1
|
Duletski OL, Platz D, Pollock CJ, Mosquera MA, Arulsamy N, Mock MT. Dinitrogen activation at chromium by photochemically induced Cr II-C bond homolysis. Chem Commun (Camb) 2024; 60:7029-7032. [PMID: 38894651 DOI: 10.1039/d4cc02387k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The synthesis of the organochromium(II) complexes [POCOPtBu]Cr(R) (R = p-Tol, Bn) is reported. Exposure of [POCOPtBu]Cr(Bn) to visible light promoted homolytic Cr-CBn bond cleavage and formed {[POCOPtBu]Cr}2(η1:η1μ-N2) via a putative [POCOPtBu]Cr(I) species.
Collapse
Affiliation(s)
- Olivia L Duletski
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Duncan Platz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Charlie J Pollock
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Martín A Mosquera
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | | | - Michael T Mock
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
2
|
Ostermann N, Rotthowe N, Stückl AC, Siewert I. (Electro)chemical N 2 Splitting by a Molybdenum Complex with an Anionic PNP Pincer-Type Ligand. ACS ORGANIC & INORGANIC AU 2024; 4:329-337. [PMID: 38855335 PMCID: PMC11157508 DOI: 10.1021/acsorginorgau.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 06/11/2024]
Abstract
Molybdenum(III) complexes bearing pincer-type ligands are well-known catalysts for N2-to-NH3 reduction. We investigated herein the impact of an anionic PNP pincer-type ligand in a Mo(III) complex on the (electro)chemical N2 splitting ([LMoCl3]-, 1 -, LH = 2,6-bis((di-tert-butylphosphaneyl)methyl)-pyridin-4-one). The increased electron-donating properties of the anionic ligand should lead to a stronger degree of N2 activation. The catalyst is indeed active in N2-to-NH3 conversion utilizing the proton-coupled electron transfer reagent SmI2/ethylene glycol. The corresponding Mo(V) nitrido complex 2H exhibits similar catalytic activity as 1H and thus could represent a viable intermediate. The Mo(IV) nitrido complex 3 - is also accessible by electrochemical reduction of 1 - under a N2 atmosphere. IR- and UV/vis-SEC measurements suggest that N2 splitting occurs via formation of an "overreduced" but more stable [(L(N2)2Mo0)2μ-N2]2- dimer. In line with this, the yield in the nitrido complex increases with lower applied potentials.
Collapse
Affiliation(s)
- Nils Ostermann
- Georg-August-Universität
Göttingen, Institut für
Anorganische Chemie, Tammannstr.
4, Göttingen 37077, Germany
| | - Nils Rotthowe
- Georg-August-Universität
Göttingen, Institut für
Anorganische Chemie, Tammannstr.
4, Göttingen 37077, Germany
| | - A. Claudia Stückl
- Georg-August-Universität
Göttingen, Institut für
Anorganische Chemie, Tammannstr.
4, Göttingen 37077, Germany
| | - Inke Siewert
- Georg-August-Universität
Göttingen, Institut für
Anorganische Chemie, Tammannstr.
4, Göttingen 37077, Germany
- Georg-August-Universität
Göttingen, International Center
for Advanced Studies of Energy Conversion, Tammannstr. 6, Göttingen 37077, Germany
| |
Collapse
|
3
|
Wang GX, Shan C, Chen W, Wu B, Zhang P, Wei J, Xi Z, Ye S. Unusual Electronic Structures of an Electron Transfer Series of [Cr(μ-η 1 : η 1 -N 2 )Cr] 0/1+/2. Angew Chem Int Ed Engl 2024; 63:e202315386. [PMID: 38299757 DOI: 10.1002/anie.202315386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
In dinitrogen (N2 ) fixation chemistry, bimetallic end-on bridging N2 complexes M(μ-η1 : η1 -N2 )M can split N2 into terminal nitrides and hence attract great attention. To date, only 4d and 5d transition complexes, but none of 3d counterparts, could realize such a transformation. Likewise, complexes {[Cp*Cr(dmpe)]2 (μ-N2 )}0/1+/2+ (1-3) are incapable to cleave N2 , in contrast to their Mo congeners. Remarkably, cross this series the N-N bond length of the N2 ligand and the N-N stretching frequency exhibit unprecedented nonmonotonic variations, and complexes 1 and 2 in both solid and solution states display rare thermally activated ligand-mediated two-center spin transitions, distinct from discrete dinuclear spin crossovers. In-depth analyses using wave function based ab initio calculations reveal that the Cr-N2 -Cr bonding in complexes 1-3 is distinguished by strong multireference character and cannot be described by solely one electron configuration or Lewis structure, and that all intriguing spectroscopic observations originate in their sophisticate multireference electronic structures. More critical is that such multireference bonding of complexes 1-3 is at least a key factor that contributes to their kinetic inertness toward N2 splitting. The mechanistic understanding is then used to rationalize the disparate reactivity of related 3d M(μ-η1 : η1 -N2 )M complexes compared to their 4d and 5d analogs.
Collapse
Affiliation(s)
- Gao-Xiang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Chunxiao Shan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Botao Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Peng Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
4
|
Eberle L, Lindenthal S, Ballmann J. To Split or Not to Split: [AsCCAs]-Coordinated Mo, W, and Re Complexes and Their Reactivity toward Molecular Dinitrogen. Inorg Chem 2024; 63:3682-3691. [PMID: 38359784 DOI: 10.1021/acs.inorgchem.3c03244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Molybdenum, tungsten, and rhenium halides bearing a 2,2'-(iPr2As)2-substituted diphenylacetylene ([AsCCAs], 1-As) were prepared and reduced under an atmosphere of dinitrogen in order to activate the latter substrate. In the case of molybdenum, a diiodo (2-As) and a triiodo molybdenum precursor (5) were equally suited for reductive N2 splitting, which led to the isolation of [AsCCAs]Mo≡N(I) (3-As) in each case. For tungsten, [AsCCAs]WCl3 (6) was reduced under N2 to afford {[AsCCAs]WCl2}2(N2) (7), which is best described as a dinuclear π8δ4-configured μ-(η1: η1)-N2-bridged dimer. Attempts to reductively cleave the N2 unit in 7 did not lead to the expected tungsten nitride (8), which had to be prepared independently via the treatment of 7 with sodium azide. To arrive at a π10δ4-configured N2-bridged dimer in a tetragonally distorted ligand environment, [AsCCAs]ReCl3 (9) was reduced in the presence of N2. As expected, a μ-(η1: η1)-N2-bridged dirhenium species, namely, {[AsCCAs]ReCl2}2(N2) (10), was formed, but found to very quickly decompose (presumably via loss of N2), not only under reduced pressure, but also upon irradiation or heating. Hence, an alternative synthetic route to the originally envisioned nitride, [AsCCAs]Re≡N(Cl)2 (11), was developed. While all the aforementioned nitrides (3-As, 8, and 11) were found to be fairly robust, significantly different stabilities were noticed for {[AsCCAs]MCl2}2(N2) (7 for M = W, 10 for M = Re), which is ascribed to the electronically different MN2M cores (π8δ4 for 7 vs π10δ4 for 10) in these μ-(η1: η1)-N2-bridged dimers.
Collapse
Affiliation(s)
- Lukas Eberle
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, Heidelberg D-69120, Germany
| | - Sebastian Lindenthal
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 253, Heidelberg D-69120, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, Heidelberg D-69120, Germany
| |
Collapse
|
5
|
Schratzberger H, Liebminger LA, Stöger B, Veiros LF, Kirchner K. Base metal complexes featuring a new pyrazole-derived PCP pincer ligand. Dalton Trans 2023; 52:12410-12422. [PMID: 37594380 DOI: 10.1039/d3dt02111d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
A new pyrazole-derived PCP pincer ligand featuring a 1-methylpyrazole backbone tethered to two di(isopropyl)phosphine moieties via phenylene spacers (P(CH)P-iPr) was prepared. When reacting the ligand with group six carbonyl complexes [M(CO)6] (M = Cr, Mo, W) at 130 °C, complexes of the type [M(κ2PN-PCP-iPr)(CO)4] were obtained featuring a κ2P,N-bound ligand with a pendant phosphine arm. Upon an increase of the reaction temperature to 150 °C, in the case of molybdenum, the formation of the complex [Mo(κ3PCP-PCP-iPr)(CO)3] was observed featuring a weak Mo-C bond. DFT calculations reveal that there is no agostic η2-C-H interaction. Treatment of [Mn2(CO)10], [Fe2(CO)9], [Co2(CO)8] and [Ni(COD)2] afforded complexes [Mn(κ3PCP-PCP-iPr)(CO)3], [Fe(κ3PCP-PCP-iPr)(H)(CO)2], [Co(κ3PCP-PCP-iPr)(CO)2] and [Ni(κ3PCP-PCP-iPr)(H)], respectively, where the PCP ligand is coordinated in the typical meridional κ3-fashion. Postfunctionalization of the anionic PCP pincer ligand was possible via N-methylation of the second nitrogen atom of the pyrazole unit with the oxonium salt [Me3O]BF4. Treatment of [Mn(κ3PCP-PCP-iPr)(CO)3] and [Fe(κ3PCP-PCP-iPr)(H)(CO)2] with [Me3O]BF4 resulted in the formation of the cationic complexes [Mn(κ3PCP-PCPMe-iPr)(CO)3]+ and [Fe(κ3PCP-PCPMe-iPr)(Cl)(CO)2]+. In the case of the latter, the chloride ligand seems to originate from the solvent CH2Cl2 undergoing a hydride chloride exchange. All complexes were characterized by means of 1H, 13C{1H}, and 31P{1H} NMR spectroscopy, IR spectroscopy and HR-MS. In addition, the structures of representative complexes were determined by X-ray crystallography.
