1
|
Singh J, Bhattu M, Verma M, Bechelany M, Brar SK, Jadeja R. Sustainable Valorization of Rice Straw into Biochar and Carbon Dots Using a Novel One-Pot Approach for Dual Applications in Detection and Removal of Lead Ions. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:66. [PMID: 39791824 PMCID: PMC11723382 DOI: 10.3390/nano15010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Lead (Pb) is a highly toxic heavy metal that causes significant health hazards and environmental damage. Thus, the detection and removal of Pb2+ ions in freshwater sources are imperative for safeguarding public health and the environment. Moreover, the transformation of single resources into multiple high-value products is vital for achieving sustainable development goals (SDGs). In this regard, the present work focused on the preparation of two efficient materials, i.e., biochar (R-BC) and carbon dots (R-CDs) from a single resource (rice straw), via a novel approach by using extraction and hydrothermal process. The various microscopic and spectroscopy techniques confirmed the formation of porous structure and spherical morphology of R-BC and R-CDs, respectively. FTIR analysis confirmed the presence of hydroxyl (-OH), carboxyl (-COO) and amine (N-H) groups on the R-CDs' surface. The obtained blue luminescent R-CDs were employed as chemosensors for the detection of Pb2+ ions. The sensor exhibited a strong linear correlation over a concentration range of 1 µM to 100 µM, with a limit of detection (LOD) of 0.11 µM. Furthermore, the BET analysis of R-BC indicated a surface area of 1.71 m2/g and a monolayer volume of 0.0081 cm3/g, supporting its adsorption potential for Pb2+. The R-BC showed excellent removal efficiency of 77.61%. The adsorption process followed the Langmuir isotherm model and second-order kinetics. Therefore, the dual use of rice straw-derived provides a cost-effective, environmentally friendly solution for Pb2+ detection and remediation to accomplish the SDGs.
Collapse
Affiliation(s)
- Jagpreet Singh
- Faculty of Engineering & Technology, Marwadi University, Rajkot-Morbi Road, Rajkot 360003, Gujarat, India;
- Department of Chemistry, Research and Incubation Centre, Rayat Bahra University, Mohali 140103, Punjab, India
| | - Monika Bhattu
- Department of Chemistry, Research and Incubation Centre, Rayat Bahra University, Mohali 140103, Punjab, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India
| | - Meenakshi Verma
- Department of Applied Science, Chandigarh Engineering College, Chandigarh Group of Colleges Jhanjeri, Mohali 140307, Punjab, India
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR-5635, University of Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CEDEX 5, 34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah 32093, Kuwait
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada
| | - Rajendrasinh Jadeja
- Faculty of Engineering & Technology, Marwadi University, Rajkot-Morbi Road, Rajkot 360003, Gujarat, India;
| |
Collapse
|
2
|
Liang J, Menon A, Tomco T, Bhattarai N, Smith IN, Khrestian M, Formica SV, Eng C, Buck M, Bekris LM. A Computational Approach in the Systematic Search of the Interaction Partners of Alternatively Spliced TREM2 Isoforms. Int J Mol Sci 2024; 25:9667. [PMID: 39273614 PMCID: PMC11395018 DOI: 10.3390/ijms25179667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Alzheimer's disease is the most common form of dementia, characterized by the pathological accumulation of amyloid-beta (Aβ) plaques and tau neurofibrillary tangles. Triggering receptor expressed on myeloid cells 2 (TREM2) is increasingly recognized as playing a central role in Aβ clearance and microglia activation in AD. The TREM2 gene transcriptional product is alternatively spliced to produce three different protein isoforms. The canonical TREM2 isoform binds to DAP12 to activate downstream pathways. However, little is known about the function or interaction partners of the alternative TREM2 isoforms. The present study utilized a computational approach in a systematic search for new interaction partners of the TREM2 isoforms by integrating several state-of-the-art structural bioinformatics tools from initial large-scale screening to one-on-one corroborative modeling and eventual all-atom visualization. CD9, a cell surface glycoprotein involved in cell-cell adhesion and migration, was identified as a new interaction partner for two TREM2 isoforms, and CALM, a calcium-binding protein involved in calcium signaling, was identified as an interaction partner for a third TREM2 isoform, highlighting the potential role of cell adhesion and calcium regulation in AD.
