1
|
Hunter CD, Cairo CW. Detection Strategies for Sialic Acid and Sialoglycoconjugates. Chembiochem 2024:e202400402. [PMID: 39444251 DOI: 10.1002/cbic.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Indexed: 10/25/2024]
Abstract
Glycoconjugates are a vast class of biomolecules implicated in biological processes important for human health and disease. The structural complexity of glycoconjugates remains a challenge to deciphering their precise biological roles and for their development as biomarkers and therapeutics. Human glycoconjugates on the outside of the cell are modified with sialic (neuraminic) acid residues at their termini. The enzymes that install sialic acids are sialyltransferases (SiaTs), a family of 20 different isoenzymes. The removal and degradation of sialic acids is mediated by neuraminidase (NEU; sialidase) enzymes, of which there are four isoenzymes. In this review, we discuss chemical and biochemical approaches for the detection and analysis of sialoglycoconjugate (SGC) structures and their enzymatic products. The most common methods include affinity probes and synthetic substrates. Fluorogenic and radiolabelled substrates are also important tools for many applications, including screening for enzyme inhibitors. Strategies that give insight into the native substrate-specificity of enzymes that regulate SGCs (SiaT & NEU) are necessary to improve our understanding of the role of sialic acid metabolism in health and disease.
Collapse
Affiliation(s)
- Carmanah D Hunter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
2
|
Mishra B, Yuan Y, Yu H, Kang H, Gao J, Daniels R, Chen X. Synthetic Sialosides Terminated with 8-N-Substituted Sialic Acid as Selective Substrates for Sialidases from Bacteria and Influenza Viruses. Angew Chem Int Ed Engl 2024; 63:e202403133. [PMID: 38713874 DOI: 10.1002/anie.202403133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
Sialosides containing C8-modified sialic acids are challenging synthetic targets but potentially useful probes for diagnostic substrate profiling of sialidases and elucidating the binding specificity of sialic acid-interacting proteins. Here, we demonstrate efficient chemoenzymatic methods for synthesizing para-nitrophenol-tagged α2-3- and α2-6-linked sialyl galactosides containing C8-acetamido, C8-azido, or C8-amino derivatized N-acetylneuraminic acid (Neu5Ac). High-throughput substrate specificity studies showed that the C8-modification of sialic acid significantly changes its recognition by sialidases from humans, various bacteria, and different influenza A and B viruses. Sialosides carrying Neu5Ac with a C8-azido modification were generally well tolerated by all the sialidases we tested, whereas sialosides containing C8-acetamido-modified Neu5Ac were only cleaved by selective bacterial sialidases. In contrast, sialosides with C8-amino-modified Neu5Ac were cleaved by a combination of selective bacterial and influenza A virus sialidases. These results indicate that sialosides terminated with a C8-amino or C8-acetamido-modified sialic acid can be used with other sialosides for diagnostic profiling of disease-causing sialidase-producing pathogens.
Collapse
Affiliation(s)
- Bijoyananda Mishra
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, United States
| | - Yue Yuan
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, United States
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, United States
| | - Hyeog Kang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, United States
| | - Jin Gao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, United States
| | - Robert Daniels
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, United States
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, United States
| |
Collapse
|
3
|
Tseng HK, Su YY, Lai PJ, Lo SL, Liu HC, Reddy SR, Chen L, Lin CC. Chemoenzymatic Synthesis of GAA-7 Glycan Analogues and Evaluation of Their Neuritogenic Activities. ACS Chem Neurosci 2024; 15:656-670. [PMID: 38206798 DOI: 10.1021/acschemneuro.3c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Ganglioside GAA-7 exhibits higher neurite outgrowth than ganglioside GM1a and most echinodermatous gangliosides (EGs) when tested on neuron-like rat adrenal pheochromocytoma (PC12) cells in the presence of nerve growth factor (NGF). The unique structure of GAA-7 glycan, containing an uncommon sialic acid (8-O-methyl-N-glycolylneuraminic acid) and sialic acid-α-2,3-GalNAc linkage, makes it challenging to synthesize. We recently developed a streamlined method to chemoenzymatically synthesize GAA-7 glycan and employed this modular strategy to efficiently prepare a library of GAA-7 glycan analogues incorporating N-modified or 8-methoxyl sialic acids. Most of these synthetic glycans exhibited moderate efficacy in promoting neuronal differentiation of PC12 cells. Among them, the analogue containing common sialic acid shows greater potential than the GAA-7 glycan itself. This result reveals that methoxy modification is not essential for neurite outgrowth. Consequently, the readily available analogue presents a promising model for further biological investigations.
Collapse
Affiliation(s)
- Hsin-Kai Tseng
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan
| | - Yung-Yu Su
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan
| | - Po-Jen Lai
- Institute of Molecular Medicine, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan
| | - Shao-Lun Lo
- Institute of Molecular Medicine, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan
| | - Hsien-Chein Liu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan
| | | | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan First Road, Kaohsiung 80708, Taiwan
| |
Collapse
|
4
|
Chen X. Enabling Chemoenzymatic Strategies and Enzymes for Synthesizing Sialyl Glycans and Sialyl Glycoconjugates. Acc Chem Res 2024; 57:234-246. [PMID: 38127793 PMCID: PMC10795189 DOI: 10.1021/acs.accounts.3c00614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Sialic acids are fascinating negatively charged nine-carbon monosaccharides. Sialic acid-containing glycans and glycoconjugates are structurally diverse, functionally important, and synthetically challenging molecules. We have developed highly efficient chemoenzymatic strategies that combine the power of chemical synthesis and enzyme catalysis to make sialic acids, sialyl glycans, sialyl glycoconjugates, and their derivatives more accessible, enabling the efforts to explore their functions and applications. The Account starts with a brief description of the structural diversity and the functional importance of naturally occurring sialic acids and sialosides. The development of one-pot multienzyme (OPME) chemoenzymatic sialylation strategies is then introduced, highlighting its advantages in synthesizing structurally diverse sialosides with a sialyltransferase donor substrate engineering tactic. With the strategy, systematic access to sialosides containing different sialic acid forms with modifications at C3/4/5/7/8/9, various internal glycans, and diverse sialyl linkages is now possible. Also briefly described is the combination of the OPME sialylation strategy with bacterial sialidases for synthesizing sialidase inhibitors. With the goal of simplifying the product purification process for enzymatic glycosylation reactions, glycosphingolipids that contain a naturally existing hydrophobic tag are attractive targets for chemoenzymatic total synthesis. A user-friendly highly efficient chemoenzymatic strategy is developed which involves three main processes, including chemical synthesis of lactosyl sphingosine as a water-soluble hydrophobic tag-containing intermediate, OPME enzymatic extension of its glycan component with a single C18-cartridge purification of the product, followed by a facile chemical acylation