Collapse
Affiliation(s)
- Heiko Schratzberger
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria.
| | - Lorenzo A Liebminger
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria.
| | - Berthold Stöger
- X-Ray Center, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Luis F Veiros
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria.
| |
Collapse
|
6
|
Bhatti T, Kumar A, Parihar A, Moncy HK, Emge TJ, Waldie KM, Hasanayn F, Goldman AS. Metal-Ligand Proton Tautomerism, Electron Transfer, and C(sp 3)-H Activation by a 4-Pyridinyl-Pincer Iridium Hydride Complex. J Am Chem Soc 2023; 145:18296-18306. [PMID: 37552857 PMCID: PMC10450815 DOI: 10.1021/jacs.3c03376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 08/10/2023]
Abstract
The para-N-pyridyl-based PCP pincer proligand 3,5-bis(di-tert-butylphosphinomethyl)-2,6-dimethylpyridine (pN-tBuPCP-H) was synthesized and metalated to give the iridium complex (pN-tBuPCP)IrHCl (2-H). In marked contrast with its phenyl-based congeners, e.g., (tBuPCP)IrHCl and derivatives, 2-H is highly air-sensitive and reacts with oxidants such as ferrocenium, trityl cation, and benzoquinone. These oxidations ultimately lead to intramolecular activation of a phosphino-t-butyl C(sp3)-H bond and cyclometalation. Considering the greater electronegativity of N than C, 2-H is expected to be less easily oxidized than simple PCP derivatives; cyclic voltammetry and DFT calculations support this expectation. However, 2-H is calculated to undergo metal-ligand-proton tautomerism (MLPT) to give an N-protonated complex that can be described with resonance forms representing a zwitterionic complex (with a negative charge on Ir) and a p-N-pyridylidene (a remote N-heterocyclic carbene) Ir(I) complex. One-electron oxidation of this tautomer is calculated to be dramatically more favorable than direct oxidation of 2-H (ΔΔG° = -31.3 kcal/mol). The resulting Ir(II) oxidation product is easily deprotonated to give metalloradical 2• which is observed by NMR spectroscopy. 2• can be further oxidized to give cationic Ir(III) complex, 2+, which can oxidatively add a phosphino-t-butyl C-H bond and undergo deprotonation to give the observed cyclometalated product. DFT calculations indicate that less sterically hindered analogues of 2+ would preferentially undergo intermolecular addition of C(sp3)-H bonds, for example, of n-alkanes. The resulting iridium alkyl complexes could undergo facile β-H elimination to afford olefin, thereby completing a catalytic cycle for alkane dehydrogenation driven by one-electron oxidation and deprotonation, enabled by MLPT.
Collapse
Affiliation(s)
- Tariq
M. Bhatti
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Akshai Kumar
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashish Parihar
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Hellan K. Moncy
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Thomas J. Emge
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Kate M. Waldie
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Faraj Hasanayn
- Department
of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Alan S. Goldman
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
7
|
Stadler B, Meng HHY, Belazregue S, Webster L, Collauto A, Byrne KM, Krämer T, Chadwick FM. PCP Pincer Complexes of Titanium in the +3 and +4 Oxidation States. Organometallics 2023; 42:1278-1285. [PMID: 37388272 PMCID: PMC10302872 DOI: 10.1021/acs.organomet.2c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Indexed: 03/14/2023]
Abstract
Ti(IV) and Ti(III) complexes using the tBuPCP ligand have been synthesized (tBuPCP = C6H3-2,6-(CH2PtBu2)2). The [tBuPCP]Li synthon can be reacted with TiCl4(THF)2 to form (tBuPCP)TiCl3 (1) in limited yields due to significant reduction of the titanium synthon. The Ti(III) complex (tBuPCP)TiCl2 (2) has been further characterized. This can have half an equivalent of halide abstracted to form [{(tBuPCP)TiCl}2{μ-Cl}][B(C6F5)4] (3) and can also be methylated, forming (tBuPCP)TiMe2 (4). All the Ti(III) complexes have been characterized using EPR and X-ray crystallography, giving insight into their electronic structures, which are further supported by DFT calculations.
Collapse
Affiliation(s)
- Benedek Stadler
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, 82 Wood Lane, London W12
0BZ, United Kingdom
| | - Hilary H. Y. Meng
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, 82 Wood Lane, London W12
0BZ, United Kingdom
| | - Sara Belazregue
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, 82 Wood Lane, London W12
0BZ, United Kingdom
| | - Leah Webster
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, 82 Wood Lane, London W12
0BZ, United Kingdom
| | - Alberto Collauto
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, 82 Wood Lane, London W12
0BZ, United Kingdom
| | - Keelan M. Byrne
- Department
of Chemistry, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - Tobias Krämer
- Department
of Chemistry, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - F. Mark Chadwick
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, 82 Wood Lane, London W12
0BZ, United Kingdom
| |
Collapse
|
8
|
Zhuo Q, Zhou X, Shima T, Hou Z. Dinitrogen Activation and Addition to Unsaturated C-E (E=C, N, O, S) Bonds Mediated by Transition Metal Complexes. Angew Chem Int Ed Engl 2023; 62:e202218606. [PMID: 36744517 DOI: 10.1002/anie.202218606] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/07/2023]
Abstract
Dinitrogen (N2 ) activation and functionalization is of fundamental interest and practical importance. This review focuses on N2 activation and addition to unsaturated substrates, including carbon monoxide, carbon dioxide, heteroallenes, aldehydes, ketones, acid halides, nitriles, alkynes, and allenes, mediated by transition metal complexes, which afforded a variety of N-C bond formation products. Emphases are placed on the reaction modes and mechanisms. We hope that this work would stimulate further explorations in this challenging field.
Collapse
Affiliation(s)
- Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xiaoxi Zhou
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takanori Shima
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zhaomin Hou
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Duletski OL, Arulsamy N, Mock MT. Synthesis, characterization, and liquid injection field desorption ionization mass spectrometry analysis of pincer ligated group 6 (Cr, Mo, W) carbonyl complexes. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2023; 29:58-64. [PMID: 36648176 DOI: 10.1177/14690667221149498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We report the synthesis of molybdenum and tungsten bromo dicarbonyl complexes (POCOPtBu)MIIBr(CO)2 (M = Mo or W; POCOPtBu = κ3-C6H3-1,3-[OP(tBu)2]2) supported by an anionic PCP pincer ligand, and the chromium complex (PNPtBu)Cr0(CO)3 (PNPtBu = 2,6-bis(di-tert-butyl-phosphinomethyl)pyridine) bearing a neutral PNP pincer scaffold. The three group six complexes described in this study have been characterized by Liquid Injection Field Desorption Ionization Mass Spectrometry (LIFDI-MS), NMR, and IR spectroscopy. Single crystal X-ray diffraction studies show the MoII and WII complexes adopt a six-coordinate distorted trigonal prismatic geometry, whereas the Cr0 complex exhibits a distorted octahedral geometry.
