1
|
Sun J, Lo HTJ, Fan L, Yiu TL, Shakoor A, Li G, Lee WYW, Sun D. High-efficiency quantitative control of mitochondrial transfer based on droplet microfluidics and its application on muscle regeneration. SCIENCE ADVANCES 2022; 8:eabp9245. [PMID: 35977014 PMCID: PMC9385153 DOI: 10.1126/sciadv.abp9245] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/01/2022] [Indexed: 05/31/2023]
Abstract
Mitochondrial transfer is a spontaneous process to restore damaged cells in various pathological conditions. The transfer of mitochondria to cell therapy products before their administration can enhance therapeutic outcomes. However, the low efficiency of previously reported methods limits their clinical application. Here, we developed a droplet microfluidics-based mitochondrial transfer technique that can achieve high-efficiency and high-throughput quantitative mitochondrial transfer to single cells. Because mitochondria are essential for muscles, myoblast cells and a muscle injury model were used as a proof-of-concept model to evaluate the proposed technique. In vitro and in vivo experiments demonstrated that C2C12 cells with 31 transferred mitochondria had significant improvements in cellular functions compared to those with 0, 8, and 14 transferred mitochondria and also had better therapeutic effects on muscle regeneration. The proposed technique can considerably promote the clinical application of mitochondrial transfer, with optimized cell function improvements, for the cell therapy of mitochondria-related diseases.
Collapse
Affiliation(s)
- Jiayu Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hiu Tung Jessica Lo
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Lei Fan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tsz Lam Yiu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Adnan Shakoor
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Wayne Y. W. Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Centre for Robotics and Automation, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
2
|
Jang DH, Greenwood JC, Owiredu S, Ranganathan A, Eckmann DM. Mitochondrial networking in human blood cells with application in acute care illnesses. Mitochondrion 2017; 44:27-34. [PMID: 29275149 DOI: 10.1016/j.mito.2017.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/31/2017] [Accepted: 12/20/2017] [Indexed: 12/29/2022]
Abstract
Mitochondria are dynamic organelles that adapt in response to environmental stresses or mutations. Dynamic processes involving mitochondria include their locomotion within cells and fusion and fission events in which mitochondrial join together or split apart. Various imaging strategies have been utilized to track mitochondrial dynamics. One common limitation of most of the methods available is that the time required to perform the technique and analyze the results prohibits application to clinical diagnosis and therapy. We recently demonstrated "whole-cell" mitochondrial analysis in a two-dimensional fashion with fluorescence microscopy. Our developed technique allows evaluation of whole-cell mitochondrial networking, including assessment of mitochondrial motility and rates of fission and fusion events using human blood cells (peripheral blood mononuclear cells (PBMCs)) on a clinically relevant timescale. We demonstrate this methodology in a cohort of healthy subjects as well as a cohort of hospitalized subjects having sepsis, an acute care illness. As there is increasing use of human blood cells as a proxy of organ mitochondrial function with respiration in various disease states, the addition of mitochondrial dynamics will now allow for more thorough clinical evaluation of mitochondrial networking in human disease with potential exploration of therapeutics.
Collapse
Affiliation(s)
- David H Jang
- Department of Emergency Medicine, Perelman School of Medicine, Penn Acute Research Collaboration (PARC), University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - John C Greenwood
- Department of Emergency Medicine, Perelman School of Medicine, Penn Acute Research Collaboration (PARC), University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Shawn Owiredu
- Department of Emergency Medicine, Perelman School of Medicine, Penn Acute Research Collaboration (PARC), University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Abhay Ranganathan
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - David M Eckmann
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
3
|
Haseda K, Kanematsu K, Noguchi K, Saito H, Umeda N, Ohta Y. Significant correlation between refractive index and activity of mitochondria: single mitochondrion study. BIOMEDICAL OPTICS EXPRESS 2015; 6:859-69. [PMID: 25798310 PMCID: PMC4361440 DOI: 10.1364/boe.6.000859] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 05/20/2023]
Abstract
Measurements of refractive indices (RIs) of intracellular components can provide useful information on the structure and function of cells. The present study reports, for the first time, determination of the RI of an isolated mitochondrion in isotonic solution using retardation-modulated differential interference contrast microscopy. The value was 1.41 ± 0.01, indicating that mitochondria are densely packed with molecules having high RIs. Further, the RIs of each mitochondrion were significantly correlated with the mitochondrial membrane potential, an index of mitochondrial activity. These results will provide useful information on the structures and functions of cells based on the intracellular distribution of RIs.
Collapse
Affiliation(s)
- Keisuke Haseda
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588,
Japan
| | - Keita Kanematsu
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588,
Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588,
Japan
| | - Hiromu Saito
- Division of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588,
Japan
| | - Norihiro Umeda
- Division of Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588,
Japan
| | - Yoshihiro Ohta
- Division of Biotechnology and Life Sciences, Institute of Engineering, Tokyo University of Agriculture and Technology, Nakacho 2-24-16, Koganei, Tokyo 184-8588,
Japan
| |
Collapse
|