Collapse
Affiliation(s)
- Junyi Liang
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (J.L.); (T.T.); (I.N.S.); (M.K.); (S.V.F.)
| | - Aditya Menon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Taylor Tomco
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (J.L.); (T.T.); (I.N.S.); (M.K.); (S.V.F.)
| | - Nisha Bhattarai
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Iris Nira Smith
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (J.L.); (T.T.); (I.N.S.); (M.K.); (S.V.F.)
| | - Maria Khrestian
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (J.L.); (T.T.); (I.N.S.); (M.K.); (S.V.F.)
| | - Shane V. Formica
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (J.L.); (T.T.); (I.N.S.); (M.K.); (S.V.F.)
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (J.L.); (T.T.); (I.N.S.); (M.K.); (S.V.F.)
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Lynn M. Bekris
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (J.L.); (T.T.); (I.N.S.); (M.K.); (S.V.F.)
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
3
|
Jensen GC, Janis MK, Nguyen HN, David OW, Zastrow ML. Fluorescent Protein-Based Sensors for Detecting Essential Metal Ions across the Tree of Life. ACS Sens 2024; 9:1622-1643. [PMID: 38587931 PMCID: PMC11073808 DOI: 10.1021/acssensors.3c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Genetically encoded fluorescent metal ion sensors are powerful tools for elucidating metal dynamics in living systems. Over the last 25 years since the first examples of genetically encoded fluorescent protein-based calcium indicators, this toolbox of probes has expanded to include other essential and non-essential metal ions. Collectively, these tools have illuminated fundamental aspects of metal homeostasis and trafficking that are crucial to fields ranging from neurobiology to human nutrition. Despite these advances, much of the application of metal ion sensors remains limited to mammalian cells and tissues and a limited number of essential metals. Applications beyond mammalian systems and in vivo applications in living organisms have primarily used genetically encoded calcium ion sensors. The aim of this Perspective is to provide, with the support of historical and recent literature, an updated and critical view of the design and use of fluorescent protein-based sensors for detecting essential metal ions in various organisms. We highlight the historical progress and achievements with calcium sensors and discuss more recent advances and opportunities for the detection of other essential metal ions. We also discuss outstanding challenges in the field and directions for future studies, including detecting a wider variety of metal ions, developing and implementing a broader spectral range of sensors for multiplexing experiments, and applying sensors to a wider range of single- and multi-species biological systems.
Collapse
Affiliation(s)
- Gary C Jensen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Makena K Janis
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Ogonna W David
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
4
|
Liang J, Smith AW. The Oligomeric State of Vasorin in the Plasma Membrane Measured Non-Invasively by Quantitative Fluorescence Fluctuation Spectroscopy. Int J Mol Sci 2024; 25:4115. [PMID: 38612924 PMCID: PMC11012933 DOI: 10.3390/ijms25074115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Vasorin (VASN), a transmembrane protein heavily expressed in endothelial cells, has garnered recent interest due to its key role in vascular development and pathology. The oligomeric state of VASN is a crucial piece of knowledge given that receptor clustering is a frequent regulatory mechanism in downstream signaling activation and amplification. However, documentation of VASN oligomerization is currently absent. In this brief report, we describe the measurement of VASN oligomerization in its native membranous environment, leveraging a class of fluorescence fluctuation spectroscopy. Our investigation revealed that the majority of VASN resides in a monomeric state, while a minority of VASN forms homodimers in the cellular membrane. This result raises the intriguing possibility that ligand-independent clustering of VASN may play a role in transforming growth factor signaling.