Collapse
Affiliation(s)
- Olivia L Duletski
- Department of Chemistry and Biochemistry, 33052Montana State University, Bozeman, MT, USA
| | | | - Michael T Mock
- Department of Chemistry and Biochemistry, 33052Montana State University, Bozeman, MT, USA
| |
Collapse
|
10
|
Huang W, Peng LY, Zhang J, Liu C, Song G, Su JH, Fang WH, Cui G, Hu S. Vanadium-Catalyzed Dinitrogen Reduction to Ammonia via a [V]═NNH 2 Intermediate. J Am Chem Soc 2023; 145:811-821. [PMID: 36596224 DOI: 10.1021/jacs.2c08000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The catalytic transformation of N2 to NH3 by transition metal complexes is of great interest and importance but has remained a challenge to date. Despite the essential role of vanadium in biological N2 fixation, well-defined vanadium complexes that can catalyze the conversion of N2 to NH3 are scarce. In particular, a V(NxHy) intermediate derived from proton/electron transfer reactions of coordinated N2 remains unknown. Here, we report a dinitrogen-bridged divanadium complex bearing POCOP (2,6-(tBu2PO)2-C6H3) pincer and aryloxy ligands, which can serve as a catalyst for the reduction of N2 to NH3 and N2H4. Low-temperature protonation and reduction of the dinitrogen complex afforded the first structurally characterized neutral metal hydrazido(2-) species ([V]═NNH2), which mediated 15N2 conversion to 15NH3, indicating that it is a plausible intermediate of the catalysis. DFT calculations showed that the vanadium hydrazido complex [V]═NNH2 possessed a N-H bond dissociation free energy (BDFEN-H) of as high as 59.1 kcal/mol. The protonation of a vanadium amide complex ([V]-NH2) with [Ph2NH2][OTf] resulted in the release of NH3 and the formation of a vanadium triflate complex, which upon reduction under N2 afforded the vanadium dinitrogen complex. These transformations model the final steps of a vanadium-catalyzed N2 reduction cycle. Both experimental and theoretical studies suggest that the catalytic reaction may proceed via a distal pathway to liberate NH3. These findings provide unprecedented insights into the mechanism of N2 reduction related to FeV nitrogenase.
Collapse
Affiliation(s)
- Wenshuang Huang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jiayu Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Chenrui Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Guoyong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Ji-Hu Su
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Shaowei Hu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
11
|
Bennaamane S, Rialland B, Khrouz L, Fustier‐Boutignon M, Bucher C, Clot E, Mézailles N. Ammonia Synthesis at Room Temperature and Atmospheric Pressure from N 2 : A Boron-Radical Approach. Angew Chem Int Ed Engl 2023; 62:e202209102. [PMID: 36301016 PMCID: PMC10107438 DOI: 10.1002/anie.202209102] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Ammonia, NH3 , is an essential molecule, being part of fertilizers. It is currently synthesized via the Haber-Bosch process, from the very stable dinitrogen molecule, N2 and dihydrogen, H2 . This process requires high temperatures and pressures, thereby generating ca 1.6 % of the global CO2 emissions. Alternative strategies are needed to realize the functionalization of N2 to NH3 under mild conditions. Here, we show that boron-centered radicals provide a means of activating N2 at room temperature and atmospheric pressure whilst allowing a radical process to occur, leading to the production of borylamines. Subsequent hydrolysis released NH4 + , the acidic form of NH3 . EPR spectroscopy supported the intermediacy of radicals in the process, corroborated by DFT calculations, which rationalized the mechanism of the N2 functionalization by R2 B radicals.
Collapse
Affiliation(s)
- Soukaina Bennaamane
- Laboratoire Hétérochimie Fondamentale et AppliquéeUniversité Paul SabatierCNRS118 Route de Narbonne31062ToulouseFrance
| | - Barbara Rialland
- Laboratoire Hétérochimie Fondamentale et AppliquéeUniversité Paul SabatierCNRS118 Route de Narbonne31062ToulouseFrance
| | - Lhoussain Khrouz
- Univ LyonENS LyonCNRSUniversite Lyon 1Laboratoire de ChimieUMR 518246 allée d'Italie69364LyonFrance
| | - Marie Fustier‐Boutignon
- Laboratoire Hétérochimie Fondamentale et AppliquéeUniversité Paul SabatierCNRS118 Route de Narbonne31062ToulouseFrance
| | - Christophe Bucher
- Univ LyonENS LyonCNRSUniversite Lyon 1Laboratoire de ChimieUMR 518246 allée d'Italie69364LyonFrance
| | - Eric Clot
- ICGMUniv. MontpellierCNRSENSCM34000MontpellierFrance
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et AppliquéeUniversité Paul SabatierCNRS118 Route de Narbonne31062ToulouseFrance
| |
Collapse
|
12
|
Tanabe Y, Nishibayashi Y. Recent advances in catalytic nitrogen fixation using transition metal–dinitrogen complexes under mild reaction conditions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Zhang J, Huang W, Han K, Song G, Hu S. Scandium, titanium and vanadium complexes supported by PCP-type pincer ligands: synthesis, structure, and styrene polymerization activity. Dalton Trans 2022; 51:12250-12257. [PMID: 35895309 DOI: 10.1039/d2dt01389d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of first-row early transition metal dialkyl complexes bearing pincer ligands [(POCOP)M(CH2SiMe3)2] (POCOP: (2,6-(tBu2PO)2-C6H3); 1-Sc: M = Sc; 1-Ti: M = Ti; 1-V: M = V) and [(PCP)M(CH2SiMe3)2] (PCP: (2,6-(tBu2PCH2)2-C6H3); 2-Sc: M = Sc; 2-Ti: M = Ti) have been synthesized. These dialkyl complexes were characterized by single-crystal X-ray diffraction, NMR spectroscopy, and solution magnetic susceptibility (Evans method) analyses appropriately. All the complexes exhibited square pyramidal geometries with different extents of distortion. The activities of these complexes were further explored in styrene polymerization, in which combinations of scandium complexes (1-Sc or 2-Sc) with [Ph3C][B(C6F5)4] were found to be active catalytic systems for highly syndiospecific (>99% rrrr) polymerization of styrene. Meanwhile, the Ti(III) complexes 1-Ti and 2-Ti showed rather low activity in styrene polymerization, which stands in sharp contrast to those in previous reports involving Ti(III) catalysts bearing cyclopentadienyl derivative ligands.
Collapse
Affiliation(s)
- Jiayu Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Wenshuang Huang
- College of Chemistry, Beijing Normal University, No. 19, Xin-wai street, Beijing 100875, People's Republic of China.
| | - Kailing Han
- College of Chemistry, Beijing Normal University, No. 19, Xin-wai street, Beijing 100875, People's Republic of China.
| | - Guoyong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Shaowei Hu
- College of Chemistry, Beijing Normal University, No. 19, Xin-wai street, Beijing 100875, People's Republic of China.
| |
Collapse
|
14
|
Zhai DD, Zhang SQ, Xie SJ, Wu RK, Liu F, Xi ZF, Hong X, Shi ZJ. ( n-Bu) 4NBr-Promoted N 2 Splitting to Molybdenum Nitride. J Am Chem Soc 2022; 144:14071-14078. [PMID: 35882019 DOI: 10.1021/jacs.2c01507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Splitting of N2 via six-electron reduction and further functionalization to value-added products is one of the most important and challenging chemical transformations in N2 fixation. However, most N2 splitting approaches rely on strong chemical or electrochemical reduction to generate highly reactive metal species to bind and activate N2, which is often incompatible with functionalizing agents. Catalytic and sustainable N2 splitting to produce metal nitrides under mild conditions may create efficient and straightforward methods for N-containing organic compounds. Herein, we present that a readily available and nonredox (n-Bu)4NBr can promote N2-splitting with a Mo(III) platform. Both experimental and theoretical mechanistic studies suggest that simple X- (X = Br, Cl, etc.) anions could induce the disproportionation of MoIII[N(TMS)Ar]3 at the early stage of the catalysis to generate a catalytically active {MoII[N(TMS)Ar]3}- species. The quintet MoII species prove to be more favorable for N2 fixation kinetically and thermodynamically, compared with the quartet MoIII counterpart. Especially, computational studies reveal a distinct heterovalent {MoII-N2-MoIII} dimeric intermediate for the N≡N triple bond cleavage.
Collapse
Affiliation(s)
- Dan-Dan Zhai
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Shuo-Qing Zhang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Si-Jun Xie
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Rong-Kai Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Feng Liu
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Zhen-Feng Xi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, China.,Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing 100190, PR China
| | - Zhang-Jie Shi
- Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
15
|
van Alten RS, Wieser PA, Finger M, Abbenseth J, Demeshko S, Würtele C, Siewert I, Schneider S. Halide Effects in Reductive Splitting of Dinitrogen with Rhenium Pincer Complexes. Inorg Chem 2022; 61:11581-11591. [PMID: 35861586 DOI: 10.1021/acs.inorgchem.2c00973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition metal halide complexes are used as precursors for reductive N2 activation up to full splitting into nitride complexes. Distinct halide effects on the redox properties and yields are frequently observed yet not well understood. Here, an electrochemical and computational examination of reductive N2 splitting with the rhenium(III) complexes [ReX2(PNP)] (PNP = N(CH2CH2PtBu2)2 and X = Cl, Br, I) is presented. As previously reported for the chloride precursor ( J. Am. Chem. Soc. 2018, 140, 7922), the heavier halides give rhenium(V) nitrides upon (electro-)chemical reduction in good yields yet with significantly anodically shifted electrolysis potentials along the halide series. Dinuclear, end-on N2-bridged complexes, [{ReX(PNP)}2(μ-N2)], were identified as key intermediates in all cases. However, while the chloride complex is exclusively formed via 2-electron reduction and ReIII/ReI comproportionation, the iodide system also reacts via an alternative ReII/ReII-dimerization mechanism at less negative potentials. This alternative pathway relies on the absence of the potential inversion after reduction and N2 activation that was observed for the chloride precursor. Computational analysis of the relevant ReIII/II and ReII/I redox couples by energy decomposition analysis attributes the halide-induced trends of the potentials to the dominating electrostatic Re-X bonding interactions over contributions from charge transfer.
