1
|
Wang D, Huang J, Zhang H, Gu TJ, Li L. Cotton Ti-IMAC: Developing Phosphorylated Cotton as a Novel Platform for Phosphopeptide Enrichment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47893-47901. [PMID: 37812448 PMCID: PMC10730235 DOI: 10.1021/acsami.3c08697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Protein phosphorylation is an important post-translational modification (PTM), which is involved in many important cellular functions. Understanding protein phosphorylation at the molecular level is critical to deciphering its relevant biological processes and signaling networks. Mass spectrometry (MS) has become a powerful tool for the comprehensive profiling of protein phosphorylation. Yet the low ionization efficiency and low abundance of phosphopeptides among complex biological samples make its MS analysis challenging; an enrichment strategy with high efficiency and selectivity is always necessary prior to MS analysis. In this study, we developed a phosphorylated cotton-fiber-based Ti(IV)-IMAC material (termed as Cotton Ti-IMAC) that can serve as a novel platform for phosphopeptide enrichment. The cotton fiber can be effectively grafted with phosphate groups covalently in a single step, where the titanium ions can then be immobilized to enable capturing phosphopeptides. The material can be prepared using cost-effective reagents within only 4 h. Benefiting from the flexibility and filterability of cotton fibers, the material can be easily packed as a spin-tip and make the enrichment process convenient. Cotton Ti-IMAC successfully enriched phosphopeptides from protein standard digests and exhibited a high selectivity (BSA/β-casein = 1000:1) and excellent sensitivity (0.1 fmol/μL). Moreover, 2354 phosphopeptides were profiled in one LC-MS/MS injection after enriching from only 100 μg of HeLa cell digests with an enrichment specificity of up to 97.51%. Taken together, we believe that Cotton Ti-IMAC can serve as a widely applicable and robust platform for achieving large-scale phosphopeptide enrichment and expanding our knowledge of phosphoproteomics in complex biological systems.
Collapse
Affiliation(s)
- Danqing Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
- Guangzhou Laboratory, Guangzhou, Guangdong, 510005, China
| | - Haoran Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ting-Jia Gu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
2
|
Wang D, Huang J, Zhang H, Ma M, Xu M, Cui Y, Shi X, Li L. ATP-Coated Dual-Functionalized Titanium(IV) IMAC Material for Simultaneous Enrichment and Separation of Glycopeptides and Phosphopeptides. J Proteome Res 2023; 22:2044-2054. [PMID: 37195130 PMCID: PMC11138137 DOI: 10.1021/acs.jproteome.3c00118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein glycosylation and phosphorylation are two of the most common post-translational modifications (PTMs), which play an important role in many biological processes. However, low abundance and poor ionization efficiency of phosphopeptides and glycopeptides make direct MS analysis challenging. In this study, we developed a hydrophilicity-enhanced bifunctional Ti-IMAC (IMAC: immobilized metal affinity chromatography) material with grafted adenosine triphosphate (denoted as epoxy-ATP-Ti4+) to enable simultaneous enrichment and separation of common N-glycopeptides, phosphopeptides, and M6P glycopeptides from tissue/cells. The enrichment was achieved through a dual-mode mechanism based on the electrostatic and hydrophilic properties of the material. The epoxy-ATP-Ti4+ IMAC material was prepared from epoxy-functionalized silica particles via a convenient two-step process. The ATP molecule provided strong and active phosphate sites for binding phosphopeptides in the conventional IMAC mode and also contributed significantly to the hydrophilicity, which permitted the enrichment of glycopeptides via hydrophilic interaction chromatography. The two modes could be implemented simultaneously, allowing glycopeptides and phosphopeptides to be collected sequentially in a single experiment from the same sample. In addition to standard protein samples, the material was further applied to glycopeptide and phosphopeptide enrichment and characterization from HeLa cell digests and mouse lung tissue samples. In total, 2928 glycopeptides and 3051 phosphopeptides were identified from the mouse lung tissue sample, supporting the utility of this material for large-scale PTM analysis of complex biological samples. Overall, the newly developed epoxy-ATP-Ti4+ IMAC material and associated fractionation method enable simple and effective enrichment and separation of glycopeptides and phosphopeptides, offering a useful tool to study potential crosstalk between these two important PTMs in biological systems. The MS data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD029775.