Collapse
Affiliation(s)
- Junyi Liang
- Department of Chemistry, University of Akron, Akron, OH 44325, USA
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Adam W. Smith
- Department of Chemistry, University of Akron, Akron, OH 44325, USA
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
5
|
Abstract
The genetically encoded fluorescent sensors convert chemical and physical signals into light. They are powerful tools for the visualisation of physiological processes in living cells and freely moving animals. The fluorescent protein is the reporter module of a genetically encoded biosensor. In this study, we first review the history of the fluorescent protein in full emission spectra on a structural basis. Then, we discuss the design of the genetically encoded biosensor. Finally, we briefly review several major types of genetically encoded biosensors that are currently widely used based on their design and molecular targets, which may be useful for the future design of fluorescent biosensors.
Collapse
Affiliation(s)
- Minji Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| |
Collapse
|
6
|
Wu SY, Shen Y, Shkolnikov I, Campbell RE. Fluorescent Indicators For Biological Imaging of Monatomic Ions. Front Cell Dev Biol 2022; 10:885440. [PMID: 35573682 PMCID: PMC9093666 DOI: 10.3389/fcell.2022.885440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Monatomic ions play critical biological roles including maintaining the cellular osmotic pressure, transmitting signals, and catalyzing redox reactions as cofactors in enzymes. The ability to visualize monatomic ion concentration, and dynamic changes in the concentration, is essential to understanding their many biological functions. A growing number of genetically encodable and synthetic indicators enable the visualization and detection of monatomic ions in biological systems. With this review, we aim to provide a survey of the current landscape of reported indicators. We hope this review will be a useful guide to researchers who are interested in using indicators for biological applications and to tool developers seeking opportunities to create new and improved indicators.
Collapse
Affiliation(s)
- Sheng-Yi Wu
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Irene Shkolnikov
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Pyrrolo-benzodiazepine fluorophore for trace amount detection of Cu2+ and application in living cells. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Sousa RPCL, Figueira RB, Costa SPG, M. Raposo MM. Optical Fiber Sensors for Biocide Monitoring: Examples, Transduction Materials, and Prospects. ACS Sens 2020; 5:3678-3709. [PMID: 33226221 DOI: 10.1021/acssensors.0c01615] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antifouling biocides are toxic to the marine environment impacting negatively on the aquatic ecosystems. These biocides, namely, tributyltin (TBT) and Cu(I) compounds, are used to avoid biofouling; however, their toxicity turns TBT and Cu(I) monitoring an important health issue. Current monitoring methods are expensive and time-consuming. This review provides an overview of the actual state of the art of antifouling paints' biocides, including their impact and toxicity, as well as the reported methods for TBT and Cu(I) detection over the past decade. The principles of optical fiber sensors (OFS) applications, with focus on environmental applications, and the use of organic chemosensors in this type of sensors are debated. The multiplexing ability of OFS and their application on aquatic environments are also discussed.
Collapse
Affiliation(s)
- Rui P. C. L. Sousa
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rita B. Figueira
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Susana P. G. Costa
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M. Manuela M. Raposo
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
9
|
Nair RV, Radhakrishna Pillai Suma P, Jayasree RS. A dual signal on-off fluorescent nanosensor for the simultaneous detection of copper and creatinine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110569. [PMID: 32228993 DOI: 10.1016/j.msec.2019.110569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
The transition of conventional medicine to personalized medicine has paved the way for sensing new biomolecules. Consequently, this field attracted wide interest due to its capability to provide information on point of care basis. Multi-analyte sensors that emerged recently can perform quick and affordable analysis with minimum quantity of blood samples compared to traditional sensing of individual analytes. The present study focuses on the development of a quantum dot (Qd) based nanosensor for the simultaneous detection of copper and creatinine; two biologically relevant molecules. The sensor was designed by forming a complex of Qd with 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and picric acid through carboxylic bond formation of Qd-EDC with picric acid. The dual independent emissions of the Qd-EDC complex was used for the simultaneous detection of creatinine and copper by a turn on/turn off method and was successfully demonstrated with a sensitivity of nanomolar to millimolar, and micromolar to millimolar range respectively. The multianalyte sensor thus developed has quick response and works well under normal conditions of temperature and pH. It is also shown to work in cellular environment and blood serum. A simple image based detection of creatinine using the sensor strips has also been attempted by means of a mobile camera and validated with human blood samples.