Collapse
Affiliation(s)
- Richt S van Alten
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Philipp A Wieser
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Markus Finger
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Josh Abbenseth
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Christian Würtele
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Inke Siewert
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.,International Center for Advanced Studies of Energy Conversion, University of Göttingen, 37077 Göttingen, Germany
| | - Sven Schneider
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany.,International Center for Advanced Studies of Energy Conversion, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
16
|
Zhang G, Liu T, Song J, Quan Y, Jin L, Si M, Liao Q. N 2 Cleavage on d 4/d 4 Molybdenum Centers and Its Further Conversion into Iminophosphorane under Mild Conditions. J Am Chem Soc 2022; 144:2444-2449. [PMID: 35014788 DOI: 10.1021/jacs.1c11134] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of N-containing organophosphine compounds using N2 as the nitrogen source under mild conditions has attracted much attention. Herein, the conversion of N2 into iminophosphorane was reported. By visible light irradiation, N2 was split on a MoII complex bearing a PNCNP ligand, directly forming the MoV nitride. After the N-P bond formation on the terminal nitride, the N atom from N2 was ultimately transferred into iminophosphorane. Key intermediates were characterized.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Tanggao Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Jinyi Song
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Yingyu Quan
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Li Jin
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Mengyue Si
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Qian Liao
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| |
Collapse
|
17
|
Itabashi T, Arashiba K, Kuriyama S, Nishibayashi Y. Reactivity of molybdenum-nitride complex bearing pyridine-based PNP-type pincer ligand toward carbon-centered electrophiles. Dalton Trans 2022; 51:1946-1954. [PMID: 35023535 DOI: 10.1039/d1dt03952k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A molybdenum-nitride complex bearing a pyridine-based PNP-type pincer ligand derived from dinitrogen is reacted with various kinds of carbon-centered electrophiles to functionalize the nitride ligand in the molybdenum complex. Methylation with MeOTf and acylation with diphenylacetyl chloride of the nitride complex afford the corresponding imide complexes via a carbon-nitrogen bond formation. In the case of reactions with phenylisocyanate and diphenylketene, the PNP ligand works as a non-innocent ligand to form the corresponding ureate and acylimide complexes, respectively. These newly synthesized complexes are characterized by X-ray analysis. As a further transformation of the prepared imide complexes, hydrolysis of the molybdenum-acylimide complex proceeds to give the corresponding amide as an organonitrogen compound together with the corresponding molybdenum-oxo complex. This result indicates that the nitrogen molecule is converted into organic amide mediated by the molybdenum-nitride complex.
Collapse
Affiliation(s)
- Takayuki Itabashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kazuya Arashiba
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
18
|
Webster L, Krämer T, Chadwick FM. Synthesis and reactivity of titanium ‘POCOP’ pincer complexes. Dalton Trans 2022; 51:16714-16722. [DOI: 10.1039/d2dt03291k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Titanium ‘POCOP’ complexes have been made, and their ability to support further reactivity investigated, giving a rare isolable titanium chlorohydride.
Collapse
Affiliation(s)
- Leah Webster
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, W12 0BZ, UK
| | - Tobias Krämer
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - F. Mark Chadwick
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, W12 0BZ, UK
| |
Collapse
|
19
|
Wagner HK, Wadepohl H, Ballmann J. Molybdän‐vermittelte N
2
‐Spaltung und Funktionalisierung in Gegenwart eines koordinierten Alkins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hannah K. Wagner
- Anorganisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 276 69120 Heidelberg Deutschland
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 276 69120 Heidelberg Deutschland
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 276 69120 Heidelberg Deutschland
| |
Collapse
|
20
|
Wagner HK, Wadepohl H, Ballmann J. Molybdenum-Mediated N 2 -Splitting and Functionalization in the Presence of a Coordinated Alkyne. Angew Chem Int Ed Engl 2021; 60:25804-25808. [PMID: 34618390 PMCID: PMC9297880 DOI: 10.1002/anie.202111325] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Indexed: 11/17/2022]
Abstract
A new [PCCP]-coordinated molybdenum platform comprising a coordinated alkyne was employed for the cleavage of molecular dinitrogen. The coordinated η2 -alkyne was left unaffected during this reduction. DFT calculations suggest that the reaction proceeds via an initially generated terminal N2 -complex, which is converted to a dinuclear μ-(η1 :η1 )-N2 -bridged intermediate prior to N-N bond cleavage. Protonation, alkylation and acylation of the resulting molybdenum nitrido complex led to the corresponding N-functionalized imido complexes. Upon oxidation of the N-acylated imido derivative in MeCN, a fumaronitrile fragment was built up via C-C coupling of MeCN to afford a dinuclear molybdenum complex. The key finding that the strong N≡N bond may be cleaved in the presence of a weaker, but spatially constrained C≡C bond contradicts the widespread paradigm that coordinated alkynes are in general more reactive than gaseous N2 .
Collapse
Affiliation(s)
- Hannah K. Wagner
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27669120HeidelbergGermany
| | - Hubert Wadepohl
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27669120HeidelbergGermany
| | - Joachim Ballmann
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27669120HeidelbergGermany
| |
Collapse
|
21
|
Bae DY, Lee G, Lee E. Reduction of highly bulky triphenolamine molybdenum nitrido and chloride complexes. Dalton Trans 2021; 50:14139-14143. [PMID: 34635894 DOI: 10.1039/d1dt02375f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal nitrides are key intermediates in the catalytic reduction of dinitrogen to ammonia. To date, transition metal nitride complexes with the triphenolamine (TPA) ligand have not been reported and the system with the ligand has been much less studied for ammonia formation compared with other systems. Herein, we report a series of molybdenum complexes supported by a sterically demanding TPA ligand, including a nitrido complex NMo(TPA). We achieved the stoichiometric conversion of the nitride moiety into ammonia under ambient conditions by adding proton and electron sources to NMo(TPA). However, the catalytic turnover for N2 reduction to ammonia was not observed in the triphenolamine ligand system unlike the Schrock system-triamidoamine ligand. Density functional theory calculation revealed that the molybdenum center favors binding NH3 over N2 by 16.9 kcal mol-1 and the structural lability of the trigonal bipyramidal (TBP) molybdenum complex seems to prevent catalytic turnover. Our systematic study showed that the electronegativity and bond length of ancillary ligands determine the preference between N2 and NH3, suggesting a systematic design strategy for improvement.
Collapse
Affiliation(s)
- Dae Young Bae
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, 37673, Pohang, Republic of Korea.
| | - Gunhee Lee
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, 37673, Pohang, Republic of Korea.
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology, 77 Cheongam-Ro, 37673, Pohang, Republic of Korea.