Collapse
Affiliation(s)
- Danqing Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haoran Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Meng Xu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yusi Cui
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xudong Shi
- Department of Surgery, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| |
Collapse
|
3
|
Xie Z, Feng Q, Zhang S, Yan Y, Deng C, Ding CF. Advances in proteomics sample preparation and enrichment for phosphorylation and glycosylation analysis. Proteomics 2022; 22:e2200070. [PMID: 36100958 DOI: 10.1002/pmic.202200070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/06/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
As the common and significant chemical modifications, post-translational modifications (PTMs) play a key role in the functional proteome. Affected by the signal interference, low concentration, and insufficient ionization efficiency of impurities, the direct detection of PTMs by mass spectrometry (MS) still faces many challenges. Therefore, sample preparation and enrichment are an indispensable link before MS analysis of PTMs in proteomics. The rapid development of functionalized materials with diverse morphologies and compositions provides an avenue for sample preparation and enrichment for PTMs analysis. In this review, we summarize recent advances in the application of novel functionalized materials in sample preparation for phosphoproteomes and glycoproteomes analysis. In addition, this review specifically discusses the design and preparation of functionalized materials based on different enrichment mechanisms, and proposes research directions and potential challenges for proteomic PTMs research.
Collapse
Affiliation(s)
- Zehu Xie
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Shun Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China.,Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Chunhui Deng
- Department of Chemistry, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China.,Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Xia C, Wang Q, Liang W, Wang B, Feng Q, Zhou C, Xie Y, Yan Y, Zhao L, Jiang B, Cui W, Liang H. Superhydrophilic nanocomposite adsorbents modified via nitrogen-rich phosphonate-functionalized ionic liquid linkers: enhanced phosphopeptide enrichment and phosphoproteome analysis of tau phosphorylation in the hippocampal lysate of Alzheimer's transgenic mice. J Mater Chem B 2022; 10:7967-7978. [PMID: 36124862 DOI: 10.1039/d2tb01508k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, new graphene-based IMAC nanocomposites for phosphopeptide enrichment were prepared according to the guideline of our new design strategy. Superhydrophilic polyethyleneimine (PEI) was introduced, to which a phosphonate-functionalized ionic liquid (PFIL) was covalently bound, to form superhydrophilic and cationic surface layers with high densities of nitrogen atoms, phosphonate functional groups, and high-loading metal ions. Due to the combined features of superhydrophilicity, flexibility, highly dense metal binding sites, large surface area and excellent size-exclusion effect, the fabricated nanocomposite G@mSiO2@PEI-PFIL-Ti4+ exhibits superior detection sensitivity to enrich phosphopeptides (tryptic β-casein digest, 0.1 fmol), and extraordinary enrichment specificity to enrich phosphopeptides from a digest mixture of β-casein and bovine serum albumin (BSA) (molar ratio, 1 : 12 000). The excellent size-exclusion effect was also observed, and 27 endogenous phosphopeptides were identified in human saliva. All these results could be attributed to the unique superhydrophilic nanocomposite structure with a high density of a cationic linker modified with phosphonate functionality. Moreover, G@mSiO2@PEI-PFIL-Ti4+ adsorbents were used to extract phosphopeptides from the tryptic digests of hippocampal lysates for quantitative phosphoproteome analysis. The preliminary results indicate that 1649 phosphoproteins, 3286 phosphopeptides and 4075 phosphorylation sites were identified. A total of 13 Alzheimer's disease (AD)-related phosphopeptides within tau proteins were detected with a wide coverage from p-Thr111 to p-Ser404, in which the amounts of some phoshopeptides at certain sites in AD transgenic mice were found statistically higher than those in wild type littermates. Besides, phosphorylated neurofilament heavy chains, a potential biomarker for amyotrophic lateral sclerosis and traumatic brain injury, were also identified. Finally, the adsorbent was applied to human cerebrospinal fluid (CSF) and blood samples. 5 unique phosphopeptides of neuroendocrine specific VGF were identified in the CSF, while many phosphopeptides originated from the nervous system were found in the blood sample. All these results suggest that our new IMAC materials exhibit unbiased enrichment ability with superior detection sensitivity and specificity, allowing the global phosphoproteome analysis of complicated biological samples more convincible and indicating the potential use in disease diagnosis.
Collapse
Affiliation(s)
- Chenglong Xia
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Qiyao Wang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China.
| | - Weida Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Binbin Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Chenyang Zhou
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yishan Xie
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Lingling Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Bo Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, P. R. China
| | - Wei Cui
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China.
