and Natural sciences, Jenderal Soedirman University, Purwokerto 53123, Indonesia; Biosensory Technology Division, Center for Maritime Biosciences Studies, Jenderal Soedirman University, Purwokerto 53123, Indonesia
| | - Dadan Hermawan
- Department of Chemistry, Faculty of Mathematics and Natural sciences, Jenderal Soedirman University, Purwokerto 53123, Indonesia
| | - Sri Sutji Susilowati
- Department of Pharmacy, Faculty of Health Sciences, Jenderal Soedirman University, Purwokerto 53123, Indonesia
| |
Collapse
|
9
|
Nakamura H. Current status of water environment and their microbial biosensor techniques - Part II: Recent trends in microbial biosensor development. Anal Bioanal Chem 2018; 410:3967-3989. [PMID: 29736704 DOI: 10.1007/s00216-018-1080-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/07/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022]
Abstract
In Part I of the present review series, I presented the current state of the water environment by focusing on Japanese cases and discussed the need to further develop microbial biosensor technologies for the actual water environment. I comprehensively present trends after approximately 2010 in microbial biosensor development for the water environment. In the first section, after briefly summarizing historical studies, recent studies on microbial biosensor principles are introduced. In the second section, recent application studies for the water environment are also introduced. Finally, I conclude the present review series by describing the need to further develop microbial biosensor technologies. Graphical abstract Current water pollution indirectly occurs by anthropogenic eutrophication (Part I). Recent trends in microbial biosensor development for water environment are described in part II of the present review series.
Collapse
Affiliation(s)
- Hideaki Nakamura
- Department of Liberal Arts, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
10
|
Yu D, Zhai J, Liu C, Zhang X, Bai L, Wang Y, Dong S. Small Microbial Three-Electrode Cell Based Biosensor for Online Detection of Acute Water Toxicity. ACS Sens 2017; 2:1637-1643. [PMID: 29043795 DOI: 10.1021/acssensors.7b00484] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The monitoring of toxicity of water is very important to estimate the safety of drinking water and the level of water pollution. Herein, a small microbial three-electrode cell (M3C) biosensor filled with polystyrene particles was proposed for online monitoring of the acute water toxicity. The peak current of the biosensor related with the performance of the bioanode was regarded as the toxicity indicator, and thus the acute water toxicity could be determined in terms of inhibition ratio by comparing the peak current obtained with water sample to that obtained with nontoxic standard water. The incorporation of polystyrene particles in the electrochemical cell not only reduced the volume of the samples used, but also improved the sensitivity of the biosensor. Experimental conditions including washing time with PBS and the concentration of sodium acetate solution were optimized. The stability of the M3C biosensor under optimal conditions was also investigated. The M3C biosensor was further examined by formaldehyde at the concentration of 0.01%, 0.03%, and 0.05% (v/v), and the corresponding inhibition ratios were 14.6%, 21.6%, and 36.4%, respectively. This work provides a new insight into the development of an online toxicity detector based on M3C biosensor.
Collapse
Affiliation(s)
- Dengbin Yu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Science, 5625 Renmin
Street, Changchun 130022, China
| | - Junfeng Zhai
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Science, 5625 Renmin
Street, Changchun 130022, China
| | - Changyu Liu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Science, 5625 Renmin
Street, Changchun 130022, China
| | - Xueping Zhang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Science, 5625 Renmin
Street, Changchun 130022, China
| | - Lu Bai
- School
of Chemical and Environmental Engineering, North University of China, 3 Xueyuan Road, Taiyuan 030051, China
| | - Yizhe Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Science, 5625 Renmin
Street, Changchun 130022, China
| | - Shaojun Dong
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Science, 5625 Renmin
Street, Changchun 130022, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
11
|
Yu D, Yong YC, Liu C, Fang Y, Bai L, Dong S. New applications of genetically modified Pseudomonas aeruginosa for toxicity detection in water. CHEMOSPHERE 2017; 184:106-111. [PMID: 28582765 DOI: 10.1016/j.chemosphere.2017.05.154] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/22/2017] [Accepted: 05/27/2017] [Indexed: 05/20/2023]
Abstract
A novel mediator-free method based on genetically modified bacteria was developed for detecting water toxicity, where genetically modified Pseudomonas aeruginosa (GM P. aeruginosa) was selected as the biosensor strain and pyocyanin (PYO) produced by this strain was used as the indicator. The toxicity response of GM P. aeruginosa to 3, 5-dichlorophenol (3, 5-DCP) was measured electrochemically and spectroscopically, and the half maximal inhibitory concentration (IC50) of 3, 5-DCP was determined to be 15.1 mg/L. Strikingly, the toxicity of sample solution with 3, 5-DCP could also be estimated visually by naked eyes at a concentration as low as 10 mg/L. The present study provided a convenient, sensitive and cost-effective method for water toxicity detection, and extended biosensing application of the genetically modified bacterium.