| |
Collapse
|
22
|
Keener M, Scopelliti R, Mazzanti M. Nitride protonation and NH 3 binding versus N-H bond cleavage in uranium nitrides. Chem Sci 2021; 12:12610-12618. [PMID: 34703546 PMCID: PMC8494049 DOI: 10.1039/d1sc03957a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022] Open
Abstract
The conversion of metal nitrides to NH3 is an essential step in dinitrogen fixation, but there is limited knowledge of the reactivity of nitrides with protons (H+). Herein, we report comparative studies for the reactions of H+ and NH3 with uranium nitrides, containing different types of ancillary ligands. We show that the differences in ancillary ligands, leads to dramatically different reactivity. The nitride group, in nitride-bridged cationic and anionic diuranium(iv) complexes supported by –N(SiMe3)2 ligands, is resistant toward protonation by weak acids, while stronger acids result in ligand loss by protonolysis. Moreover, the basic –N(SiMe3)2 ligands promote the N–H heterolytic bond cleavage of NH3, yielding a “naked” diuranium complex containing three bridging ligands, a nitride (N3−) and two NH2 ligands. Conversely, in the nitride-bridged diuranium(iv) complex supported by –OSi(OtBu)3 ligands, the nitride group is easily protonated to afford NH3, which binds the U(iv) ion strongly, resulting in a mononuclear U–NH3 complex, where NH3 can be displaced by addition of strong acids. Furthermore, the U–OSi(OtBu)3 bonds were found to be stable, even in the presence of stronger acids, such as NH4BPh4, therefore indicating that –OSi(OtBu)3 supporting ligands are well suited to be used when acidic conditions are required, such as in the H+/e− mediated catalytic conversion of N2 to NH3. Ancillary ligands alter the reactivity of U-nitrides with H+, relevant to N2 conversion to NH3. The amides lead to complete ligand loss and NH3 activation, while for siloxides, the nitride is protonated to NH3 leaving the ancillary ligands intact.![]()
Collapse
Affiliation(s)
- Megan Keener
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
23
|
Bae DY, Lee G, Lee E. Fixation of Dinitrogen at an Asymmetric Binuclear Titanium Complex. Inorg Chem 2021; 60:12813-12822. [PMID: 34492761 DOI: 10.1021/acs.inorgchem.1c01050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new type of dititanium dinitrogen complex supported by a triphenolamine (TPA) ligand is reported. Analysis by single-crystal X-ray diffraction and Raman and NMR spectroscopy reveals different coordination geometries for the two titanium centers. Hence, coordination of TPA and a nitrogen ligand results in trigonal-bipyramidal geometry, while an octahedral titanium center is obtained upon additional coordination of an ethoxide generated upon C-O bond cleavage in a diethyl ether solvent molecule. The titanium complex successfully generates ammonia in the presence of an excess amount of PCy3HI and KC8 in 154% yield (per titanium atom). A titanium complex with a bulkier TPA does not form a dinitrogen complex, and mononuclear titanium dinitrogen complexes were not accessible, presumably because of the high tendency of early transition metals to form binuclear dinitrogen complexes.
Collapse
Affiliation(s)
- Dae Young Bae
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gunhee Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
24
|
Schluschaß B, Borter JH, Rupp S, Demeshko S, Herwig C, Limberg C, Maciulis NA, Schneider J, Würtele C, Krewald V, Schwarzer D, Schneider S. Cyanate Formation via Photolytic Splitting of Dinitrogen. JACS AU 2021; 1:879-894. [PMID: 34240082 PMCID: PMC8243327 DOI: 10.1021/jacsau.1c00117] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Indexed: 05/05/2023]
Abstract
Light-driven N2 cleavage into molecular nitrides is an attractive strategy for synthetic nitrogen fixation. However, suitable platforms are rare. Furthermore, the development of catalytic protocols via this elementary step suffers from poor understanding of N-N photosplitting within dinitrogen complexes, as well as of the thermochemical and kinetic framework for coupled follow-up chemistry. We here present a tungsten pincer platform, which undergoes fully reversible, thermal N2 splitting and reverse nitride coupling, allowing for experimental derivation of thermodynamic and kinetic parameters of the N-N cleavage step. Selective N-N splitting was also obtained photolytically. DFT computations allocate the productive excitations within the {WNNW} core. Transient absorption spectroscopy shows ultrafast repopulation of the electronic ground state. Comparison with ground-state kinetics and resonance Raman data support a pathway for N-N photosplitting via a nonstatistically vibrationally excited ground state that benefits from vibronically coupled structural distortion of the core. Nitride carbonylation and release are demonstrated within a full synthetic cycle for trimethylsilylcyanate formation directly from N2 and CO.
Collapse
Affiliation(s)
- Bastian Schluschaß
- University
of Göttingen, Institute for Inorganic
Chemistry, Tammannstraße
4, 37077 Göttingen, Germany
| | - Jan-Hendrik Borter
- Department
of Dynamics at Surfaces, Max Planck Institute
for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Severine Rupp
- Theoretische
Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Serhiy Demeshko
- University
of Göttingen, Institute for Inorganic
Chemistry, Tammannstraße
4, 37077 Göttingen, Germany
| | - Christian Herwig
- Institut
für Chemie, Humboldt Universität
zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Christian Limberg
- Institut
für Chemie, Humboldt Universität
zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Nicholas A. Maciulis
- Department
of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| | - Jessica Schneider
- University
of Göttingen, Institute for Inorganic
Chemistry, Tammannstraße
4, 37077 Göttingen, Germany
| | - Christian Würtele
- University
of Göttingen, Institute for Inorganic
Chemistry, Tammannstraße
4, 37077 Göttingen, Germany
| | - Vera Krewald
- Theoretische
Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Dirk Schwarzer
- Department
of Dynamics at Surfaces, Max Planck Institute
for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Sven Schneider
- University
of Göttingen, Institute for Inorganic
Chemistry, Tammannstraße
4, 37077 Göttingen, Germany
| |
Collapse
|
25
|
Song J, Liao Q, Hong X, Jin L, Mézailles N. Conversion of Dinitrogen into Nitrile: Cross-Metathesis of N 2 -Derived Molybdenum Nitride with Alkynes. Angew Chem Int Ed Engl 2021; 60:12242-12247. [PMID: 33608987 DOI: 10.1002/anie.202015183] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/11/2022]
Abstract
The direct synthesis of nitrile from N2 under mild conditions is of great importance and has attracted much interest. Herein, we report a direct conversion of N2 into nitrile via a nitrile-alkyne cross-metathesis (NACM) process involving a N2 -derived Mo nitride. Treatment of the Mo nitride with alkyne in the presence of KOTf afforded an alkyne-coordinated nitride, which was then transformed into MoV carbyne and the corresponding nitrile upon 1 e- oxidation. Both aryl- and alkyl-substituted alkynes underwent this process smoothly. Experiments and DFT calculations have proved that the oxidation state of the Mo center plays a crucial role. This method does not rely on the nucleophilicity of the N2 -derived metal nitride, offering a novel strategy for N2 fixation chemistry.
Collapse
Affiliation(s)
- Jinyi Song
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Rd., 116024, Dalian, Liaoning, China
| | - Qian Liao
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Rd., 116024, Dalian, Liaoning, China
| | - Xin Hong
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Rd., 116024, Dalian, Liaoning, China
| | - Li Jin
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Rd., 116024, Dalian, Liaoning, China
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
26
|
Forrest SJK, Schluschaß B, Yuzik-Klimova EY, Schneider S. Nitrogen Fixation via Splitting into Nitrido Complexes. Chem Rev 2021; 121:6522-6587. [DOI: 10.1021/acs.chemrev.0c00958] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sebastian J. K. Forrest
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Bastian Schluschaß
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | | | - Sven Schneider
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| |
Collapse
|
27
|
Weber JE, Hasanayn F, Fataftah M, Mercado BQ, Crabtree RH, Holland PL. Electronic and Spin-State Effects on Dinitrogen Splitting to Nitrides in a Rhenium Pincer System. Inorg Chem 2021; 60:6115-6124. [PMID: 33847125 DOI: 10.1021/acs.inorgchem.0c03778] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bimetallic nitrogen (N2) splitting to form metal nitrides is an attractive method for N2 fixation. Although a growing number of pincer-supported systems can bind and split N2, the precise relationship between the ligand properties and N2 binding/splitting remains elusive. Here we report the first example of an N2-bridged rhenium(III) complex, [(trans-P2tBuPyrr)ReCl2]2(μ-η1:η1-N2) (P2tBuPyrr = [2,5-(CH2PtBu2)2C4H2N]-). In this case, N2 binding occurs at a higher oxidation level than that in other reported pincer analogues. Analysis of the electronic structure through computational studies shows that the weakly π-donor pincer ligand stabilizes an open-shell electronic configuration that leads to enhanced binding of N2 in the bridged complex. Utilizing SQUID magnetometry, we demonstrate a singlet ground state for this Re-N-N-Re complex, and we offer tentative explanations for antiferromagnetic coupling of the two local S = 1 sites. Reduction and subsequent heating of the rhenium(III)-dinitrogen complex leads to chloride loss and cleavage of the N-N bond with isolation of the terminal rhenium(V) nitride complex (P2tBuPyrr)ReNCl.
Collapse
Affiliation(s)
- Jeremy E Weber
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Faraj Hasanayn
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Majed Fataftah
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Robert H Crabtree
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
28
|
Tanabe Y, Nishibayashi Y. Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions. Chem Soc Rev 2021; 50:5201-5242. [PMID: 33651046 DOI: 10.1039/d0cs01341b] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
N2 is fixed as NH3 industrially by the Haber-Bosch process under harsh conditions, whereas biological nitrogen fixation is achieved under ambient conditions, which has prompted development of alternative methods to fix N2 catalyzed by transition metal molecular complexes. Since the early 21st century, catalytic conversion of N2 into NH3 under ambient conditions has been achieved by using molecular catalysts, and now H2O has been utilized as a proton source with turnover frequencies reaching the values found for biological nitrogen fixation. In this review, recent advances in the development of molecular catalysts for synthetic N2 fixation under ambient or mild conditions are summarized, and potential directions for future research are also discussed.