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
5
|
Jiang Y, Liang W, Wang B, Feng Q, Xia C, Wang Q, Yan Y, Zhao L, Cui W, Liang H. Magnetic mesoporous silica nanoparticles modified by phosphonate functionalized ionic liquid for selective enrichment of phosphopeptides. RSC Adv 2022; 12:26859-26865. [PMID: 36320858 PMCID: PMC9490807 DOI: 10.1039/d2ra04609a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, new magnetic nanoparticles (denotated as Fe3O4@mSiO2-PFIL-Ti4+) have been prepared by immobilizing titanium ions with phosphonate functionalized ionic liquid (PFIL) on the wall of core-shell structured mesoporous nanomaterials. The resulting nanoparticles possess large specific surface area, strong hydrophilicity and fast magnetic response. The composites can capture traces of phosphopeptides from the tryptic β-casein digest (0.08 fmol), a digest mixture of β-casein and BSA (1 : 10 000, molar ratio) as well as a blend of β-casein digest and a great quantity of phosphorylated protein (β-casein) and non-phosphorylated protein (BSA) (1 : 2000 : 2000, mass ratio), respectively, showing excellent sensitivity, selectivity and size exclusion ability. Additionally, Fe3O4@mSiO2-PFIL-Ti4+ shows excellent steadiness and can be reused at least 12 times. Moreover, this material was successfully applied to enrich endogenous phosphopeptides from complex bio-samples, including human saliva and serum.
Collapse
Affiliation(s)
- Yufei Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| | - Weida Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| | - Binbin Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| | - Chenglong Xia
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| | - Qiyao Wang
- Ningbo Key Laboratory of Behaviour Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University Ningbo 315211 China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| | - Lingling Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| | - Wei Cui
- Ningbo Key Laboratory of Behaviour Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University Ningbo 315211 China
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| |
Collapse
|
6
|
Simultaneous analysis of cellular glycoproteome and phosphoproteome in cervical carcinoma by one-pot specific enrichment. Anal Chim Acta 2022; 1195:338693. [DOI: 10.1016/j.aca.2021.338693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/04/2023]
|
7
|
Gök V, Topel Ö, Aksu S. Development of New Lanthanide(III) Ion-Based Magnetic Affinity Material for Phosphopeptide Enrichment. NEW J CHEM 2022. [DOI: 10.1039/d2nj02216h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanide (III) ion-based magnetic IMAC materials consisting of core-shell-like silica-coated magnetic nanoparticles as supporting material, chelidamic acid as chelating agent, and Ln3+ ions were developed in this study. Magnetic nanoparticles...
Collapse
|
8
|
Zhang W, Lai CK, Huang W, Li W, Wu S, Kong Q, Hopkinson AC, Fernie AR, Siu KWM, Yan S. An eco-friendly, low-cost, and automated strategy for phosphoproteome profiling. GREEN CHEMISTRY 2022; 24:9697-9708. [DOI: 10.1039/d2gc02345h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
An automated, online analysis platform using a reusable phos-trap column helps reduce organic solvent, plastic consumables, waste, and labor costs in phosphoproteomic studies.
Collapse
Affiliation(s)
- Wenyang Zhang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Cheuk-Kuen Lai
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wenyan Li
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shaowen Wu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qian Kong
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Alan C. Hopkinson
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Muhlenberg 1, 14476, Potsdam-Golm, Germany
| | - K. W. Michael Siu
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, Toronto, Ontario, M3J 1P3, Canada
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
9
|
He Y, Zhang S, Zhong C, Yang Y, Li G, Ji Y, Lin Z. Facile synthesis of Ti 4+-immobilized magnetic covalent organic frameworks for enhanced phosphopeptide enrichment. Talanta 2021; 235:122789. [PMID: 34517647 DOI: 10.1016/j.talanta.2021.122789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
In this work, core-shell structured Ti4+-immobilized magnetic covalent organic frameworks (denoted as Fe3O4@TAPTDHTA-Ti4+ composites) were prepared for enhanced phosphopeptide enrichment by one-pot synthesis of COFs shell with inherent bifunctional groups on Fe3O4 NPs and further Ti4+ immobilization. The widely distributed bifunctional groups could provide abundant chelating sites for Ti4+ immobilizing. Combining with the high specific surface area and mesoporous structure, the Fe3O4@TAPTDHTA-Ti4+ composites exhibited excellent enrichment efficiency for phosphopeptides, such as low detection limit (0.05 fmol μL-1), high selectivity (1:5000 of molar ratio of β-casein/bovine serum albumin (BSA) tryptic digests), high adsorption capacity (62.9 μg mg-1) and strong size-exclusive effect (1:250:250 of molar ratio of β-casein tryptic digest/β-casein/BSA). In addition, this method was general for immobilizing other metal ions (Zr4+ and Fe3+). Notably, the Fe3O4@TAPTDHTA-Fe3+ composites exhibited controllable affinity towards mono-phosphopeptides and multi-phosphopeptides. Furthermore, the Fe3O4@TAPTDHTA-Ti4+ composites were successfully applied to selectively capture phosphopeptides from complex biological samples including the tryptic digest of nonfat milk, human serum and human saliva. More significantly, 3333 phosphopeptides derived from 1409 phosphoproteins with 3492 phosphorylation sites were clearly identified from the tryptic digest of HeLa cell lysate. In addition to providing a potential excellent enrichment probe for comprehensive phosphoproteomic analysis, this study also offers a new perspective for the functionalization of COFs.