Collapse
Affiliation(s)
- Resmi V Nair
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala, India
| | - Parvathy Radhakrishna Pillai Suma
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala, India
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala, India.
| |
Collapse
|
10
|
Turn-On fluorescence sensor based detection of heavy metal ion using carbon dots@graphitic-carbon nitride nanocomposite probe. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112204] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Hazarika SI, Atta AK. Carbohydrate-based fluorometric and colorimetric sensors for Cu2+ ion recognition. CR CHIM 2019. [DOI: 10.1016/j.crci.2019.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Yi XQ, He YF, Cao YS, Shen WX, Lv YY. Porphyrinic Probe for Fluorescence "Turn-On" Monitoring of Cu + in Aqueous Buffer and Mitochondria. ACS Sens 2019; 4:856-864. [PMID: 30868875 DOI: 10.1021/acssensors.8b01240] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A zinc(II) porphyrin derivative (ZPSN) was designed and synthesized, and this probe exhibited rapid, selective and reversible binding to Cu+ for fluorescence monitoring in pure aqueous buffer. The detection mechanism is based on Cu+-activated disruption of axial coordination between the pyridyl ligand and the zinc center, which changes the molecular geometry and inhibits intramolecular electron transfer (ET), leading to fluorescence enhancement of the probe. The proposed sensing mechanism was supported by UV-vis spectroscopy/fluorescence spectral titration, NMR spectroscopy, mass spectrometry, and time-resolved fluorescence decay studies. The dissociation constant was calculated to be 6.53 × 10-11 M. CLSM analysis strongly suggested that ZPSN could penetrate live cells and successfully visualize Cu+ in mitochondria. This strategy may establish a design and offer a potential building block for construction of other metal sensors based on a similar mechanism.
Collapse
Affiliation(s)
- Xiao-Qin Yi
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
- College of Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China
| | - Yuan-Fan He
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| | - Yu-Sheng Cao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| | - Wang-Xing Shen
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| | - Yuan-Yuan Lv
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| |
Collapse
|
13
|
Hao Z, Zhu R, Chen PR. Genetically encoded fluorescent sensors for measuring transition and heavy metals in biological systems. Curr Opin Chem Biol 2017; 43:87-96. [PMID: 29275290 DOI: 10.1016/j.cbpa.2017.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 11/30/2022]
Abstract
Great progress has been made in expanding the repertoire of genetically encoded fluorescent sensors for monitoring intracellular transition metals (TMs). This powerful toolkit permits dynamic and non-invasive detection of TMs with high spatial-temporal resolution, which enables us to better understand the roles of TM homeostasis in both physiological and pathological settings. Here we summarize the recent development of genetically encoded fluorescent sensors for intracellular detection of TMs such as zinc and copper, as well as heavy metals including lead, cadmium, mercury, and arsenic.
Collapse
Affiliation(s)
- Ziyang Hao
- Synthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Department of Chemistry, The University of Chicago, Chicago 60637, USA
| | - Rongfeng Zhu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing, China.
| |
Collapse
|
14
|
Abstract
Genetically encoded fluorescent sensors are essential tools in modern biological research, and recent advances in fluorescent proteins (FPs) have expanded the scope of sensor design and implementation. In this review we compare different sensor platforms, including Förster resonance energy transfer (FRET) sensors, fluorescence-modulated single FP-based sensors, translocation sensors, complementation sensors, and dimerization-based sensors. We discuss elements of sensor design and engineering for each platform, including the incorporation of new types of FPs and sensor screening techniques. Finally, we summarize the wide range of sensors in the literature, exploring creative new sensor architectures suitable for different applications.