Collapse
Affiliation(s)
- Yoshiaki Tanabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
29
|
Song J, Liao Q, Hong X, Jin L, Mézailles N. Conversion of Dinitrogen into Nitrile: Cross‐Metathesis of N
2
‐Derived Molybdenum Nitride with Alkynes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jinyi Song
- Zhang Dayu School of Chemistry Dalian University of Technology No. 2 Linggong Rd. 116024 Dalian Liaoning China
| | - Qian Liao
- Zhang Dayu School of Chemistry Dalian University of Technology No. 2 Linggong Rd. 116024 Dalian Liaoning China
| | - Xin Hong
- Zhang Dayu School of Chemistry Dalian University of Technology No. 2 Linggong Rd. 116024 Dalian Liaoning China
| | - Li Jin
- Zhang Dayu School of Chemistry Dalian University of Technology No. 2 Linggong Rd. 116024 Dalian Liaoning China
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et Appliquée Université Paul Sabatier CNRS 118 Route de Narbonne 31062 Toulouse France
| |
Collapse
|
30
|
Masero F, Perrin MA, Dey S, Mougel V. Dinitrogen Fixation: Rationalizing Strategies Utilizing Molecular Complexes. Chemistry 2021; 27:3892-3928. [PMID: 32914919 PMCID: PMC7986120 DOI: 10.1002/chem.202003134] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Dinitrogen (N2 ) is the most abundant gas in Earth's atmosphere, but its inertness hinders its use as a nitrogen source in the biosphere and in industry. Efficient catalysts are hence required to ov. ercome the high kinetic barriers associated to N2 transformation. In that respect, molecular complexes have demonstrated strong potential to mediate N2 functionalization reactions under mild conditions while providing a straightforward understanding of the reaction mechanisms. This Review emphasizes the strategies for N2 reduction and functionalization using molecular transition metal and actinide complexes according to their proposed reaction mechanisms, distinguishing complexes inducing cleavage of the N≡N bond before (dissociative mechanism) or concomitantly with functionalization (associative mechanism). We present here the main examples of stoichiometric and catalytic N2 functionalization reactions following these strategies.
Collapse
Affiliation(s)
- Fabio Masero
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| | - Marie A. Perrin
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| | - Subal Dey
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| | - Victor Mougel
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| |
Collapse
|
31
|
Ashida Y, Nishibayashi Y. Catalytic conversion of nitrogen molecule into ammonia using molybdenum complexes under ambient reaction conditions. Chem Commun (Camb) 2021; 57:1176-1189. [PMID: 33443504 DOI: 10.1039/d0cc07146c] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen fixation using homogeneous transition metal complexes under mild reaction conditions is a challenging topic in the field of chemistry. Several successful examples of the catalytic conversion of nitrogen molecule into ammonia using various transition metal complexes in the presence of reductants and proton sources have been reported so far, together with detailed investigations on the reaction mechanism. Among these, only molybdenum complexes have been shown to serve as effective catalysts under ambient reaction conditions, in stark contrast with other transition metal-catalysed reactions that proceed at low reaction temperature such as -78 °C. In this feature article, we classify the molybdenum-catalysed reactions into four types: reactions via the Schrock cycle, reactions via dinuclear reaction systems, reactions via direct cleavage of the nitrogen-nitrogen triple bond of dinitrogen, and reactions via the Chatt-type cycle. We describe these catalytic systems focusing on the catalytic activity and mechanistic investigations. We hope that the present feature article provides useful information to develop more efficient nitrogen fixation systems under mild reaction conditions.
Collapse
Affiliation(s)
- Yuya Ashida
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
32
|
Rahimi N, Zargarian D. Cationic tetra- and pentacoordinate complexes of nickel based on POCN- and POCOP-type pincer ligands: synthesis, characterization, and ligand exchange studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj01355f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The closely related pincer ligands POCN and POCOP display different electron donating properties and different degrees of resistance to ligand exchange reactions proceeding via cationic reaction intermediates.
Collapse
Affiliation(s)
- Naser Rahimi
- Département de chimie, Université de Montréal, Montréal (Québec), H3C 3J7, Canada
| | - Davit Zargarian
- Département de chimie, Université de Montréal, Montréal (Québec), H3C 3J7, Canada
| |
Collapse
|
33
|
Engesser TA, Kindjajev A, Junge J, Krahmer J, Tuczek F. A Chatt-Type Catalyst with One Coordination Site for Dinitrogen Reduction to Ammonia. Chemistry 2020; 26:14807-14812. [PMID: 32815654 PMCID: PMC7756349 DOI: 10.1002/chem.202003549] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/18/2020] [Indexed: 11/22/2022]
Abstract
With [Mo(N2)(P2MePP2Ph)] the first Chatt‐type complex with one coordination site catalytically converting N2 to ammonia is presented. Employing SmI2 as reductant and H2O as proton source 26 equivalents of ammonia are generated. Analogous Mo0‐N2 complexes supported by a combination of bi‐ and tridentate phosphine ligands are catalytically inactive under the same conditions. These findings are interpreted by analyzing structural and spectroscopic features of the employed systems, leading to the conclusion that the catalytic activity of the title complex is due to the strong activation of N2 and the unique topology of the pentadentate tetrapodal (pentaPod) ligand P2MePP2Ph. The analogous hydrazido(2‐) complex [Mo(NNH2)(P2MePP2Ph)](BArF)2 is generated by protonation with HBArF in ether and characterized by NMR and vibrational spectroscopy. Importantly, it is shown to be catalytically active as well. Along with the fact that the structure of the title complex precludes dimerization this demonstrates that the corresponding catalytic cycle follows a mononuclear pathway. The implications of a PCET mechanism on this reactive scheme are considered.
Collapse
Affiliation(s)
- Tobias A Engesser
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 10, 24118, Kiel, Germany
| | - Andrei Kindjajev
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 10, 24118, Kiel, Germany
| | - Jannik Junge
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 10, 24118, Kiel, Germany
| | - Jan Krahmer
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 10, 24118, Kiel, Germany
| | - Felix Tuczek
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 10, 24118, Kiel, Germany
| |
Collapse
|
34
|
Arashiba K, Tanaka H, Yoshizawa K, Nishibayashi Y. Cycling between Molybdenum‐Dinitrogen and ‐Nitride Complexes to Support the Reaction Pathway for Catalytic Formation of Ammonia from Dinitrogen. Chemistry 2020; 26:13383-13389. [DOI: 10.1002/chem.202002200] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Kazuya Arashiba
- Department of Systems Innovation School of Engineering The University of Tokyo Bunkyo-ku Tokyo 1 13-8656 Japan
| | - Hiromasa Tanaka
- School of Liberal Arts and Sciences Daido University Takiharu-cho, Minami-ku Nagoya 457-8530 Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and IRCCS Kyushu University Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation School of Engineering The University of Tokyo Bunkyo-ku Tokyo 1 13-8656 Japan
| |
Collapse
|
35
|
Bruch QJ, Connor GP, McMillion ND, Goldman AS, Hasanayn F, Holland PL, Miller AJM. Considering Electrocatalytic Ammonia Synthesis via Bimetallic Dinitrogen Cleavage. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02606] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Quinton J. Bruch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Gannon P. Connor
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Noah D. McMillion
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Alan S. Goldman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Faraj Hasanayn
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Patrick L. Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Alexander J. M. Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
36
|
Kim S, Loose F, Chirik PJ. Beyond Ammonia: Nitrogen–Element Bond Forming Reactions with Coordinated Dinitrogen. Chem Rev 2020; 120:5637-5681. [DOI: 10.1021/acs.chemrev.9b00705] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sangmin Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Florian Loose
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
37
|
van Alten RS, Wätjen F, Demeshko S, Miller AJM, Würtele C, Siewert I, Schneider S. (Electro-)chemical Splitting of Dinitrogen with a Rhenium Pincer Complex. Eur J Inorg Chem 2020; 2020:1402-1410. [PMID: 32421038 PMCID: PMC7217231 DOI: 10.1002/ejic.201901278] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 11/25/2022]
Abstract
The splitting of N2 into well‐defined terminal nitride complexes is a key reaction for nitrogen fixation at ambient conditions. In continuation of our previous work on rhenium pincer mediated N2 splitting, nitrogen activation and cleavage upon (electro)chemical reduction of [ReCl2(L2)] {L2 = N(CHCHPtBu2)2–} is reported. The electrochemical characterization of [ReCl2(L2)] and comparison with our previously reported platform [ReCl2(L1)] {L1 = N(CH2CH2PtBu2)2–} provides mechanistic insight to rationalize the dependence of nitride yield on the reductant. Furthermore, the reactivity of N2 derived nitride complex [Re(N)Cl(L2)] with electrophiles is presented.