reaction. The strategy allows the introduction of different sialic acid forms and diverse fatty acyl chains into the products. Gram-scale synthesis has been demonstrated. OPME sialylation has also been demonstrated for the chemoenzymatic synthesis of sialyl glycopeptides and in vitro enzymatic N-glycan processing for the formation of glycoproteins with disialylated biantennary complex-type N-glycans. For synthesizing human milk oligosaccharides (HMOs) which are glycans with a free reducing end, acceptor substrate engineering and process engineering strategies are developed, which involve the design of a hydrophobic tag that can be easily installed into the acceptor substrate to allow facile purification of the product from enzymatic reactions and can be conveniently removed in the final step to produce target molecules. The process engineering involves heat-inactivation of enzymes in the intermediate steps in multistep OPME reactions for the production of long-chain sialoside targets in a single reaction pot and with a single C18-cartridge purification process. In addition, a chemoenzymatic synthon strategy has been developed. It involves the design of a derivative of the sialyltransferase donor substrate precursor, which is tolerated by enzymes in OPME reactions, introduced to enzymatic products, and then chemically converted to the desired target structures in the final step. The chemoenzymatic synthon approach has been used together with the acceptor substrate engineering method in the synthesis of complex bacterial glycans containing sialic acids, legionaminic acids, and derivatives. The biocatalysts characterized and their engineered mutants developed by the Chen group are described, with highlights on synthetically useful enzymes. We anticipate further development of chemoenzymatic strategies and biocatalysts to enable exploration of the sialic acid space.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
5
|
Silva-Díaz A, Ramírez-Cárdenas J, Muñoz-García JC, de la Fuente MC, Thépaut M, Fieschi F, Ramos-Soriano J, Angulo J, Rojo J. Fluorinated Man 9 as a High Mannose Mimetic to Unravel Its Recognition by DC-SIGN Using NMR. J Am Chem Soc 2023; 145:26009-26015. [PMID: 37979136 PMCID: PMC10852354 DOI: 10.1021/jacs.3c06204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Lectins are capable of reading out the structural information contained in carbohydrates through specific recognition processes. Determining the binding epitope of the sugar is fundamental to understanding this recognition event. Nuclear magnetic resonance (NMR) is a powerful tool to obtain this structural information in solution; however, when the sugar involved is a complex oligosaccharide, such as high mannose, the signal overlap found in the NMR spectra precludes an accurate analysis of the interaction. The introduction of tags into these complex oligosaccharides could overcome these problems and facilitate NMR studies. Here, we show the preparation of the Man9 of high mannose with some fluorine tags and the study of the interaction with its receptor, dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN). This fluorinated ligand has allowed us to apply heteronuclear two-dimensional (2D) 1H,19F STD-TOCSYreF NMR experiments, using the initial slope approach, which has facilitated the analysis of the Man9/DC-SIGN interaction, unequivocally providing the binding epitope.
Collapse
Affiliation(s)
- Adrián Silva-Díaz
- Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad
de Sevilla, Av. Américo
Vespucio 49, Seville 41092, Spain
| | - Jonathan Ramírez-Cárdenas
- Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad
de Sevilla, Av. Américo
Vespucio 49, Seville 41092, Spain
| | - Juan C. Muñoz-García
- Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad
de Sevilla, Av. Américo
Vespucio 49, Seville 41092, Spain
| | - M. Carmen de la Fuente
- Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad
de Sevilla, Av. Américo
Vespucio 49, Seville 41092, Spain
| | - Michel Thépaut
- Univ.
Grenoble Alpes, CNRS, CEA, IBS, Grenoble F-38044, France
| | - Franck Fieschi
- Univ.
Grenoble Alpes, CNRS, CEA, IBS, Grenoble F-38044, France
- Institut
Universitaire de France (IUF), Paris 75231, France
| | - Javier Ramos-Soriano
- Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad
de Sevilla, Av. Américo
Vespucio 49, Seville 41092, Spain
| | - Jesús Angulo
- Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad
de Sevilla, Av. Américo
Vespucio 49, Seville 41092, Spain
| | - Javier Rojo
- Instituto
de Investigaciones Químicas (IIQ), CSIC − Universidad
de Sevilla, Av. Américo
Vespucio 49, Seville 41092, Spain
| |
Collapse
|
6
|
Bourguet E, Figurska S, Fra Czek MM. Human Neuraminidases: Structures and Stereoselective Inhibitors. J Med Chem 2022; 65:3002-3025. [PMID: 35170942 DOI: 10.1021/acs.jmedchem.1c01612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This Perspective describes the classification, structures, substrates, mechanisms of action, and implications of human neuraminidases (hNEUs) in various pathologies. Some inhibitors have been developed for each isoform, leading to more precise interactions with hNEUs. Although crystal structure data are available for NEU2, most of the findings are based on NEU1 inhibition, and limited information is available for other hNEUs. Therefore, the synthesis of new compounds would facilitate the enrichment of the arsenal of inhibitors to better understand the roles of hNEUs and their mechanisms of action. Nevertheless, due to the already known inhibitors of human neuraminidase enzymes, a structure-activity relationship is presented along with different approaches to inhibit these enzymes for the development of potent and selective inhibitors. Among the different emerging strategies, one is the inhibition of the dimerization of NEU1 or NEU3, and the second is the inhibition of certain receptors located close to hNEU.
Collapse
Affiliation(s)
- Erika Bourguet
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, 51097 Reims, France
| | - Sylwia Figurska
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, 51097 Reims, France.,Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Manuela Maria Fra Czek
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, 51097 Reims, France.,Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
7
|
Chinoy ZS, Montembault E, Moremen KW, Royou A, Friscourt F. Impacting Bacterial Sialidase Activity by Incorporating Bioorthogonal Chemical Reporters onto Mammalian Cell-Surface Sialosides. ACS Chem Biol 2021; 16:2307-2314. [PMID: 34590826 DOI: 10.1021/acschembio.1c00469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioorthogonal chemical reporters, in synergy with click chemistry, have emerged as a key technology for tagging complex glycans in living cells. This strategy relies on the fact that bioorthogonal chemical reporters are highly reactive species while being biologically noninvasive. Here, we report that chemical reporters and especially sydnones may have, on the contrary, enormous impact on biomolecule processing enzymes. More specifically, we show that editing cell-surface sialic acid-containing glycans (sialosides) with bioorthogonal chemical reporters can significantly affect the activity of bacterial sialidases, enzymes expressed by bacteria during pathogenesis for cleaving sialic acid sugars from mammalian cell-surface glycans. Upon screening various chemical reporters, as well as their position on the sialic acid residue, we identified that pathogenic bacterial sialidases were unable to cleave sialosides displaying a sydnone at the 5-position of sialic acids in vitro as well as in living cells. This study highlights the importance of investigating more systematically the metabolic fate of glycoconjugates modified with bioorthogonal reporters.