Collapse
Affiliation(s)
- Lynn Sanford
- University of Colorado Boulder, Boulder, CO, United States
| | - Amy Palmer
- University of Colorado Boulder, Boulder, CO, United States.
| |
Collapse
|
15
|
Jung KH, Oh ET, Park HJ, Lee KH. Development of new peptide-based receptor of fluorescent probe with femtomolar affinity for Cu(+) and detection of Cu(+) in Golgi apparatus. Biosens Bioelectron 2016; 85:437-444. [PMID: 27208475 DOI: 10.1016/j.bios.2016.04.101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
Developing fluorescent probes for monitoring intracellular Cu(+) is important for human health and disease, whereas a few types of their receptors showing a limited range of binding affinities for Cu(+) have been reported. In the present study, we first report a novel peptide receptor of a fluorescent probe for the detection of Cu(+). Dansyl-labeled tripeptide probe (Dns-LLC) formed a 1:1 complex with Cu(+) and showed a turn-on fluorescent response to Cu(+) in aqueous buffered solutions. The dissociation constant of Dns-LLC for Cu(+) was determined to be 12 fM, showing that Dns-LLC had more potent binding affinity for Cu(+) than those of previously reported chemical probes for Cu(+). The binding mode study showed that the thiol group of the peptide receptor plays a critical role in potent binding with Cu(+) and the sulfonamide and amide groups of the probe might cooperate to form a complex with Cu(+). Dns-LLC detected Cu(+) selectively by a turn-on response among various biologically relevant metal ions, including Cu(2+) and Zn(2+). The selectivity of the peptide-based probe for Cu(+) was strongly dependent on the position of the cysteine residue in the peptide receptor part. The fluorescent peptide-based probe penetrated the living RKO cells and successfully detected Cu(+) in the Golgi apparatus in live cells by a turn-on response. Given the growing interest in imaging Cu(+) in live cells, a novel peptide receptor of Cu(+) will offer the potential for developing a variety of fluorescent probes for Cu(+) in the field of copper biochemistry.
Collapse
|
16
|
Developing a genetically encoded green fluorescent protein mutant for sensitive light-up fluorescent sensing and cellular imaging of Hg(II). Anal Chim Acta 2015; 876:77-82. [DOI: 10.1016/j.aca.2015.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 01/17/2023]
|
17
|
Singh G, Rani S, Saroa A, Girdhar S, Singh J, Arora A, Aulakh D, Wriedt M. Organosilatranes with thioester-anchored heterocyclic ring assembly: Cu2+ ion binding and fabrication of hybrid silica nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra09004k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thioester allied organosilatranes were synthesized by the CDI mediated coupling of carboxylic acids with mercaptopropylsilatrane. One of the silatrane was further immobilized onto silica nanospheres, characterized and tested for copper ion binding.
Collapse
Affiliation(s)
| | - Sunita Rani
- Department of Chemistry
- Panjab University
- India
| | | | | | | | | | - Darpandeep Aulakh
- Functional Materials Design & X-ray Diffraction Lab
- Department of Chemistry & Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Mario Wriedt
- Functional Materials Design & X-ray Diffraction Lab
- Department of Chemistry & Biomolecular Science
- Clarkson University
- Potsdam
- USA
| |
Collapse
|
18
|
Shen C, New EJ. What has fluorescent sensing told us about copper and brain malfunction? Metallomics 2015; 7:56-65. [DOI: 10.1039/c4mt00288a] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here we review the development and application of fluorescent sensors for studying copper in the brain.
Collapse
Affiliation(s)
- Clara Shen
- School of Chemistry
- The University of Sydney
- , Australia
| | | |
Collapse
|
19
|
Zhang L, Zhang X. A selectively fluorescein-based colorimetric probe for detecting copper(II) ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 133:54-59. [PMID: 24929315 DOI: 10.1016/j.saa.2014.04.130] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 03/28/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
A novel fluorescein derivative 3-bromo-5-methylsalicylaldehyde fluorescein hydrazone (BMSFH) has been synthesized by reacting fluorescein hydrazide with 3-bromo-5-methylsalicylaldehyde and was developed as a new colorimetric probe for detection of Cu(2+). In the presence of Cu(2+) the BMSFH exhibits a rapid color change from colorless to yellow together with an obvious new band appeared at 502nm in the UV-vis absorption spectra. However, other common alkali-, alkaline earth-, transition- and rare earth metal ions induced no or minimal spectral changes. This change is attributed to BMSFH via coordination with Cu(2+) in a 1:1 stoichiometry and this binding to Cu(2+) is reversible, as indicated by the bleaching of the color when the Cu(2+) is extracted with EDTA. Experimental results indicate that the BMSFH can provide a rapid, selective and sensitive response to Cu(2+) with a linear dynamic range 3.0-330μmol/L and can be used as a potential Cu(2+) colorimetric probe in aqueous solution.