Collapse
Affiliation(s)
- Yanting He
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shasha Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Chao Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yixin Yang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Guorong Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yin Ji
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
10
|
Zhang K, Hao Y, Hu D, Deng S, Jin Y, Wang X, Liu H, Liu Y, Xie M. Development of dual-ligand titanium (IV) hydrophilic network sorbent for highly selective enrichment of phosphopeptides. J Chromatogr A 2021; 1659:462648. [PMID: 34739963 DOI: 10.1016/j.chroma.2021.462648] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
A hydrophilic metal-organic network based on Ti4+ and dual natural ligand, tannic acid (TA) and phytic acid (PA), has been developed to enrich phosphopeptides from complex bio-samples prior to liquid chromatography-mass spectrometric analysis. Due to the strong chelation ability of TA and PA, abundant Ti4+ can be immobilized in the material, forming hydrophilic network by one-step coordination-driven self-assembly approach. The sorbent, TA-Ti-PA@Fe3O4, exhibited satisfactory selectivity for the phosphopeptides in the tryptic digest of β-casein, and can eliminate the interference components in 1000-fold excess of bovine serum albumin. The adsorption capacity of the sorbents for phosphopeptides was up to 35.2 mg g-1 and the adsorbing equilibrium can be reached in 5 min. The adsorbing mechanism has been investigated and the results indicated that the Ti4+ in forms of [Ti(f-TA)(H2O)4]2+, [Ti(f-PA)(H2O)4]2+ and Ti(f-PA)2(H2O)2 may play an important role in the adsorption process. The sorbent of the TA-Ti-PA@Fe3O4 has been applied to enrichment of the phosphopeptides in tryptic digest of rat liver lysate, and 3408 phosphopeptides have been identified, while the numbers of the identified phosphopeptides were 2730 and 1217 when the sample was enriched by the commercial TiO2 and Fe3+-IMAC kit, respectively. This work provides a strategy to enrich phosphopeptides from complex samples and shows great potential application in phosphoproteome research.
Collapse
Affiliation(s)
- Kaina Zhang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yun Hao
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Dehua Hu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Suimin Deng
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yuhao Jin
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Xiangfeng Wang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Hailing Liu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yuan Liu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Mengxia Xie
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
11
|
Selective adsorption of Na2ATP as an eco-friendly depressant on the calcite surface for effective flotation separation of cassiterite from calcite. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Low TY, Mohtar MA, Lee PY, Omar N, Zhou H, Ye M. WIDENING THE BOTTLENECK OF PHOSPHOPROTEOMICS: EVOLVING STRATEGIES FOR PHOSPHOPEPTIDE ENRICHMENT. MASS SPECTROMETRY REVIEWS 2021; 40:309-333. [PMID: 32491218 DOI: 10.1002/mas.21636] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Phosphorylation is a form of protein posttranslational modification (PTM) that regulates many biological processes. Whereas phosphoproteomics is a scientific discipline that identifies and quantifies the phosphorylated proteome using mass spectrometry (MS). This task is extremely challenging as ~30% of the human proteome is phosphorylated; and each phosphoprotein may exist as multiple phospho-isoforms that are present in low abundance and stoichiometry. Hence, phosphopeptide enrichment techniques are indispensable to (phospho)proteomics laboratories. These enrichment methods encompass widely-adopted techniques such as (i) affinity-based chromatography; (ii) ion exchange and mixed-mode chromatography (iii) enrichment with phospho-specific antibodies and protein domains, and (iv) functionalized polymers and other less common but emerging technologies such as hydroxyapatite chromatography and precipitation with inorganic ions. Here, we review these techniques, their history, continuous development and evaluation. Besides, we outline associating challenges of phosphoproteomics that are linked to experimental design, sample preparation, and proteolytic digestion. In addition, we also discuss about the future outlooks in phosphoproteomics, focusing on elucidating the noncanonical phosphoproteome and deciphering the "dark phosphoproteome". © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Nursyazwani Omar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Houjiang Zhou
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Centre, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
13
|