Collapse
Affiliation(s)
- Richt S van Alten
- Institute of Inorganic Chemistry University of Goettingen Tammannstraße 4 37077 Goettingen Germany
| | - Florian Wätjen
- Institute of Inorganic Chemistry University of Goettingen Tammannstraße 4 37077 Goettingen Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry University of Goettingen Tammannstraße 4 37077 Goettingen Germany
| | - Alexander J M Miller
- Department of Chemistry University of North Carolina at Chapel Hill 27599-3290 Chapel Hill NC USA
| | - Christian Würtele
- Institute of Inorganic Chemistry University of Goettingen Tammannstraße 4 37077 Goettingen Germany
| | - Inke Siewert
- Institute of Inorganic Chemistry University of Goettingen Tammannstraße 4 37077 Goettingen Germany.,International Center for Advanced Studies of Energy Conversion University of Goettingen Tammannstraße 6 37077 Goettingen Germany
| | - Sven Schneider
- Institute of Inorganic Chemistry University of Goettingen Tammannstraße 4 37077 Goettingen Germany.,International Center for Advanced Studies of Energy Conversion University of Goettingen Tammannstraße 6 37077 Goettingen Germany
| |
Collapse
|
38
|
Bennaamane S, Espada MF, Yagoub I, Saffon-Merceron N, Nebra N, Fustier-Boutignon M, Clot E, Mézailles N. Stepwise Functionalization of N2
at Mo: Nitrido to Imido to Amido - Factors Favoring Amine Elimination from the Amido Complex. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Soukaina Bennaamane
- Laboratoire Hétérochimie Fondamentale et Appliquée; Université Paul Sabatier, CNRS; 118 Route de Narbonne 31062 Toulouse France
| | - Maria F. Espada
- Laboratoire Hétérochimie Fondamentale et Appliquée; Université Paul Sabatier, CNRS; 118 Route de Narbonne 31062 Toulouse France
| | - Ikram Yagoub
- Laboratoire Hétérochimie Fondamentale et Appliquée; Université Paul Sabatier, CNRS; 118 Route de Narbonne 31062 Toulouse France
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse ICT-FR2599; Université Paul Sabatier, CNRS; 31062 Toulouse Cedex France
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée; Université Paul Sabatier, CNRS; 118 Route de Narbonne 31062 Toulouse France
| | - Marie Fustier-Boutignon
- Laboratoire Hétérochimie Fondamentale et Appliquée; Université Paul Sabatier, CNRS; 118 Route de Narbonne 31062 Toulouse France
| | - Eric Clot
- CNRS, ENSCM; ICGM, Univ. Montpellier; Montpellier France
| | - Nicolas Mézailles
- Laboratoire Hétérochimie Fondamentale et Appliquée; Université Paul Sabatier, CNRS; 118 Route de Narbonne 31062 Toulouse France
| |
Collapse
|
39
|
Valdez-Moreira JA, Millikan SP, Gao X, Carta V, Chen CH, Smith JM. Hydrosilylation of an Iron(IV) Nitride Complex. Inorg Chem 2020; 59:579-583. [PMID: 31876412 DOI: 10.1021/acs.inorgchem.9b02831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nitride ligand in iron(IV) complex PhB(MesIm)3Fe≡N reacts with excess H3SiPh to afford PhB(MesIm)3Fe(μ-H)3(SiHPh) as the major product, which has been structurally and spectroscopically characterized. Bulkier silane HaSiPh2 provides iron(II) amido complex PhB(MesIm)3FeN(H)(SiHPh2) as the initial product of the reaction, with excess H2SiPh2 affording diamagnetic PhB(MesIm)3Fe(μ-H)3(SiPh2) as the major product. Unobserved iron(II) hydride PhB(MesIm)3Fe-H is implicated as an intermediate in this reaction, as suggested by the results of the reaction between iron(II) amido PhB(MesIm)3FeN(H)tBu and H3SiPh, which provides PhB(MesIm)3Fe(H)(μ-H)2(Si(NHtBu)Ph) as the sole product.
Collapse
Affiliation(s)
- Juan A Valdez-Moreira
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Sean P Millikan
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Xinfeng Gao
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Veronica Carta
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Chun-Hsing Chen
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| | - Jeremy M Smith
- Department of Chemistry , Indiana University , 800 E. Kirkwood Avenue , Bloomington , Indiana 47405 , United States
| |
Collapse
|
40
|
Tanabe Y, Sekiguchi Y, Tanaka H, Konomi A, Yoshizawa K, Kuriyama S, Nishibayashi Y. Preparation and reactivity of molybdenum complexes bearing pyrrole-based PNP-type pincer ligand. Chem Commun (Camb) 2020; 56:6933-6936. [DOI: 10.1039/d0cc02852e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molybdenum complexes bearing an anionic pyrrole-based PNP-type pincer ligand have been prepared and have been found to work as catalysts for the conversion of N2 into NH3 under ambient conditions.
Collapse
Affiliation(s)
- Yoshiaki Tanabe
- Department of Systems Innovation
- School of Engineering
- The University of Tokyo
- Hongo
- Bunkyo-ku
| | - Yoshiya Sekiguchi
- Department of Systems Innovation
- School of Engineering
- The University of Tokyo
- Hongo
- Bunkyo-ku
| | - Hiromasa Tanaka
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Nishi-ku
- Fukuoka 819-0395
- Japan
| | - Asuka Konomi
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Nishi-ku
- Fukuoka 819-0395
- Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Nishi-ku
- Fukuoka 819-0395
- Japan
| | - Shogo Kuriyama
- Department of Systems Innovation
- School of Engineering
- The University of Tokyo
- Hongo
- Bunkyo-ku
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation
- School of Engineering
- The University of Tokyo
- Hongo
- Bunkyo-ku
| |
Collapse
|
41
|
Schluschaß B, Abbenseth J, Demeshko S, Finger M, Franke A, Herwig C, Würtele C, Ivanovic-Burmazovic I, Limberg C, Telser J, Schneider S. Selectivity of tungsten mediated dinitrogen splitting vs. proton reduction. Chem Sci 2019; 10:10275-10282. [PMID: 32110313 PMCID: PMC6984443 DOI: 10.1039/c9sc03779a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/19/2019] [Indexed: 01/12/2023] Open
Abstract
An N2-bridged ditungsten complex is presented that undergoes N2-splitting or hydrogen evolution upon protonation depending on the acid and reaction conditions. Spectroscopic, kinetic and computational results emphasize the impact of hydrogen bonding on the reaction selectivity.
Mo complexes are currently the most active catalysts for nitrogen fixation under ambient conditions. In comparison, tungsten platforms are scarcely examined. For active catalysts, the control of N2vs. proton reduction selectivities remains a difficult task. We here present N2 splitting using a tungsten pincer platform, which has been proposed as the key reaction for catalytic nitrogen fixation. Starting from [WCl3(PNP)] (PNP = N(CH2CH2PtBu2)2), the activation of N2 enabled the isolation of the dinitrogen bridged redox series [(N2){WCl(PNP)}2]0/+/2+. Protonation of the neutral complex results either in the formation of a nitride [W(N)Cl(HPNP)]+ or H2 evolution and oxidation of the W2N2 core, respectively, depending on the acid and reaction conditions. Examination of the nitrogen splitting vs. proton reduction selectivity emphasizes the role of hydrogen bonding of the conjugate base with the protonated intermediates and provides guidelines for nitrogen fixation.
Collapse
Affiliation(s)
- Bastian Schluschaß
- Georg-August-Universität , Institut für Anorganische Chemie , Tammannstrasse 4 , 37077 Göttingen , Germany .
| | - Josh Abbenseth
- Georg-August-Universität , Institut für Anorganische Chemie , Tammannstrasse 4 , 37077 Göttingen , Germany .
| | - Serhiy Demeshko
- Georg-August-Universität , Institut für Anorganische Chemie , Tammannstrasse 4 , 37077 Göttingen , Germany .
| | - Markus Finger
- Georg-August-Universität , Institut für Anorganische Chemie , Tammannstrasse 4 , 37077 Göttingen , Germany .
| | - Alicja Franke
- Lehrstuhl für Bioanorganische Chemie , Department Chemie und Pharmazie , Friedrich-Alexander-Universität Erlangen , Egerlandstrasse 3 , 91058 Erlangen , Germany
| | - Christian Herwig
- Institut für Chemie , Humboldt Universität zu Berlin , Brook-Taylor-Strasse 2 , 12489 Berlin , Germany
| | - Christian Würtele
- Georg-August-Universität , Institut für Anorganische Chemie , Tammannstrasse 4 , 37077 Göttingen , Germany .