Collapse
Affiliation(s)
- Li Zhang
- School of Arts and Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Xianhong Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, PR China.
| |
Collapse
|
20
|
Choi YA, Keem JO, Kim CY, Yoon HR, Heo WD, Chung BH, Jung Y. A novel copper-chelating strategy for fluorescent proteins to image dynamic copper fluctuations on live cell surfaces. Chem Sci 2014; 6:1301-1307. [PMID: 29560216 PMCID: PMC5811147 DOI: 10.1039/c4sc03027c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/18/2014] [Indexed: 01/08/2023] Open
Abstract
A strong but selective copper-binding tripeptide was employed to develop a highly sensitive and selective copper(ii) protein reporter.
Copper is indispensable in most aerobic organisms although it is toxic if unregulated as illustrated in many neurodegenerative diseases. To elucidate the mechanisms underlying copper release from cells, a membrane-targeting reporter which can compete with extracellular copper-binding molecules is highly desirable. However, engineering a reporter protein to provide both high sensitivity and selectivity for copper(ii) has been challenging, likely due to a lack of proper copper(ii)-chelating strategies within proteins. Here, we report a new genetically encoded fluorescent copper(ii) reporter by employing a copper-binding tripeptide derived from human serum albumin (HSA), which is one of the major copper-binding proteins in extracellular environments. Optimized insertion of the tripeptide into the green fluorescent protein leads to rapid fluorescence quenching (up to >85% change) upon copper-binding, while other metal ions have no effect. Furthermore, the high binding affinity of the reporter enables reliable copper detection even in the presence of competing biomolecules such as HSA and amyloid beta peptides. We also demonstrate that our reporter proteins can be used to visualize dynamic copper fluctuations on living HeLa cell surfaces.
Collapse
Affiliation(s)
- Yoon-Aa Choi
- BioNano Health Guard Research Center , 125 Gwahak-ro, Yuseong-gu , Daejeon , 305-806 , Republic of Korea . ; ; Tel: +82-42-860-4442
| | - Joo Oak Keem
- BioNano Health Guard Research Center , 125 Gwahak-ro, Yuseong-gu , Daejeon , 305-806 , Republic of Korea . ; ; Tel: +82-42-860-4442
| | - Cha Yeon Kim
- Graduate School of Nanoscience and Technology , Korea Advanced Institute of Science and Technology (KAIST) , Republic of Korea
| | - Hye Ryeon Yoon
- Department of Chemistry , KAIST , 291 Daehak-ro, Yuseong-gu , Daejeon , 305-701 , Republic of Korea . ; ; Tel: +82-42-350-2817
| | - Won Do Heo
- Department of Biological Sciences , KAIST , Republic of Korea
| | - Bong Hyun Chung
- BioNano Health Guard Research Center , 125 Gwahak-ro, Yuseong-gu , Daejeon , 305-806 , Republic of Korea . ; ; Tel: +82-42-860-4442
| | - Yongwon Jung
- Department of Chemistry , KAIST , 291 Daehak-ro, Yuseong-gu , Daejeon , 305-701 , Republic of Korea . ; ; Tel: +82-42-350-2817
| |
Collapse
|
21
|
Zhang J, Zhang L, Wei Y, Chao J, Shuang S, Cai Z, Dong C. A selectively rhodamine-based colorimetric probe for detecting copper(II) ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 132:191-197. [PMID: 24866085 DOI: 10.1016/j.saa.2014.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/28/2014] [Accepted: 04/02/2014] [Indexed: 06/03/2023]
Abstract
A novel rhodamine derivative 3-bromo-5-methylsalicylaldehyde rhodamine B hydrazone (BMSRH) has been synthesized by reacting rhodamine B hydrazide with 3-bromo-5-methylsalicylaldehyde and developed as a new colorimetric probe for the selective and sensitive detection of Cu2+. Addition of Cu2+ to the solution of BMSRH results in a rapid color change from colorless to red together with an obvious new band appeared at 552 nm in the UV-vis absorption spectra. This change is attributed to the spirocycle form of BMSRH opened via coordination with Cu2+ in a 1:1 stoichiometry and their association constant is determined as 3.2×10(4) L mol(-1). Experimental results indicate that the BMSRH can provide a rapid, selective and sensitive response to Cu2+ with a linear dynamic range 0.667-240 μmol/L. Common interferent ions do not show any interference on the Cu2+ determination. It is anticipated that BMSRH can be a good candidate probe and has potential application for Cu2+ determination. The proposed probe exhibits the following advantages: a quick, simple and facile synthesis.
