1
|
Bolshakov ES, Ivanov AV, Kozlov AA, Aksenov AS, Isanbaeva EV, Kushnir SE, Yapryntsev AD, Baranchikov AE, Zolotov YA. A photonic crystal material for the online detection of nonpolar hydrocarbon vapors. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:127-136. [PMID: 35145833 PMCID: PMC8805038 DOI: 10.3762/bjnano.13.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
A modern level of nanotechnology allows us to create conceptually new test systems for chemical analyses and to develop sensitive and compact sensors for various types of substances. However, at present, there are very few commercially available compact sensors for the determination of toxic and carcinogenic substances, such as organic solvents that are used in some construction materials. This article contains an overview of how 3D photonic crystals are used for the creation of a new test system for nonpolar organic solvents. The morphology and structural parameters of the photonic crystals, based upon a crystalline colloidal array with a sensing matrix of polydimethylsiloxane, have been determined by using scanning electron microscopy and by the results of specular reflectance spectroscopy based on the Bragg-Snell law. A new approach has been proposed for the application of this sensor in chemical analysis for the qualitative detection of saturated vapors of volatile organic compounds due to configuration changes of the photonic bandgap, recorded by diffuse reflectance spectroscopy. The exposure of the sensor to aromatic (benzene, toluene and p-xylene) and aliphatic (n-pentane, n-heptane, n-octane and n-decane) hydrocarbons has been analyzed. The reconstitution of spectral parameters of the sensor during the periodic detection of saturated vapors of toluene has been evaluated.
Collapse
Affiliation(s)
| | - Aleksander Vadimovich Ivanov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | | | - Anton Sergeevich Aksenov
- Institute of Fine Chemical Technologies, Russian Technological University Moscow, 119454, Russia
| | | | - Sergei Evgen’evich Kushnir
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Department of Materials Science, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | | | - Yury Aleksandrovich Zolotov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
2
|
Zhou C, Qi Y, Zhang S, Niu W, Wu S, Ma W, Tang B. Lotus Seedpod Inspiration: Particle-Nested Double-Inverse Opal Films with Fast and Reversible Structural Color Switching for Information Security. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26384-26393. [PMID: 34038074 DOI: 10.1021/acsami.1c05178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The integration of novel structures into colloidal crystals provides the possibility of constructing stimuli-responsive photonic materials. However, in most opal and inverse opal structures, replacing the interior air with an infiltrated liquid will cause partial refractive index matching, resulting in the reduction or even disappearance of the photonic band gap. Herein, inspired by the lotus seedpod, an innovative particle-nested double-inverse opal film with fast and reversible structural color switching (≈1 s) is first fabricated by introducing polystyrene (PS) spheres into an inverted opal backbone. Importantly, refractive index matching can be effectively avoided due to the existence of internal PS spheres, and optical switching from diffusive to photonic behavior is achieved by a liquid with low surface tension for the response. Furthermore, a reversible ethanol stimuli-response bilayer double-inverse opal film with multistate switching for information encryption is proposed by combining optical scattering and diffraction. The scattered light from the top layer caused by the randomly distributed and weakly scattering PS spheres within the pores makes the pattern at the bottom invisible. Simultaneously, the display and discoloration of the pattern can be realized instantaneously by ethanol response. Thus, this new preparation strategy exhibits great potential in the security fields.
Collapse
Affiliation(s)
- Changtong Zhou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yong Qi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
3
|
Zhang Z, Qi Y, Ma W, Zhang S. Wettability-Controlled Directional Actuating Strategy Based on Bilayer Photonic Crystals. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2007-2017. [PMID: 33382243 DOI: 10.1021/acsami.0c19313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although the water-triggered bending behavior of bilayer films has been a wide concerned, there are few reports on wettability-controlled directional actuators with visible color changes. Using photonic crystals as carriers, bilayer directional bending structural color actuators were prepared based on the hydrophilic difference. Top inverse opal with strong hydrophilicity can promote water penetration and strengthen the effect of swelling. While, bottom inverse opal with weak hydrophilicity can inhibit water penetration and weaken the effect of swelling. When the bilayer structure is immersed in water, its wettability differences will produce different optical responses for visualization and will bring different swelling performances, resulting in directional bending. Infiltration differences are visualized as structural color red shifts or transparency. The mechanism of the design involves optical diffractions in the fabricated periodic nanostructures, differences in the surface wettability and swelling rate, uses the infiltration and capillary evaporation of water to realize the spectral diversity of reflectance, and the enhancement of bending by gradient infiltration. This work deeply analyzes the improvement of the photonic crystal structure on the optical and bending performance of the wettability-controlled actuator, provides a basic model for the design of bionic components, and opens an idea for the combination of bilayer photonic crystals and actuators.