Collapse
Affiliation(s)
- Dengbin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, Jilin Province, PR China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | - Changyu Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, Jilin Province, PR China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, Jilin Province, PR China
| | - Lu Bai
- School of Chemical and Environmental Engineering, North University of China, 3 Xueyuan Road, Taiyuan 030051, Shanxi Province, PR China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, Jilin Province, PR China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
12
|
Bioelectrochemical biosensor for water toxicity detection: generation of dual signals for electrochemical assay confirmation. Anal Bioanal Chem 2017; 410:1231-1236. [PMID: 28965160 DOI: 10.1007/s00216-017-0656-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022]
Abstract
Toxicity assessment of water is of great important to the safety of human health and to social security because of more and more toxic compounds that are spilled into the aquatic environment. Therefore, the development of fast and reliable toxicity assessment methods is of great interest and attracts much attention. In this study, by using the electrochemical activity of Shewanella oneidensis MR-1 cells as the toxicity indicator, 3,5-dichlorophenol (DCP) as the model toxic compound, a new biosensor for water toxicity assessment was developed. Strikingly, the presence of DCP in the water significantly inhibited the maximum current output of the S. oneidensis MR-1 in a three-electrode system and also retarded the current evolution by the cells. Under the optimized conditions, the maximum current output of the biosensor was proportional to the concentration of DCP up to 30 mg/L. The half maximal inhibitory concentration of DCP determined by this biosensor is about 14.5 mg/L. Furthermore, simultaneous monitoring of the retarded time (Δt) for current generation allowed the identification of another biosensor signal in response to DCP which could be employed to verify the electrochemical result by dual confirmation. Thus, the present study has provided a reliable and promising approach for water quality assessment and risk warning of water toxicity.
Collapse
|
13
|
Chang X, Xu Y, Liu C. A rapid and sensitive colorimetric measurement of antibiotic efficacy against Escherichia coli in vitro. FEMS Microbiol Lett 2016; 363:fnw037. [PMID: 26892018 DOI: 10.1093/femsle/fnw037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2016] [Indexed: 11/14/2022] Open
Abstract
A common dye of prussian blue (PB) as an indicator was used to develop a colorimetric method for detecting the efficacy of the antibiotics in vitro. Considering the electronic production capacity of microbial respiration, ferricyanide was employed in transferring electrons from target microorganism of Escherichia coli (E. coli) to produce ferrocyanide. Subsequently, ferrocyanide reacted with ferric ions to form PB. In view of relationship between the PB yield and the bacterial activity, the efficacy of the antibiotics on E. coli was directly detected at 700 nm of PB absorption. When the 5% activity of antibiotics on 20 isolates of E. coli was quantified as 5% efficacy, the applied concentrations of eight antibiotics, such as cefepime, ceftriaxone sodium, cefoperazone sodium, piperacillin sodium, amoxicillin, gentamicin, amikacin and levofloxacin were 2, 2, 4, 4, 10, 4, 8 and 8 μg mL⁻¹, respectively. To compare with minimum inhibitory concentration results obtained by Clinical and Laboratory Standards Institute broth macrodilution method, the results of PB methods showed good agreements except with gentamicin. Paired t-test result (P) also showed that difference between two methods was statistically significant (P = 0.006).
Collapse
Affiliation(s)
- Xiaojie Chang
- College of Pharmacy, Liaoning Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou City, Liaoning Province, 121001, China
| | - Yingchao Xu
- College of Pharmacy, Liaoning Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou City, Liaoning Province, 121001, China
| | - Chang Liu
- College of Pharmacy, Liaoning Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou City, Liaoning Province, 121001, China
| |
Collapse
|
14
|
Chen B, Liu Q, Popowich A, Shen S, Yan X, Zhang Q, Li XF, Weinfeld M, Cullen WR, Le XC. Therapeutic and analytical applications of arsenic binding to proteins. Metallomics 2015; 7:39-55. [DOI: 10.1039/c4mt00222a] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Knowledge of arsenic binding to proteins advances the development of bioanalytical techniques and therapeutic drugs.
Collapse
Affiliation(s)
- Beibei Chen
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Qingqing Liu
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | | | - Shengwen Shen
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Xiaowen Yan
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Qi Zhang
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | | | - William R. Cullen
- Department of Chemistry
- University of British Columbia
- Vancouver, Canada
| | - X. Chris Le
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
- Department of Chemistry
| |
Collapse
|
15
|
Kaur H, Kumar R, Babu JN, Mittal S. Advances in arsenic biosensor development--a comprehensive review. Biosens Bioelectron 2014; 63:533-545. [PMID: 25150780 DOI: 10.1016/j.bios.2014.08.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/21/2014] [Accepted: 08/04/2014] [Indexed: 01/23/2023]
Abstract
Biosensors are analytical devices having high sensitivity, portability, small sample requirement and ease of use for qualitative and quantitative monitoring of various analytes of human importance. Arsenic (As), owing to its widespread presence in nature and high toxicity to living creatures, requires frequent determination in water, soil, agricultural and food samples. The present review is an effort to highlight the various advancements made so far in the development of arsenic biosensors based either on recombinant whole cells or on certain arsenic-binding oligonucleotides or proteins. The role of futuristic approaches like surface plasmon resonance (SPR) and aptamer technology has also been discussed. The biomethods employed and their general mechanisms, advantages and limitations in relevance to arsenic biosensors developed so far are intended to be discussed in this review.
Collapse
Affiliation(s)
- Hardeep Kaur
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab 151001, India.
| | - Rabindra Kumar
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab 151001, India.
| | - J Nagendra Babu
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab 151001, India.
| | - Sunil Mittal
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab 151001, India.
| |
Collapse
|