Collapse
Affiliation(s)
- Jiangang Zhang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China; School of Arts and Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Li Zhang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China; School of Arts and Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Yanli Wei
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Jianbing Chao
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Zongwei Cai
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
22
|
Carter KP, Young AM, Palmer AE. Fluorescent sensors for measuring metal ions in living systems. Chem Rev 2014; 114:4564-601. [PMID: 24588137 PMCID: PMC4096685 DOI: 10.1021/cr400546e] [Citation(s) in RCA: 1574] [Impact Index Per Article: 143.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Kyle P. Carter
- Department
of Chemistry and
Biochemistry, BioFrontiers Institute, University
of Colorado, UCB 596,
3415 Colorado AvenueBoulder, Colorado 80303, United
States
| | - Alexandra M. Young
- Department
of Chemistry and
Biochemistry, BioFrontiers Institute, University
of Colorado, UCB 596,
3415 Colorado AvenueBoulder, Colorado 80303, United
States
| | - Amy E. Palmer
- Department
of Chemistry and
Biochemistry, BioFrontiers Institute, University
of Colorado, UCB 596,
3415 Colorado AvenueBoulder, Colorado 80303, United
States
| |
Collapse
|
23
|
Zhang J, Zhang L, Wei Y, Ma J, Shuang S, Cai Z, Dong C. A selectively fluorescein-based colorimetric probe for detecting copper(II) ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 122:731-736. [PMID: 24370938 DOI: 10.1016/j.saa.2013.11.096] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 11/13/2013] [Accepted: 11/15/2013] [Indexed: 06/03/2023]
Abstract
A novel fluorescein derivative furfuraldehyde fluorescein hydrazone (FFH) has been synthesized by reacting fluorescein hydrazide with furfuraldehyde and characterized by (1)H NMR, (13)C NMR, MS and elemental analysis. Addition of Cu(2+) to the solution of FFH results in a rapid color change from colorless to yellow together with an obvious new band appeared at 502 nm in the UV-vis absorption spectra. This change is attributed to the spirocycle form of FFH opened via coordination with Cu(2+) in a 1:1 stoichiometry and their association constant is determined as 6.1×10(4) L mol(-1). Experimental results indicate that the FFH can provide a rapid, selective and sensitive response to Cu(2+) with a linear dynamic range 6.6-330 μmol/L. Common interferent ions do not show any interference on the Cu(2+) determination. It is anticipated that FFH can be a good candidate probe and has potential application for Cu(2+) determination in aqueous solution.