Collapse
Affiliation(s)
- Zoeisha S. Chinoy
- Institut Européen de Chimie et Biologie, Université de Bordeaux, 2 rue Robert Escarpit, 33607 Pessac, France
- Institut des Sciences Moléculaires, CNRS UMR5255, 33405 Talence, France
| | - Emilie Montembault
- Institut Européen de Chimie et Biologie, Université de Bordeaux, 2 rue Robert Escarpit, 33607 Pessac, France
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, 33077 Bordeaux, France
| | - Kelley W. Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Anne Royou
- Institut Européen de Chimie et Biologie, Université de Bordeaux, 2 rue Robert Escarpit, 33607 Pessac, France
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR5095, 33077 Bordeaux, France
| | - Frédéric Friscourt
- Institut Européen de Chimie et Biologie, Université de Bordeaux, 2 rue Robert Escarpit, 33607 Pessac, France
- Institut des Sciences Moléculaires, CNRS UMR5255, 33405 Talence, France
| |
Collapse
|
8
|
Council CE, Kilpin KJ, Gusthart JS, Allman SA, Linclau B, Lee SS. Enzymatic glycosylation involving fluorinated carbohydrates. Org Biomol Chem 2021; 18:3423-3451. [PMID: 32319497 DOI: 10.1039/d0ob00436g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fluorinated carbohydrates, where one (or more) fluorine atom(s) have been introduced into a carbohydrate structure, typically through deoxyfluorination chemistry, have a wide range of applications in the glycosciences. Fluorinated derivatives of galactose, glucose, N-acetylgalactosamine, N-acetylglucosamine, talose, fucose and sialic acid have been employed as either donor or acceptor substrates in glycosylation reactions. Fluorinated donors can be synthesised by synthetic methods or produced enzymatically from chemically fluorinated sugars. The latter process is mediated by enzymes such as kinases, phosphorylases and nucleotidyltransferases. Fluorinated donors produced by either method can subsequently be used in glycosylation reactions mediated by glycosyltransferases, or phosphorylases yielding fluorinated oligosaccharide or glycoconjugate products. Fluorinated acceptor substrates are typically synthesised chemically. Glycosyltransferases are most commonly used in conjunction with natural donors to further elaborate fluorinated acceptor substrates. Glycoside hydrolases are used with either fluorinated donors or acceptors. The activity of enzymes towards fluorinated sugars is often lower than towards the natural sugar substrates irrespective of donor or acceptor. This may be in part attributed to elimination of the contribution of the hydroxyl group to the binding of the substrate to enzymes. However, in many cases, enzymes still maintain a significant activity, and reactions may be optimised where necessary, enabling enzymes to be used more successfully in the production of fluorinated carbohydrates. This review describes the current state of the art regarding chemoenzymatic production of fluorinated carbohydrates, focusing specifically on examples of the enzymatic production of activated fluorinated donors and enzymatic glycosylation involving fluorinated sugars as either glycosyl donors or acceptors.
Collapse
Affiliation(s)
- Claire E Council
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | | | | | | | | | | |
Collapse
|
9
|
Martínez JD, Manzano AI, Calviño E, Diego AD, Rodriguez de Francisco B, Romanò C, Oscarson S, Millet O, Gabius HJ, Jiménez-Barbero J, Cañada FJ. Fluorinated Carbohydrates as Lectin Ligands: Simultaneous Screening of a Monosaccharide Library and Chemical Mapping by 19F NMR Spectroscopy. J Org Chem 2020; 85:16072-16081. [PMID: 33258593 PMCID: PMC7773211 DOI: 10.1021/acs.joc.0c01830] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Molecular recognition of carbohydrates is a key step in essential biological processes. Carbohydrate receptors can distinguish monosaccharides even if they only differ in a single aspect of the orientation of the hydroxyl groups or harbor subtle chemical modifications. Hydroxyl-by-fluorine substitution has proven its merits for chemically mapping the importance of hydroxyl groups in carbohydrate-receptor interactions. 19F NMR spectroscopy could thus be adapted to allow contact mapping together with screening in compound mixtures. Using a library of fluorinated glucose (Glc), mannose (Man), and galactose (Gal) derived by systematically exchanging every hydroxyl group by a fluorine atom, we developed a strategy combining chemical mapping and 19F NMR T2 filtering-based screening. By testing this strategy on the proof-of-principle level with a library of 13 fluorinated monosaccharides to a set of three carbohydrate receptors of diverse origin, i.e. the human macrophage galactose-type lectin, a plant lectin, Pisum sativum agglutinin, and the bacterial Gal-/Glc-binding protein from Escherichia coli, it became possible to simultaneously define their monosaccharide selectivity and identify the essential hydroxyls for interaction.
Collapse
Affiliation(s)
- J. Daniel Martínez
- CIC
bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Ana I. Manzano
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Eva Calviño
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana de Diego
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | - Cecilia Romanò
- Centre
for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stefan Oscarson
- Centre
for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Oscar Millet
- CIC
bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Hans-Joachim Gabius
- Institute
of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 80539 Munich, Germany
| | - Jesús Jiménez-Barbero
- CIC
bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48160 Derio, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
- Department
of Organic Chemistry II, Faculty of Science and Technology, UPV-EHU, 48940 Leioa, Spain
| | - Francisco J. Cañada
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro
de Investigación Biomédica en Red-Enfermedades Respiratorias
(CIBERES), Avda Monforte
de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
10
|
Mertsch A, Poschenrieder S, Fessner W. Semi‐Synthetic Sialic Acid Probes for Challenging the Substrate Promiscuity of Enzymes in the Sialoconjugation Pathway. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexander Mertsch
- Institute of Organic Chemistry and Biochemistry Technische Universität Darmstadt Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| | - Silvan Poschenrieder
- Institute of Organic Chemistry and Biochemistry Technische Universität Darmstadt Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| | - Wolf‐Dieter Fessner
- Institute of Organic Chemistry and Biochemistry Technische Universität Darmstadt Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| |
Collapse
|
11
|
Li T, Zhang H, Guo Y, Zhu T, Yu P, Meng X. Efficient chemoenzymatic synthesis of fluorinated sialyl Thomsen-Friedenreich antigens and investigation of their characteristics. Eur J Med Chem 2020; 208:112776. [PMID: 32896759 DOI: 10.1016/j.ejmech.2020.112776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
A set of fluorinated sialyl-T derivatives were efficiently synthesized using one-pot multi-enzyme (OPME) chemoenzymatic approach. The P. multocida α2-3-sialyltransferase (PmST1) involved in the synthesis showed extremely flexible donor and acceptor substrate specificities. These sialosides have been successfully investigated with stability towards Clostridium perfringens sialidase substrate specificity assay using 1H NMR spectroscopy. Hydrolysis studies monitored by 1H NMR clearly demonstrated that the fluorine substitution obviously reduced hydrolysis rate of Clostridium perfringens sialidase. To further investigate the fluorine influence, structure-dependent variation of sialoside-lectin binding was observed for MAL and different sialoside-immobilized surfaces. Subtle changes on the ligand of carbohydrate-binding protein were distinguished by SPR. These fluorinated sialyl-T derivatives obtained are valuable probes for further biological studies or antitumor drug design.