Collapse
Affiliation(s)
- Zhongjian Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, P. R. China
| | - Yong Qi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, P. R. China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, P. R. China
| |
Collapse
|
4
|
Zhang W, Xue M, Shea KJ, Qiu L, Xu Z, Fan J, Yan D, Meng Z. A biomass based photonic crystal made of “konjac tofu”. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Hong W, Yuan Z, Chen X. Structural Color Materials for Optical Anticounterfeiting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907626. [PMID: 32187853 DOI: 10.1002/smll.201907626] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/14/2020] [Accepted: 02/23/2020] [Indexed: 05/23/2023]
Abstract
The counterfeiting of goods is growing worldwide, affecting practically any marketable item ranging from consumer goods to human health. Anticounterfeiting is essential for authentication, currency, and security. Anticounterfeiting tags based on structural color materials have enjoyed worldwide and long-term commercial success due to their inexpensive production and exceptional ease of percept. However, conventional anticounterfeiting tags of holographic gratings can be readily copied or imitated. Much progress has been made recently to overcome this limitation by employing sufficient complexity and stimuli-responsive ability into the structural color materials. Moreover, traditional processing methods of structural color tags are mainly based on photolithography and nanoimprinting, while new processing methods such as the inkless printing and additive manufacturing have been developed, enabling massive scale up fabrication of novel structural color security engineering. This review presents recent breakthroughs in structural color materials, and their applications in optical encryption and anticounterfeiting are discussed in detail. Special attention is given to the unique structures for optical anticounterfeiting techniques and their optical aspects for encryption. Finally, emerging research directions and current challenges in optical encryption technologies using structural color materials is presented.
Collapse
Affiliation(s)
- Wei Hong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhongke Yuan
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xudong Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Center for High-Performance Organic and Polymer Photoelectric Functional Films, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
6
|
Yu Y, Brandt S, Nicolas NJ, Aizenberg J. Colorimetric Ethanol Indicator Based on Instantaneous, Localized Wetting of a Photonic Crystal. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1924-1929. [PMID: 31809017 DOI: 10.1021/acsami.9b19836] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Easy-to-use sensors for ethanol solutions have broad applications ranging from monitoring alcohol quality to combating underage drinking. Although there are a number of electronic and colorimetric sensors available for determining alcohol concentration, there is currently no device that can concurrently provide a prompt, well-defined, quickly recoverable readout and remain readily affordable. Here, we developed a field-ready, colorimetric indicator that provides a fast, clear identification of ethanol-water mixtures between 0 and 40% based on the discoloration of a wetted photonic crystal. We cooperatively exploit the iridescence and the geometrical gating in silica inverse opal films (IOFs), together with a fine-tuned surface chemistry gradient, to distinguish ethanol concentrations by their wettability patterns in the different segments of the IOFs. The resultant all-in-one colorimetric sensor delivers a striking and instantaneous optical response at an ethanol concentration as low as 5%. We further improve the ease of use by seamlessly integrating this colorimetric platform with drinking glassware (a glass stirrer and a vial). This research provides an optimal means for colorimetric ethanol detection and is a step toward the immersible sensing of diverse molecules (e.g., biomarkers) in aqueous solutions without expensive laboratory tests.
Collapse
|
7
|
Functional Micro–Nano Structure with Variable Colour: Applications for Anti-Counterfeiting. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/6519018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Colour patterns based on micro-nano structure have attracted enormous research interests due to unique optical switches and smart surface applications in photonic crystal, superhydrophobic surface modification, controlled adhesion, inkjet printing, biological detection, supramolecular self-assembly, anti-counterfeiting, optical device and other fields. In traditional methods, many patterns of micro-nano structure are derived from changes of refractive index or lattice parameters. Generally, the refractive index and lattice parameters of photonic crystals are processed by common solvents, salts or reactive monomers under specific electric, magnetic and stress conditions. This review focuses on the recent developments in the fabrication of micro-nano structures for patterns including styles, materials, methods and characteristics. It summarized the advantages and disadvantages of inkjet printing, angle-independent photonic crystal, self-assembled photonic crystals by magnetic field force, gravity, electric field, inverse opal photonic crystal, electron beam etching, ion beam etching, laser holographic lithography, imprinting technology and surface wrinkle technology, etc. This review will provide a summary on designing micro-nano patterns and details on patterns composed of photonic crystals by surface wrinkles technology and plasmonic micro-nano technology. In addition, colour patterns as switches are fabricated with good stability and reproducibility in anti-counterfeiting application. Finally, there will be a conclusion and an outlook on future perspectives.