Collapse
Affiliation(s)
- Jiangang Zhang
- Research Center of Environmental Science and Engineering, Shanxi University, Taiyuan 030006, PR China; School of Arts and Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Li Zhang
- Research Center of Environmental Science and Engineering, Shanxi University, Taiyuan 030006, PR China; School of Arts and Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Yanli Wei
- Research Center of Environmental Science and Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Jun Ma
- Research Center of Environmental Science and Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Shaomin Shuang
- Research Center of Environmental Science and Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Zongwei Cai
- Research Center of Environmental Science and Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Chuan Dong
- Research Center of Environmental Science and Engineering, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
24
|
Liang J, Guo L, Ding Y, Xia L, Shen Y, Qin M, Xu Q, Cao Y, Wang W. Genetically encoded red fluorescent copper(I) sensors for cellular copper(I) imaging. Biochem Biophys Res Commun 2014; 443:894-8. [PMID: 24380863 DOI: 10.1016/j.bbrc.2013.12.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/11/2013] [Indexed: 01/25/2023]
Abstract
Copper ranks among the most important metal ions in living organism, owing to its key catalytic effect in a range of biochemical processes. Dysregulation of in vivo copper(I) metabolism is extremely toxic and would cause serious diseases in human, such as Wilson's and Menkes. Thus, it would be highly valuable to have a proper approach to monitor the dynamics of copper(I) in vivo, as it is directly related to the onset of human copper(I)-related diseases. Under these circumstance, developing fluorescent protein based copper(I) sensors is highly demanded. However, these established sensors are mostly based on green or yellow FPs. Fluorescent copper(I) sensors with a spectra in the red range are more desirable due to lower phototoxicity, less auto-fluorescent noise and better penetration of red light. In the present work, we grafted a special red FP into three different location of a copper(I) binding protein, and generate a series of red fluorescent copper(I) sensors. Despite their limited in vivo sensitivity toward copper(I), these sensors are viable for cellular copper(I) imaging. Furthermore, these red fluorescent copper(I) sensors are a good starting point to develop superior copper(I) biosensors capable of imaging copper(I) fluctuations within a truly biologically relevant concentration, and further effort to realize this endeavor is under way.
Collapse
Affiliation(s)
- Junyi Liang
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Lele Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yin Ding
- Sate Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lei Xia
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Meng Qin
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Wei Wang
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu 210008, China
| |
Collapse
|
25
|
Nadarajan SP, Ravikumar Y, Deepankumar K, Lee CS, Yun H. Engineering lead-sensing GFP through rational designing. Chem Commun (Camb) 2014; 50:15979-82. [DOI: 10.1039/c4cc07163h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A lead biosensor (PbGFP) was developed by engineering lead binding site near the chromophore of green fluorescent protein. The specific binding of lead to chromophore of PbGFP resulted in turn-off mechanism.
Collapse
Affiliation(s)
| | | | | | - Chong-Soon Lee
- School of Biotechnology
- Yeungnam University
- Gyeongsan, South Korea
| | - Hyungdon Yun
- Department of Bioscience & Biotechnology
- Konkuk University
- Seoul 143-701, Korea
| |
Collapse
|
26
|
|
27
|
Liang J, Yang Y, Yin P, Ding Y, Shen Y, Qin M, Wang J, Xu Q, Cao Y, Wang W. A yellow fluorescent protein with reduced chloride sensitivity engineered by loop-insertion. Chembiochem 2013; 14:1423-6. [PMID: 23868849 DOI: 10.1002/cbic.201300199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Indexed: 11/06/2022]
Abstract
Light it up! We demonstrate a novel way to reduce the chloride sensitivity of yellow fluorescent protein by inserting glycine residues in its loop region. The length and position for the insertion were optimized experimentally, and a plausible underlying mechanism is proposed.
Collapse
Affiliation(s)
- Junyi Liang
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Jiangsu 210008, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fahrni CJ. Synthetic fluorescent probes for monovalent copper. Curr Opin Chem Biol 2013; 17:656-62. [PMID: 23769869 DOI: 10.1016/j.cbpa.2013.05.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/08/2013] [Accepted: 05/17/2013] [Indexed: 11/17/2022]
Abstract
Fluorescent probes are powerful and cost-effective tools for the detection of metal ions in biological systems. Compared to non-redox-active metal ions, the design of fluorescent probes for biological copper is challenging. Within the reducing cellular environment, copper is predominantly present in its monovalent oxidation state; therefore, the design of fluorescent probes for biological copper must take into account the rich redox and coordination chemistry of Cu(I). Recent progress in understanding the underlying solution chemistry and photophysical pathways led to the development of new probes that offer high fluorescence contrast and excellent selectivity towards monovalent copper.
Collapse
Affiliation(s)
- Christoph J Fahrni
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332-0400, USA.
| |
Collapse
|