Collapse
Affiliation(s)
- Tingshen Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Huiming Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Ying Guo
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Tao Zhu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China; CanSino Biologics Inc., Tianjin Enterprise Key Laboratory of Respiratory Bacterial Recombination and Conjugated Vaccine, Tianjin, 300457, China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xin Meng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
12
|
Xie Y, Sheng Y, Li Q, Ju S, Reyes J, Lebrilla CB. Determination of the glycoprotein specificity of lectins on cell membranes through oxidative proteomics. Chem Sci 2020; 11:9501-9512. [PMID: 34094216 PMCID: PMC8162070 DOI: 10.1039/d0sc04199h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/25/2022] Open
Abstract
The cell membrane is composed of a network of glycoconjugates including glycoproteins and glycolipids that presents a dense matrix of carbohydrates playing critical roles in many biological processes. Lectin-based technology has been widely used to characterize glycoconjugates in tissues and cell lines. However, their specificity toward their putative glycan ligand and sensitivity in situ have been technologically difficult to study. Additionally, because they recognize primarily glycans, the underlying glycoprotein targets are generally not known. In this study, we employed lectin proximity oxidative labeling (Lectin PROXL) to identify cell surface glycoproteins that contain glycans that are recognized by lectins. Commonly used lectins were modified with a probe to produce hydroxide radicals in the proximity of the labeled lectins. The underlying polypeptides of the glycoproteins recognized by the lectins are oxidized and identified by the standard proteomic workflow. As a result, approximately 70% of identified glycoproteins were oxidized in situ by all the lectin probes, while only 5% of the total proteins were oxidized. The correlation between the glycosites and oxidation sites demonstrated the effectiveness of the lectin probes. The specificity and sensitivity of each lectin were determined using site-specific glycan information obtained through glycomic and glycoproteomic analyses. Notably, the sialic acid-binding lectins and the fucose-binding lectins had higher specificity and sensitivity compared to other lectins, while those that were specific to high mannose glycans have poor sensitivity and specificity. This method offers an unprecedented view of the interactions of lectins with specific glycoproteins as well as protein networks that are mediated by specific glycan types on cell membranes.
Collapse
Affiliation(s)
- Yixuan Xie
- Department of Chemistry, University of California Davis Davis California USA
| | - Ying Sheng
- Department of Chemistry, Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis Davis California USA
| | - Qiongyu Li
- Department of Chemistry, University of California Davis Davis California USA
| | - Seunghye Ju
- Department of Chemistry, University of California Davis Davis California USA
| | - Joe Reyes
- Marine Science Institute, University of the Philippines Diliman Quezon City Philippines
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis Davis California USA
- Department of Biochemistry, University of California Davis Davis California USA
| |
Collapse
|
13
|
McArthur JB, Santra A, Li W, Kooner AS, Liu Z, Yu H, Chen X. L. pneumophila CMP-5,7-di-N-acetyllegionaminic acid synthetase (LpCLS)-involved chemoenzymatic synthesis of sialosides and analogues. Org Biomol Chem 2020; 18:738-744. [PMID: 31912849 DOI: 10.1039/c9ob02476j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
5,7-Di-N-acetyllegionaminic acid (Leg5,7Ac2) is a bacterial nonulosonic acid (NulO) analogue of sialic acids, an important class of monosaccharides in mammals and in some bacteria. To develop efficient one-pot multienzyme (OPME) glycosylation systems for synthesizing Leg5,7Ac2-glycosides, Legionella pneumophila cytidine 5'-monophosphate (CMP)-Leg5,7Ac2 synthetase (LpCLS) was cloned and characterized. It was successfully used in producing Leg5,7Ac2-glycosides from chemoenzymatically synthesized Leg5,7Ac2 using a one-pot two-enzyme system or from its chemically synthesized six-carbon monosaccharide precursor 2,4-diacetamido-2,4,6-trideoxymannose (6deoxyMan2,4diNAc) in a one-pot three-enzyme system. In addition, LpCLS was shown to tolerate Neu5Ac7NAc, a C9-hydroxyl analogue of Leg5,7Ac2 and also a stable analogue of 7-O-acetylneuraminic acid (Neu5,7Ac2), to allow OPME synthesis of the corresponding α2-3-linked sialosides, from chemically synthesized six-carbon monosaccharide precursor 4-N-acetyl-4-deoxy-N-acetylmannosamine (ManNAc7NAc).
Collapse
Affiliation(s)
- John B McArthur
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Abhishek Santra
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Wanqing Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Anoopjit S Kooner
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Ziqi Liu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
14
|
Kooner AS, Yu H, Chen X. Synthesis of N-Glycolylneuraminic Acid (Neu5Gc) and Its Glycosides. Front Immunol 2019; 10:2004. [PMID: 31555264 PMCID: PMC6724515 DOI: 10.3389/fimmu.2019.02004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
Sialic acids constitute a family of negatively charged structurally diverse monosaccharides that are commonly presented on the termini of glycans in higher animals and some microorganisms. In addition to N-acetylneuraminic acid (Neu5Ac), N-glycolyl neuraminic acid (Neu5Gc) is among the most common sialic acid forms in nature. Nevertheless, unlike most animals, human cells loss the ability to synthesize Neu5Gc although Neu5Gc-containing glycoconjugates have been found on human cancer cells and in various human tissues due to dietary incorporation of Neu5Gc. Some pathogenic bacteria also produce Neu5Ac and the corresponding glycoconjugates but Neu5Gc-producing bacteria have yet to be found. In addition to Neu5Gc, more than 20 Neu5Gc derivatives have been found in non-human vertebrates. To explore the biological roles of Neu5Gc and its naturally occurring derivatives as well as the corresponding glycans and glycoconjugates, various chemical and enzymatic synthetic methods have been developed to obtain a vast array of glycosides containing Neu5Gc and/or its derivatives. Here we provide an overview on various synthetic methods that have been developed. Among these, the application of highly efficient one-pot multienzyme (OPME) sialylation systems in synthesizing compounds containing Neu5Gc and derivatives has been proven as a powerful strategy.
Collapse
Affiliation(s)
| | - Hai Yu
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | - Xi Chen
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| |
Collapse
|
15
|
Li W, McArthur JB, Chen X. Strategies for chemoenzymatic synthesis of carbohydrates. Carbohydr Res 2018; 472:86-97. [PMID: 30529493 DOI: 10.1016/j.carres.2018.11.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/30/2022]
Abstract
Carbohydrates are structurally complex but functionally important biomolecules. Therefore, they have been challenging but attractive synthetic targets. While substantial progress has been made on advancing chemical glycosylation methods, incorporating enzymes into carbohydrate synthetic schemes has become increasingly practical as more carbohydrate biosynthetic and metabolic enzymes as well as their mutants with synthetic application are identified and expressed for preparative and large-scale synthesis. Chemoenzymatic strategies that integrate the flexibility of chemical derivatization with enzyme-catalyzed reactions have been extremely powerful. Briefly summarized here are our experiences on developing one-pot multienzyme (OPME) systems and representative chemoenzymatic strategies from others using glycosyltransferase-catalyzed reactions for synthesizing diverse structures of oligosaccharides, polysaccharides, and glycoconjugates. These strategies allow the synthesis of complex carbohydrates including those containing naturally occurring carbohydrate postglycosylational modifications (PGMs) and non-natural functional groups. By combining these srategies with facile purification schemes, synthetic access to the diverse space of carbohydrate structures can be automated and will not be limited to specialists.