| | - Ivana Ivanovic-Burmazovic
- Lehrstuhl für Bioanorganische Chemie , Department Chemie und Pharmazie , Friedrich-Alexander-Universität Erlangen , Egerlandstrasse 3 , 91058 Erlangen , Germany
| | - Christian Limberg
- Institut für Chemie , Humboldt Universität zu Berlin , Brook-Taylor-Strasse 2 , 12489 Berlin , Germany
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences , Roosevelt University , 430 S. Michigan Avenue , Chicago , Illinois 60605 , USA
| | - Sven Schneider
- Georg-August-Universität , Institut für Anorganische Chemie , Tammannstrasse 4 , 37077 Göttingen , Germany .
| |
Collapse
|
42
|
Bruch QJ, Connor GP, Chen CH, Holland PL, Mayer JM, Hasanayn F, Miller AJM. Dinitrogen Reduction to Ammonium at Rhenium Utilizing Light and Proton-Coupled Electron Transfer. J Am Chem Soc 2019; 141:20198-20208. [DOI: 10.1021/jacs.9b10031] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Quinton J. Bruch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Gannon P. Connor
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Chun-Hsing Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Patrick L. Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Faraj Hasanayn
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Alexander J. M. Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
43
|
Katayama A, Ohta T, Wasada‐Tsutsui Y, Inomata T, Ozawa T, Ogura T, Masuda H. Dinitrogen‐Molybdenum Complex Induces Dinitrogen Cleavage by One‐Electron Oxidation. Angew Chem Int Ed Engl 2019; 58:11279-11284. [DOI: 10.1002/anie.201905299] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Akira Katayama
- Department of Cooperative Major in Nanopharmaceutical SciencesGraduate School of EngineeringNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| | - Takehiro Ohta
- Picobiology InstituteGraduate School of Life ScienceUniversity of Hyogo, RSC-UH LP Center Hyogo 679-5148 Japan
- Present address: Department of Applied ChemistryFaculty of EngineeringSanyo-Onoda City University Sanyo-Onoda Yamaguchi 756-0884 Japan
| | - Yuko Wasada‐Tsutsui
- Department of Cooperative Major in Nanopharmaceutical SciencesGraduate School of EngineeringNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| | - Tomohiko Inomata
- Department of Life Science and Applied ChemistryGraduate School of EngineeringNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| | - Tomohiro Ozawa
- Department of Cooperative Major in Nanopharmaceutical SciencesGraduate School of EngineeringNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| | - Takashi Ogura
- Picobiology InstituteGraduate School of Life ScienceUniversity of Hyogo, RSC-UH LP Center Hyogo 679-5148 Japan
| | - Hideki Masuda
- Department of Life Science and Applied ChemistryGraduate School of EngineeringNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| |
Collapse
|
44
|
Connor GP, Mercado BQ, Lant HMC, Mayer JM, Holland PL. Chemical Oxidation of a Coordinated PNP-Pincer Ligand Forms Unexpected Re–Nitroxide Complexes with Reversal of Nitride Reactivity. Inorg Chem 2019; 58:10791-10801. [PMID: 31389243 DOI: 10.1021/acs.inorgchem.9b01075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gannon P. Connor
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Hannah M. C. Lant
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Patrick L. Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
45
|
Katayama A, Ohta T, Wasada‐Tsutsui Y, Inomata T, Ozawa T, Ogura T, Masuda H. Dinitrogen‐Molybdenum Complex Induces Dinitrogen Cleavage by One‐Electron Oxidation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Akira Katayama
- Department of Cooperative Major in Nanopharmaceutical SciencesGraduate School of EngineeringNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| | - Takehiro Ohta
- Picobiology InstituteGraduate School of Life ScienceUniversity of Hyogo, RSC-UH LP Center Hyogo 679-5148 Japan
- Present address: Department of Applied ChemistryFaculty of EngineeringSanyo-Onoda City University Sanyo-Onoda Yamaguchi 756-0884 Japan
| | - Yuko Wasada‐Tsutsui
- Department of Cooperative Major in Nanopharmaceutical SciencesGraduate School of EngineeringNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| | - Tomohiko Inomata
- Department of Life Science and Applied ChemistryGraduate School of EngineeringNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| | - Tomohiro Ozawa
- Department of Cooperative Major in Nanopharmaceutical SciencesGraduate School of EngineeringNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| | - Takashi Ogura
- Picobiology InstituteGraduate School of Life ScienceUniversity of Hyogo, RSC-UH LP Center Hyogo 679-5148 Japan
| | - Hideki Masuda
- Department of Life Science and Applied ChemistryGraduate School of EngineeringNagoya Institute of Technology Gokiso, Showa Nagoya 466-8555 Japan
| |
Collapse
|
46
|
Synthesis and characterization of xylene-based group-six metal PCP pincer complexes. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02422-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Itabashi T, Arashiba K, Tanaka H, Konomi A, Eizawa A, Nakajima K, Yoshizawa K, Nishibayashi Y. Synthesis and Catalytic Reactivity of Bis(molybdenum-trihalide) Complexes Bridged by Ferrocene Skeleton toward Catalytic Nitrogen Fixation. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Hiromasa Tanaka
- School of Liberal Arts and Sciences, Daido University, Takiharu-cho, Minami-ku, Nagoya 457-8530, Japan
| | - Asuka Konomi
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | | | | | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | | |
Collapse
|
48
|
Bezdek MJ, Chirik PJ. Pyridine(diimine) Chelate Hydrogenation in a Molybdenum Nitrido Ethylene Complex. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Máté J. Bezdek
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
49
|
Hickey AK, Wickramasinghe LA, Schrock RR, Tsay C, Müller P. Protonation Studies of Molybdenum(VI) Nitride Complexes That Contain the [2,6-(ArNCH 2) 2NC 5H 3] 2- Ligand (Ar = 2,6-Diisopropylphenyl). Inorg Chem 2019; 58:3724-3731. [PMID: 30807124 DOI: 10.1021/acs.inorgchem.8b03346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[Ar2N3]Mo(N)(O- t-Bu) (1), which contains the conformationally rigid pyridine-based diamido ligand [2,6-(ArNCH2)2NC5H3]2- (Ar = 2,6-diisopropylphenyl), is a catalyst for the reduction of dinitrogen with protons and electrons. Various acids have been added in order to explore where and how the first proton adds to the complex. The addition of adamantol to 1 produces a five-coordinate bis(adamantoxide), [HAr2N3]Mo(N)(OAd)2 (2a), in which one of the amido nitrogens in the ligand has been protonated and the resulting aniline nitrogen in the [HAr2N3]- ligand is not bound to the metal. The addition of [Ph2NH2][OTf] to 1 produces {[HAr2N3]Mo(N)(O- t-Bu)}(OTf) (3), in which an amido nitrogen has been protonated, but the aniline in the [HAr2N3]- ligand remains bound to the metal. Last, the addition of (2,6-lutidinium)BArF4 (BArF4 = {B(3,5-(CF3)2C6H3)4}-) to 1 yields {[Ar2N3]Mo(N)(LutH)(O- t-Bu)}BArF4, in which LutH+ is hydrogen-bonded to the nitride in the solid state and in dichloromethane with Keq = 412 ± 94 and Δ G = -3.6 ± 0.8 kcal at 22 °C. A similar hydrogen-bonded adduct was formed through the addition of (2-methylpyridinium)BArF4 to 1, but the addition of (pyridinium)BArF4 to 1 leads to the formation of (inter alia) {[HAr2N3]Mo(N)(O- t-Bu)}(BArF4), in which the amide nitrogen has been protonated. The addition of cobaltocene to 3 or {[Ar2N3]Mo(N)(LutH)(O- t-Bu)}(BArF4) leads only to the re-formation of 1. X-ray structural studies were carried out on 2a, 3, and {[Ar2N3]Mo(N)(LutH)(O- t-Bu)}(BArF4).
Collapse
Affiliation(s)
- Anne K Hickey
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Lasantha A Wickramasinghe
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Richard R Schrock
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Charlene Tsay
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Peter Müller
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
50
|
Wang D, Loose F, Chirik PJ, Knowles RR. N-H Bond Formation in a Manganese(V) Nitride Yields Ammonia by Light-Driven Proton-Coupled Electron Transfer. J Am Chem Soc 2019; 141:4795-4799. [PMID: 30803234 DOI: 10.1021/jacs.8b12957] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A method for the reduction of a manganese nitride to ammonia is reported, where light-driven proton-coupled electron transfer enables the formation of weak N-H bonds. Photoreduction of (saltBu)MnVN to ammonia and a Mn(II) complex has been accomplished using 9,10-dihydroacridine and a combination of an appropriately matched photoredox catalyst and weak Brønsted acid. Acid-reductant pairs with effective bond dissociation free energies between 35 and 46 kcal/mol exhibited high efficiencies. This light-driven method may provide a blueprint for new approaches to catalytic homogeneous ammonia synthesis under ambient conditions.
Collapse
Affiliation(s)
- Dian Wang
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Florian Loose
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Paul J Chirik
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Robert R Knowles
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|