Collapse
|
8
|
Xu Y, Wang H, Luan C, Liu Y, Chen B, Zhao Y. Aptamer-based hydrogel barcodes for the capture and detection of multiple types of pathogenic bacteria. Biosens Bioelectron 2017; 100:404-410. [PMID: 28957705 DOI: 10.1016/j.bios.2017.09.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 11/16/2022]
Abstract
Rapid and sensitive diagnosing hematological infections based on the separation and detection of pathogenic bacteria in the patient's blood is a significant challenge. To address this, we herein present a new barcodes technology that can simultaneously capture and detect multiple types of pathogenic bacteria from a complex sample. The barcodes are poly (ethylene glycol) (PEG) hydrogel inverse opal particles with characteristic reflection peak codes that remain stable during bacteria capture on their surfaces. As the spherical surface of the particles has ordered porous nanostructure, the barcodes can provide not only more surface area for probe immobilization and reaction, but also a nanopatterned platform for highly efficient bioreactions. In addition, the PEG hydrogel scaffold could decrease the non-specificity adsorption by its anti-adhesive effect, and the decorated aptamer probes in the scaffolds could increase the sensitivity, reliability, and specificity of the bacteria capture and detection. Moreover, the tagged magnetic nanoparticles in the PEG scaffold could impart the barcodes with controllable movement under magnetic fields, which can be used to significantly increase the reaction speed and simplify the processing of the bioassays. Based on the describe barcodes, it was demonstrated that the bacteria could be captured and identified even at low bacterial concentrations (100 CFU mL-1) within 2.5h, which is effectively shortened in comparison with the "gold standard" in clinic. These features make the barcodes ideal for capturing and detecting multiple bacteria from clinical samples for hematological infection diagnostics.
Collapse
Affiliation(s)
- Yueshuang Xu
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Huan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chengxin Luan
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yuxiao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Yuanjin Zhao
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
9
|
Joost U, Šutka A, Visnapuu M, Tamm A, Lembinen M, Antsov M, Utt K, Smits K, Nõmmiste E, Kisand V. Colorimetric gas detection by the varying thickness of a thin film of ultrasmall PTSA-coated TiO 2 nanoparticles on a Si substrate. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:229-236. [PMID: 28243561 PMCID: PMC5302005 DOI: 10.3762/bjnano.8.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
Colorimetric gas sensing is demonstrated by thin films based on ultrasmall TiO2 nanoparticles (NPs) on Si substrates. The NPs are bound into the film by p-toluenesulfonic acid (PTSA) and the film is made to absorb volatile organic compounds (VOCs). Since the color of the sensing element depends on the interference of reflected light from the surface of the film and from the film/silicon substrate interface, colorimetric detection is possible by the varying thickness of the NP-based film. Indeed, VOC absorption causes significant swelling of the film. Thus, the optical path length is increased, interference wavelengths are shifted and the refractive index of the film is decreased. This causes a change of color of the sensor element visible by the naked eye. The color response is rapid and changes reversibly within seconds of exposure. The sensing element is extremely simple and cheap, and can be fabricated by common coating processes.
Collapse
Affiliation(s)
- Urmas Joost
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Andris Šutka
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
- Laboratory of Functional Materials Technologies, Riga Technical University, Paula Valdena 3/7, 1048 Riga, Latvia
| | - Meeri Visnapuu
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Aile Tamm
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Meeri Lembinen
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Mikk Antsov
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Kathriin Utt
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Krisjanis Smits
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, Riga LV-1063, Latvia
| | - Ergo Nõmmiste
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Vambola Kisand
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| |
Collapse
|
10
|
Yang Q, Peng H, Li J, Li Y, Xiong H, Chen L. Label-free colorimetric detection of tetracycline using analyte-responsive inverse-opal hydrogels based on molecular imprinting technology. NEW J CHEM 2017. [DOI: 10.1039/c7nj02368e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Analyte-responsive inverse-opal hydrogels based on molecular imprinting technology were fabricated for selective, sensitive, and label-free colorimetric detection of tetracycline.
Collapse
Affiliation(s)
- Qian Yang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
| | - Hailong Peng
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
- Department of Biological and Agricultural Engineering
| | - Jinhua Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering
- University of Arkansas
- Fayetteville
- USA
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| |
Collapse
|
11
|
Heo Y, Kang H, Lee JS, Oh YK, Kim SH. Lithographically Encrypted Inverse Opals for Anti-Counterfeiting Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3819-3826. [PMID: 27259060 DOI: 10.1002/smll.201601140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/08/2016] [Indexed: 06/05/2023]
Abstract
Colloidal photonic crystals possess inimitable optical properties of iridescent structural colors and unique spectral shape, which render them useful for security materials. This work reports a novel method to encrypt graphical and spectral codes in polymeric inverse opals to provide advanced security. To accomplish this, this study prepares lithographically featured micropatterns on the top surface of hydrophobic inverse opals, which serve as shadow masks against the surface modification of air cavities to achieve hydrophilicity. The resultant inverse opals allow rapid infiltration of aqueous solution into the hydrophilic cavities while retaining air in the hydrophobic cavities. Therefore, the structural color of inverse opals is regioselectively red-shifted, disclosing the encrypted graphical codes. The decoded inverse opals also deliver unique reflectance spectral codes originated from two distinct regions. The combinatorial code composed of graphical and optical codes is revealed only when the aqueous solution agreed in advance is used for decoding. In addition, the encrypted inverse opals are chemically stable, providing invariant codes with high reproducibility. In addition, high mechanical stability enables the transfer of the films onto any surfaces. This novel encryption technology will provide a new opportunity in a wide range of security applications.