Collapse
Affiliation(s)
- Wanqing Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - John B McArthur
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
16
|
McArthur JB, Yu H, Tasnima N, Lee CM, Fisher AJ, Chen X. α2-6-Neosialidase: A Sialyltransferase Mutant as a Sialyl Linkage-Specific Sialidase. ACS Chem Biol 2018. [PMID: 29543427 DOI: 10.1021/acschembio.8b00002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The lack of α2-6-linkage specific sialidases limits the structural and functional studies of sialic-acid-containing molecules. Photobacterium damselae α2-6-sialyltransferase (Pd2,6ST) was shown previously to have α2-6-specific, but weak, sialidase activity. Here, we develop a high-throughput blue-white colony screening method to identify Pd2,6ST mutants with improved α2-6-sialidase activity from mutant libraries generated by sequential saturation mutagenesis. A triple mutant (Pd2,6ST S232L/T356S/W361F) has been identified with 100-fold improved activity, high α2-6-sialyl linkage selectivity, and ability to cleave two common sialic acid forms, N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). It is a valuable tool for sialoglycan structural analysis and functional characterization. The sequential saturation mutagenesis and screening strategy developed here can be explored to evolve other linkage-specific neoglycosidases from the corresponding glycosyltransferases.
Collapse
Affiliation(s)
- John B. McArthur
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Hai Yu
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Nova Tasnima
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Christie M. Lee
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Andrew J. Fisher
- Department of Chemistry, University of California, Davis, California 95616, United States
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
17
|
Hunter CD, Khanna N, Richards MR, Rezaei Darestani R, Zou C, Klassen JS, Cairo CW. Human Neuraminidase Isoenzymes Show Variable Activities for 9- O-Acetyl-sialoside Substrates. ACS Chem Biol 2018; 13:922-932. [PMID: 29341588 DOI: 10.1021/acschembio.7b00952] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recognition of terminal sialic acids is central to many cellular processes, and structural modification of sialic acid can disrupt these interactions. A prominent, naturally occurring, modification of sialic acid is 9- O-acetylation (9- O-Ac). Study of this modification through generation and analysis of 9- O-Ac sialosides is challenging because of the lability of the acetate group. Fundamental questions regarding the role of 9- O-Ac sialic acids remain unanswered, including what effect it may have on recognition and hydrolysis by the human neuraminidase enzymes (hNEU). To investigate the substrate activity of 9- O-acetylated sialic acids (Neu5,9Ac2), we synthesized an acetylated fluorogenic hNEU substrate 2'-(4-methylumbelliferyl)-9- O-acetyl-α-d- N-acetylneuraminic acid. Additionally, we generated a panel of octyl sialyllactosides containing modified sialic acids including variation in linkage, 9- O-acetylation, and C-5 group (Neu5Gc). Relative rates of substrate cleavage by hNEU were determined using fluorescence spectroscopy and electrospray ionization mass spectrometry. We report that 9- O-acetylation had a significant, and differential, impact on sialic acid hydrolysis by hNEU with general substrate tolerance following the trend of Neu5Ac > Neu5Gc ≫ Neu5,9Ac2 for NEU2, NEU3, and NEU4. Both NEU2 and NEU3 had remarkably reduced activity for Neu5,9Ac2 containing substrates. Other isoenzymes appeared to be more tolerant, with NEU4 even showing increased activity on Neu5,9Ac2 substrates with an aryl aglycone. The impact of these minor structural changes to sialic acid on hNEU activity was unexpected, and these results provide evidence of the substantial influence of 9- O-Ac modifications on hNEU enzyme substrate specificity. Furthermore, these findings may implicate hNEU in processes governed by 9- O-acetyltransferases and -esterases.
Collapse
Affiliation(s)
- Carmanah D. Hunter
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta T6G 2G2, Canada
| | - Neha Khanna
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta T6G 2G2, Canada
| | - Michele R. Richards
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta T6G 2G2, Canada
| | - Reza Rezaei Darestani
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta T6G 2G2, Canada
| | - Chunxia Zou
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta T6G 2G2, Canada
| | - John S. Klassen
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta T6G 2G2, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta T6G 2G2, Canada
| |
Collapse
|
18
|
Bao L, Ding L, Hui J, Ju H. A light-up imaging protocol for neutral pH-enhanced fluorescence detection of lysosomal neuraminidase activity in living cells. Chem Commun (Camb) 2018; 52:12897-12900. [PMID: 27738670 DOI: 10.1039/c6cc07574f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A lysosome-accessing nanoprobe is designed for recognition of lysosomal neuraminidases (Lyso-Neus), which can cleave the 4-methylumbelliferone moieties of the substrate from the nanoprobe, and lead to the escape of the moieties from acidic lysosomes into the neutral cytosol assisted by cationic poly(ethyleneimine) to light up the pH-responsive fluorescence for visual detection and dynamic tracking of Lyso-Neu activity in living cells.
Collapse
Affiliation(s)
- Lei Bao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Jingjing Hui
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
19
|
Santra A, Xiao A, Yu H, Li W, Li Y, Ngo L, McArthur JB, Chen X. A Diazido Mannose Analogue as a Chemoenzymatic Synthon for Synthesizing Di-N
-acetyllegionaminic Acid-Containing Glycosides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abhishek Santra
- Department of Chemistry; University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - An Xiao
- Department of Chemistry; University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - Hai Yu
- Department of Chemistry; University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - Wanqing Li
- Department of Chemistry; University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - Yanhong Li
- Department of Chemistry; University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - Linh Ngo
- Department of Chemistry; University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - John B. McArthur
- Department of Chemistry; University of California, Davis; One Shields Avenue Davis CA 95616 USA
| | - Xi Chen
- Department of Chemistry; University of California, Davis; One Shields Avenue Davis CA 95616 USA
| |
Collapse
|
20
|
Santra A, Xiao A, Yu H, Li W, Li Y, Ngo L, McArthur JB, Chen X. A Diazido Mannose Analogue as a Chemoenzymatic Synthon for Synthesizing Di-N-acetyllegionaminic Acid-Containing Glycosides. Angew Chem Int Ed Engl 2018; 57:2929-2933. [PMID: 29349857 DOI: 10.1002/anie.201712022] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 12/13/2022]
Abstract
A chemoenzymatic synthon was designed to expand the scope of the chemoenzymatic synthesis of carbohydrates. The synthon was enzymatically converted into carbohydrate analogues, which were readily derivatized chemically to produce the desired targets. The strategy is demonstrated for the synthesis of glycosides containing 7,9-di-N-acetyllegionaminic acid (Leg5,7Ac2 ), a bacterial nonulosonic acid (NulO) analogue of sialic acid. A versatile library of α2-3/6-linked Leg5,7Ac2 -glycosides was built by using chemically synthesized 2,4-diazido-2,4,6-trideoxymannose as a chemoenzymatic synthon for highly efficient one-pot multienzyme (OPME) sialylation followed by downstream chemical conversion of the azido groups into acetamido groups. The syntheses required 10 steps from commercially available d-fucose and had an overall yield of 34-52 %, thus representing a significant improvement over previous methods. Free Leg5,7Ac2 monosaccharide was also synthesized by a sialic acid aldolase-catalyzed reaction.
Collapse
Affiliation(s)
- Abhishek Santra
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - An Xiao
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Wanqing Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Yanhong Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Linh Ngo
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - John B McArthur
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
21
|
Tasnima N, Yu H, Li Y, Santra A, Chen X. Chemoenzymatic synthesis of para-nitrophenol (pNP)-tagged α2-8-sialosides and high-throughput substrate specificity studies of α2-8-sialidases. Org Biomol Chem 2018; 15:160-167. [PMID: 27924345 DOI: 10.1039/c6ob02240e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
para-Nitrophenol (pNP)-tagged α2-8-linked sialosides containing different sialic acid forms were chemoenzymatically synthesized using an efficient one-pot three-enzyme α2-8-sialylation system. The resulting compounds allowed high-throughput substrate specificity studies of the α2-8-sialidase activity of a recombinant human cytosolic sialidase hNEU2 and various bacterial sialidases. The sialoside substrate profiles obtained can be used to guide the selection of suitable sialidases for sialylglycan analysis and for cell and tissue surface glycan modification. They can also be used to guide sialidase inhibitor design.
Collapse
Affiliation(s)
- Nova Tasnima
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Yanhong Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Abhishek Santra
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
22
|
Xiao A, Li Y, Li X, Santra A, Yu H, Li W, Chen X. Sialidase-catalyzed one-pot multienzyme (OPME) synthesis of sialidase transition-state analogue inhibitors. ACS Catal 2018; 8:43-47. [PMID: 29713561 PMCID: PMC5920526 DOI: 10.1021/acscatal.7b03257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sialidase transition state analog inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (Neu5Ac2en, DANA) has played a leading role in developing clinically used anti-influenza virus drugs. Taking advantage of the Neu5Ac2en-forming catalytic property of Streptococcus pneumoniae sialidase SpNanC, an effective one-pot multienzyme (OPME) strategy has been developed to directly access Neu5Ac2en and its C-5, C-9, and C-7-analogs from N-acetylmannosamine (ManNAc) and analogs. The obtained Neu5Ac2en analogs can be further derivatized at various positions to generate a larger inhibitor library. Inhibition studies demonstrated improved selectivity of several C-5- or C-9-modified Neu5Ac2en derivatives against several bacterial sialidases. The study provides an efficient enzymatic method to access sialidase inhibitors with improved selectivity.
Collapse
Affiliation(s)
- An Xiao
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Yanhong Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Xixuan Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Abhishek Santra
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Wanqing Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
23
|
Li W, Xiao A, Li Y, Yu H, Chen X. Chemoenzymatic synthesis of Neu5Ac9NAc-containing α2-3- and α2-6-linked sialosides and their use for sialidase substrate specificity studies. Carbohydr Res 2017; 451:51-58. [PMID: 28961426 DOI: 10.1016/j.carres.2017.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/09/2017] [Accepted: 09/09/2017] [Indexed: 12/22/2022]
Abstract
O-Acetylation of sialic acid (Sia) modulates its recognition by sialic acid-binding proteins and plays an important role in biological and pathological processes. 9-O-Acetylation is the most common modification of sialic acid in human. However, study of O-acetylated sialoglycans is hampered due to the instability of O-acetyl group towards pH changes and sensitivity to esterases. Our previous studies demonstrated a chemical biology method to this problem by replacing the oxygen atom in the C9 ester group of sialic acid by a nitrogen to form an amide. Here, we synthesized a library of sixteen new 9-acetamido-9-deoxy-N-acetylneuraminic acid (Neu5Ac9NAc)-containing α2-3- and α2-6-linked sialosides with various underlying glycans using efficient one-pot three-enzyme (OP3E) sialylation systems. Neu5Ac9NAc-containing compounds with a para-nitrophenol aglycon have been used together with their 9-O-acetyl analogs in microtiter plate-based high-throughput substrate specificity studies of nine different sialidases including those from humans and bacteria. In general, similar to 9-O-acetylation, 9-N-acetyl modification of sialic acid in the substrates lowers sialic acid-cleavage activity of most sialidases. In most cases, Neu5Ac9NAc is a good analog of 9-O-acetyl sialic acid. However, exceptions do exist. For example, 9-N- and 9-O-acetyl modifications have different effects on the sialosides cleave efficiencies of a commercially available C. perfringens sialidase as well as recombinant Streptococcus pneumoniae sialidase SpNanC and Bifidobacterium infantis sialidase BiNanH2. The mechanism for the difference awaits further investigation.
Collapse
Affiliation(s)
- Wanqing Li
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - An Xiao
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Yanhong Li
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
24
|
Aguilar AL, Briard JG, Yang L, Macauley MS, Wu P. Tools for Studying Glycans: Recent Advances in Chemoenzymatic Glycan Labeling. ACS Chem Biol 2017; 12:611-621. [PMID: 28301937 PMCID: PMC5469623 DOI: 10.1021/acschembio.6b01089] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The study of cellular glycosylation presents many challenges due, in large part, to the nontemplated nature of glycan biosynthesis and glycans' structural complexity. Chemoenzymatic glycan labeling (CeGL) has emerged as a new technique to address the limitations of existing methods for glycan detection. CeGL combines glycosyltransferases and unnatural nucleotide sugar donors equipped with a bioorthogonal chemical tag to directly label specific glycan acceptor substrates in situ within biological samples. This article reviews the current CeGL strategies that are available to characterize cell-surface and intracellular glycans. Applications include imaging glycan expression status in live cells and tissue samples, proteomic analysis of glycoproteins, and target validation. Combined with genetic and biochemical tools, CeGL provides new opportunities to elucidate the functional roles of glycans in human health and disease.
Collapse
Affiliation(s)
- Aime Lopez Aguilar
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Jennie Grace Briard
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Linette Yang
- Vassar College, 124 Raymond Ave, Poughkeepsie, NY 12604
| | - Matthew Scott Macauley
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| | - Peng Wu
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
25
|
McArthur JB, Yu H, Zeng J, Chen X. Converting Pasteurella multocidaα2-3-sialyltransferase 1 (PmST1) to a regioselective α2-6-sialyltransferase by saturation mutagenesis and regioselective screening. Org Biomol Chem 2017; 15:1700-1709. [PMID: 28134951 DOI: 10.1039/c6ob02702d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A microtiter plate-based screening assay capable of determining the activity and regioselectivity of sialyltransferases was developed. This assay was used to screen two single-site saturation libraries of Pasteurella multocidaα2-3-sialyltransferase 1 (PmST1) for α2-6-sialyltransferase activity and total sialyltransferase activity. PmST1 double mutant P34H/M144L was found to be the most effective α2-6-sialyltransferase and displayed 50% reduced donor hydrolysis and 50-fold reduced sialidase activity compared to the wild-type PmST1. It retained the donor substrate promiscuity of the wild-type enzyme and was used in an efficient one-pot multienzyme (OPME) system to selectively catalyze the sialylation of the terminal galactose residue in a multigalactose-containing tetrasaccharide lacto-N-neotetraoside.