Collapse
Affiliation(s)
- Yongjoon Heo
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, Daejeon, 305-701, South Korea
| | - Hyelim Kang
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, Daejeon, 305-701, South Korea
| | - Joon-Seok Lee
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, Daejeon, 305-701, South Korea
| | - You-Kwan Oh
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research (KIER), Daejeon, 305-343, South Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, Daejeon, 305-701, South Korea
| |
Collapse
|
12
|
Photonic hydrogel sensors. Biotechnol Adv 2016; 34:250-71. [DOI: 10.1016/j.biotechadv.2015.10.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/11/2015] [Accepted: 10/16/2015] [Indexed: 12/22/2022]
|
13
|
Zhang B, Cai Y, Shang L, Wang H, Cheng Y, Rong F, Gu Z, Zhao Y. A photonic crystal hydrogel suspension array for the capture of blood cells from whole blood. NANOSCALE 2016; 8:3841-3847. [PMID: 26815946 DOI: 10.1039/c5nr06368j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kuang M, Wang J, Jiang L. Bio-inspired photonic crystals with superwettability. Chem Soc Rev 2016; 45:6833-6854. [DOI: 10.1039/c6cs00562d] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review focus on the recent developments in the mechanism, fabrication and application of bio-inspired PCs with superwettability.
Collapse
Affiliation(s)
- Minxuan Kuang
- Laboratory of Bio-inspired Smart Interface Science
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Jingxia Wang
- Laboratory of Bio-inspired Smart Interface Science
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Lei Jiang
- Laboratory of Bio-inspired Smart Interface Science
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
15
|
Zhao N, Wang Z, Cai C, Shen H, Liang F, Wang D, Wang C, Zhu T, Guo J, Wang Y, Liu X, Duan C, Wang H, Mao Y, Jia X, Dong H, Zhang X, Xu J. Bioinspired materials: from low to high dimensional structure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:6994-7017. [PMID: 25212698 DOI: 10.1002/adma.201401718] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/11/2014] [Indexed: 06/03/2023]
Abstract
The surprising properties of biomaterials are the results of billions of years of evolution. Generally, biomaterials are assembled under mild conditions with very limited supply of constituents available for living organism, and their amazing properties largely result from the sophisticated hierarchical structures. Following the biomimetic principles to prepare manmade materials has drawn great research interests in materials science and engineering. In this review, we summarize the recent progress in fabricating bioinspired materials with the emphasis on mimicking the structure from one to three dimensions. Selected examples are described with a focus on the relationship between the structural characters and the corresponding functions. For one-dimensional materials, spider fibers, polar bear hair, multichannel plant roots and so on have been involved. Natural structure color and color shifting surfaces, and the antifouling, antireflective coatings of biomaterials are chosen as the typical examples of the two-dimensional biomimicking. The outstanding protection performance, and the stimuli responsive and self-healing functions of biomaterials based on the sophisticated hierarchical bulk structures are the emphases of the three-dimensional mimicking. Finally, a summary and outlook are given.
Collapse
Affiliation(s)
- Ning Zhao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jiang H, Yang X, Chen C, Zhu Y, Li C. Facile and controllable fabrication of three-dimensionally quasi-ordered macroporous TiO2 for high performance lithium-ion battery applications. NEW J CHEM 2013. [DOI: 10.1039/c3nj00024a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
Hong W, Chen Y, Feng X, Yan Y, Hu X, Zhao B, Zhang F, Zhang D, Xu Z, Lai Y. Full-color CO2 gas sensing by an inverse opal photonic hydrogel. Chem Commun (Camb) 2013; 49:8229-31. [DOI: 10.1039/c3cc44825h] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Hong W, Li H, Hu X, Zhao B, Zhang F, Zhang D, Xu Z. Wettability gradient colorimetric sensing by amphiphilic molecular response. Chem Commun (Camb) 2013; 49:728-30. [DOI: 10.1039/c2cc37780b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Stein A, Wilson BE, Rudisill SG. Design and functionality of colloidal-crystal-templated materials—chemical applications of inverse opals. Chem Soc Rev 2013; 42:2763-803. [DOI: 10.1039/c2cs35317b] [Citation(s) in RCA: 435] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|