Collapse
Affiliation(s)
- John B McArthur
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
26
|
Sandeep A, Reddy BS, Hyder I, Kumar HMS. Synthesis of a new class of glycolipids and the evaluation of their immunogenicity using murine splenocytes. J Carbohydr Chem 2016. [DOI: 10.1080/07328303.2016.1238480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- A. Sandeep
- Vaccine Immunology Laboratory, Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Bonam Srinivasa Reddy
- Vaccine Immunology Laboratory, Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research, CSIR–Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Irfan Hyder
- Vaccine Immunology Laboratory, Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research, CSIR–Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Halmuthur M. Sampath Kumar
- Vaccine Immunology Laboratory, Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research, CSIR–Indian Institute of Chemical Technology, Hyderabad 500007, India
| |
Collapse
|
27
|
McCombs JE, Zou C, Parker RB, Cairo CW, Kohler JJ. Enhanced Cross-Linking of Diazirine-Modified Sialylated Glycoproteins Enabled through Profiling of Sialidase Specificities. ACS Chem Biol 2016; 11:185-92. [PMID: 26541974 DOI: 10.1021/acschembio.5b00775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sialic-acid-mediated interactions play critical roles on the cell surface, providing an impetus for the development of methods to study this important monosaccharide. In particular, photo-cross-linking sialic acids incorporated onto cell surfaces have allowed covalent capture of transient interactions between sialic acids and sialic-acid-recognizing proteins via cross-linking. However, natural sialic acids also present on the cell surface compete with photo-cross-linking sialic acids in binding events, limiting cross-linking yields. In order to improve the utility of one such photo-cross-linking sialic acid, SiaDAz, we examined a number of sialidases, enzymes that remove sialic acids from glycoconjugates, to find one that would cleave natural sialic acids but remain inactive toward SiaDAz. Using this sialidase, we improved SiaDAz-mediated cross-linking of an antisialyl Lewis X antibody and of endoglin. This protocol can be applied generally to sialic-acid-mediated interactions and will facilitate identification of sialic acid binding partners.
Collapse
Affiliation(s)
- Janet E. McCombs
- Department
of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, United States
| | - Chunxia Zou
- Alberta
Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Randy B. Parker
- Department
of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, United States
| | - Christopher W. Cairo
- Alberta
Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jennifer J. Kohler
- Department
of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, United States
| |
Collapse
|
28
|
Yu CC, Withers SG. Recent Developments in Enzymatic Synthesis of Modified Sialic Acid Derivatives. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500349] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
29
|
Rashidian M, Dozier JK, Distefano MD. Enzymatic labeling of proteins: techniques and approaches. Bioconjug Chem 2014; 24:1277-94. [PMID: 23837885 DOI: 10.1021/bc400102w] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Site-specific modification of proteins is a major challenge in modern chemical biology due to the large number of reactive functional groups typically present in polypeptides. Because of its importance in biology and medicine, the development of methods for site-specific modification of proteins is an area of intense research. Selective protein modification procedures have been useful for oriented protein immobilization, for studies of naturally occurring post-translational modifications, for creating antibody–drug conjugates, for the introduction of fluorophores and other small molecules on to proteins, for examining protein structure, folding, dynamics, and protein–protein interactions, and for the preparation of protein–polymer conjugates. One of the most important approaches for protein labeling is to incorporate bioorthogonal functionalities into proteins at specific sites via enzymatic reactions. The incorporated tags then enable reactions that are chemoselective, whose functional groups not only are inert in biological media, but also do not occur natively in proteins or other macromolecules. This review article summarizes the enzymatic strategies, which enable site-specific functionalization of proteins with a variety of different functional groups. The enzymes covered in this review include formylglycine generating enzyme, sialyltransferases, phosphopantetheinyltransferases, O-GlcNAc post-translational modification, sortagging, transglutaminase, farnesyltransferase, biotin ligase, lipoic acid ligase, and N-myristoyltransferase.
Collapse
|
30
|
Park SS, Gervay-Hague J. Synthesis of partially O-acetylated N-acetylneuraminic acid using regioselective silyl exchange technology. Org Lett 2014; 16:5044-7. [PMID: 25247390 PMCID: PMC4184446 DOI: 10.1021/ol502389g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Postglycosylation acetylation of
sialic acid imparts unique roles
to sialoglycoconjugates in mammalian immune response making structural
and functional understanding of these analogues important. Five partially O-acetylated Neu5Ac analogues have been synthesized. Reaction
of per-O-silylated Neu5Ac ester with AcOH and Ac2O in pyridine promotes regioselective silyl ether/acetate
exchange in the following order: C4 (2°) > C9 (1°) > C8 (2°) > C2 (anomeric).
Subsequent hydrogenolysis affords the corresponding sialic acid analogues
as useful chemical biology tools.
Collapse
Affiliation(s)
- Simon S Park
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | | |
Collapse
|
31
|
Paragas EM, Monreal IA, Vasil CM, Saludes JP. One-pot SSA-catalyzed β-elimination: an efficient and inexpensive protocol for easy access to the glycal of sialic acid. Carbohydr Res 2014; 402:77-80. [PMID: 25497336 DOI: 10.1016/j.carres.2014.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 10/24/2022]
Abstract
Neu5Ac2en1Me per-OAc, the fully protected glycal of sialic acid, is a key intermediate in the discovery of therapeutics and diagnostics, including anti-influenza drugs and proteolysis resistant peptidomimetic foldamers. The synthesis of this sialic acid derivative, however, still relies on standard sugar chemistry that utilizes multi-step methodologies. Herein we report a facile and highly efficient microwave-assisted preparation of Neu5Ac1Me using silica sulfuric acid (SSA) as solid-supported acid catalyst that is one- to two-orders of magnitude faster than standard procedures. We also describe the microwave-assisted and SSA-catalyzed one-pot, rapid, solvent free reaction that combines both peracetylation and β-elimination reactions in one step to generate the glycal from Neu5Ac1Me. We coined the term One-pot SSA-catalyzed Technology for β-Elimination Protocol (OneSTEP) to describe this least laborious, most efficient, and practical preparation to date of Neu5Ac2en1Me per-OAc in terms of yield, time, reagent cost, and waste generation.
Collapse
Affiliation(s)
- Erickson M Paragas
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - I Abrrey Monreal
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Chris M Vasil
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Jonel P Saludes
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
32
|
Smutova V, Albohy A, Pan X, Korchagina E, Miyagi T, Bovin N, Cairo CW, Pshezhetsky AV. Structural basis for substrate specificity of mammalian neuraminidases. PLoS One 2014; 9:e106320. [PMID: 25222608 PMCID: PMC4164519 DOI: 10.1371/journal.pone.0106320] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/24/2014] [Indexed: 12/21/2022] Open
Abstract
The removal of sialic acid (Sia) residues from glycoconjugates in vertebrates is mediated by a family of neuraminidases (sialidases) consisting of Neu1, Neu2, Neu3 and Neu4 enzymes. The enzymes play distinct physiological roles, but their ability to discriminate between the types of linkages connecting Sia and adjacent residues and between the identity and arrangement of the underlying sugars has never been systematically studied. Here we analyzed the specificity of neuraminidases by studying the kinetics of hydrolysis of BODIPY-labeled substrates containing common mammalian sialylated oligosaccharides: 3′Sia-LacNAc, 3′SiaLac, SiaLex, SiaLea, SiaLec, 6′SiaLac, and 6′SiaLacNAc. We found significant differences in substrate specificity of the enzymes towards the substrates containing α2,6-linked Sia, which were readily cleaved by Neu3 and Neu1 but not by Neu4 and Neu2. The presence of a branching 2-Fuc inhibited Neu2 and Neu4, but had almost no effect on Neu1 or Neu3. The nature of the sugar residue at the reducing end, either glucose (Glc) or N-acetyl-D-glucosamine (GlcNAc) had only a minor effect on all neuraminidases, whereas core structure (1,3 or 1,4 bond between D-galactose (Gal) and GlcNAc) was found to be important for Neu4 strongly preferring β3 (core 1) to β4 (core 2) isomer. Neu3 and Neu4 were in general more active than Neu1 and Neu2, likely due to their preference for hydrophobic substrates. Neu2 and Neu3 were examined by molecular dynamics to identify favorable substrate orientations in the binding sites and interpret the differences in their specificities. Finally, using knockout mouse models, we confirmed that the substrate specificities observed in vitro were recapitulated in enzymes found in mouse brain tissues. Our data for the first time provide evidence for the characteristic substrate preferences of neuraminidases and their ability to discriminate between distinct sialoside targets.
Collapse
Affiliation(s)
- Victoria Smutova
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center, University of Montreal, Montréal, Canada
| | - Amgad Albohy
- Alberta Glycomics Center, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xuefang Pan
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center, University of Montreal, Montréal, Canada
| | - Elena Korchagina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Taeko Miyagi
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan
| | - Nicolai Bovin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Christopher W. Cairo
- Alberta Glycomics Center, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Alexey V. Pshezhetsky
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center, University of Montreal, Montréal, Canada
- * E-mail:
| |
Collapse
|
33
|
Chemoenzymatic synthesis of sialosides containing C7-modified sialic acids and their application in sialidase substrate specificity studies. Carbohydr Res 2014; 389:100-11. [PMID: 24680514 DOI: 10.1016/j.carres.2014.02.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/20/2014] [Indexed: 01/12/2023]
Abstract
Modifications at the glycerol side chain of sialic acid in sialosides modulate their recognition by sialic acid-binding proteins and sialidases. However, limited work has been focused on the synthesis and functional studies of sialosides with C7-modified sialic acids. Here we report chemical synthesis of C4-modified ManNAc and mannose and their application as sialic acid precursors in a highly efficient one-pot three-enzyme system for chemoenzymatic synthesis of α2-3- and α2-6-linked sialyl para-nitrophenyl galactosides in which the C7-hydroxyl group in sialic acid (N-acetylneuraminic acid, Neu5Ac, or 2-keto-3-deoxynonulosonic acid, Kdn) was systematically substituted by -F, -OMe, -H, and -N3 groups. Substrate specificity study of bacterial and human sialidases using the obtained sialoside library containing C7-modified sialic acids showed that sialosides containing C7-deoxy Neu5Ac were selective substrates for all bacterial sialidases tested but not for human NEU2. The information obtained from sialidase substrate specificity can be used to guide the design of new inhibitors that are selective against bacterial sialidases.
Collapse
|
34
|
Amon R, Reuven EM, Leviatan Ben-Arye S, Padler-Karavani V. Glycans in immune recognition and response. Carbohydr Res 2014; 389:115-22. [PMID: 24680512 DOI: 10.1016/j.carres.2014.02.004] [Citation(s) in RCA: 271] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/29/2014] [Accepted: 02/02/2014] [Indexed: 11/16/2022]
Abstract
Glycans at the forefront of cells facilitate immune recognition processes. Cancer cells commonly present altered cell surface glycosylation, especially manifested in the expression of sialic acid at the termini of glycolipids and glycoproteins. Although tumor-associated carbohydrate antigens (TACAs) result in expression of altered-self, most such carbohydrates do not elicit strong humoral responses. Various strategies had been devised to elicit increased immunogenicity of such TACA aiming for potent immunotherapeutic antibodies or cancer vaccines. However some carbohydrates are immunogenic in humans and hold potential for novel glycotherapies. N-Glycolylneuraminic acid (Neu5Gc) is a foreign immunogenic sugar in humans originating from the diet (e.g., red meat) and subsequently expressed on the cell surface, especially accumulating on carcinoma. Consequently, the human immune system detects this non-self carbohydrate generating a broad anti-Neu5Gc antibody response. The co-existence of Neu5Gc/anti-Neu5Gc within humans spurs chronic inflammation mediated disease, including cancer. Concurrently, anti-Neu5Gc antibodies hold potential for novel targeted therapy. αGal is another foreign immunogenic carbohydrate antigen in humans and all humans have circulating anti-Gal antibodies. This review aims to describe the immunogenicity of Neu5Gc and its implications for human diseases, highlighting differences and similarities with αGal and its potential for novel targeted theranostics.
Collapse
Affiliation(s)
- Ron Amon
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eliran Moshe Reuven
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shani Leviatan Ben-Arye
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
35
|
Saludes JP, Sahoo D, Monreal IA. A facile microwave-assisted protocol for rapid synthesis of N-acetylneuraminic acid congeners. NEW J CHEM 2014; 38:507-510. [PMID: 24678239 PMCID: PMC3963703 DOI: 10.1039/c3nj01459b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a simple, rapid and efficient microwave irradiation-assisted protocol that is 1- to 2-orders of magnitude faster than conventional techniques, providing an expedient access to the sialic acid congeners Neu5Ac1Me (1), Neu5Acβ1,2Me2 (2), Neu5Ac1Me O-peracetate (3) and 4,5-oxazoline of Neu5Ac2en1Me O-peracetate (4).
Collapse
Affiliation(s)
- Jonel P. Saludes
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Dhananjaya Sahoo
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - I. Abrrey Monreal
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
36
|
Abstract
A review of known small molecule inhibitors and substrates of the human neuraminidase enzymes.
Collapse
Affiliation(s)
- Christopher W. Cairo
- Alberta Glycomics Centre
- Department of Chemistry
- University of Alberta
- Edmonton Alberta
- Canada
| |
Collapse
|
37
|
Thaysen-Andersen M, Larsen MR, Packer NH, Palmisano G. Structural analysis of glycoprotein sialylation – Part I: pre-LC-MS analytical strategies. RSC Adv 2013. [DOI: 10.1039/c3ra42960a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
38
|
Khedri Z, Li Y, Cao H, Qu J, Yu H, Muthana MM, Chen X. Synthesis of selective inhibitors against V. cholerae sialidase and human cytosolic sialidase NEU2. Org Biomol Chem 2012; 10:6112-20. [PMID: 22641268 PMCID: PMC11302589 DOI: 10.1039/c2ob25335f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Sialidases or neuraminidases catalyze the hydrolysis of terminal sialic acid residues from sialyl oligosaccharides and glycoconjugates. Despite successes in developing potent inhibitors specifically against influenza virus neuraminidases, the progress in designing and synthesizing selective inhibitors against bacterial and human sialidases has been slow. Guided by sialidase substrate specificity studies and sialidase crystal structural analysis, a number of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA or Neu5Ac2en) analogues with modifications at C9 or at both C5 and C9 were synthesized. Inhibition studies of various bacterial sialidases and human cytosolic sialidase NEU2 revealed that Neu5Gc9N(3)2en and Neu5AcN(3)9N(3)2en are selective inhibitors against V. cholerae sialidase and human NEU2, respectively.
Collapse
Affiliation(s)
| | | | | | - Jingyao Qu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, USA
| | - Musleh M. Muthana
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|