Zhang N, Jia C, Ma X, Li J, Wang S, Yue B, Huang M. Hierarchical Core-Shell Fe₃O₄@mSiO₂@Chitosan Nanoparticles for pH-Responsive Drug Delivery. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:3020-3027. [PMID: 33653475 DOI: 10.1166/jnn.2021.19154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hierarchical nanoparticles are of great interest because they possess unique physicochemical properties and multiple functionalities, providing a wealth of possibilities for various applications. In this work, we have developed a well-designed method to prepare hierarchical magnetic nanoparticles Fe₃O₄@mSiO₂@CS by integrating a solvothermal method for synthesizing the Fe₃O₄ core, a dualtemplating micelle system for preparing a layer of mesoporous silica (mSiO₂) shell, and a silane coupling method via γ-glycidoxypropyltrimethoxysilane for binding a chitosan (CS) layer on the silica surface. The porous hierarchical nanoparticles were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering nanoparticle size analyzer, and specific surface area and pore size analyzer. The loading capacity and the release behavior of the as-prepared nanoparticles for doxorubicin hydrochloride were studied, and it was found that the drug release rate was faster at pH 6.0 than at pH 7.4, revealing the pH-responsive property of the nanoparticles.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chengzheng Jia
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xingyue Ma
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jinfeng Li
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shige Wang
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bingbing Yue
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mingxian Huang
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
14
|
Shao H, Lai L, Xu D, Crommen J, Wang Q, Jiang Z. Development of zirconium modified adenosine triphosphate functionalized monolith for specific enrichment of N-glycans. J Chromatogr A 2021; 1644:462090. [PMID: 33823387 DOI: 10.1016/j.chroma.2021.462090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
In this study, to selectively enrich N-glycans from complex biological samples, a novel Zr(IV) modified adenosine triphosphate (Zr(IV)-ATP) functionalized monolith was prepared through a facile approach. Well-defined macroporous structure was observed in the ATP functionalized monolith, which allows rapid mass transfer under low backpressure and is beneficial for the enrichment of N-glycans. After being modified with Zr(IV), the resulting Zr(IV)-ATP functionalized monolith could selectively capture N-glycans through the specific interactions between the sulfonate groups of 1-aminopyrene-3,6,8-trisulfonic acid (APTS) labeled N-glycans and Zr(IV). An APTS labeled maltooligosaccharide ladder was used to optimize the enrichment conditions for APTS labeled N-glycans, and capillary electrophoresis (CE) coupled with laser-induced fluorescence (LIF) detector was employed to evaluate the enrichment efficiency. The results show that the APTS labeled maltooligosaccharides could be enriched under the selected conditions and the signal amplify factors of the maltooligosaccharides were between 7.4 and 19.5 with RSDs for reproducibility from 4.0% to 8.3% (n = 3). Finally, the proposed method was successfully used for the enrichment and detection of N-glycans released from Ribonuclease B.
Collapse
Affiliation(s)
- Huikai Shao
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China; Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Liang Lai
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China
| | - Dongsheng Xu
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China
| | - Jacques Crommen
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China.
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
15
|
Facile synthesis of titanium(IV) ion-immobilized arsenate-modified poly(glycidyl methacrylate) microparticles and the application to the specific enrichment of phosphoproteins. Anal Bioanal Chem 2021; 413:2893-2901. [PMID: 33704525 DOI: 10.1007/s00216-021-03215-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
Selective separation and enrichment of phosphoproteins possess the distinct clinical and biological importance in the diagnosis, treatment, and management of several fatal human diseases. In this study, a facile synthesis of titanium(IV) ion-immobilized arsenate-modified poly(glycidyl methacrylate) microparticles (denoted as Ti4+-arsenate-PGMA-MPs) was developed for the efficient enrichment of intact phosphoproteins found in biologically complex protein samples. By virtue of the strong interaction between the titanium ions immobilized on the surface of Ti4+-arsenate-PGMA-MPs and phosphate groups of phosphoproteins, Ti4+-arsenate-PGMA-MPs had a high saturated adsorption capacity for phosphoproteins (901 mg/g for β-casein), which was much higher than that of non-phosphoproteins (73.5 mg/g for BSA). Ti4+-arsenate-PGMA-MPs were characterized by SEM, TEM, and FT-IR, and the average particle diameter was about 2.5 μm with good dispersibility. Besides, the application of Ti4+-arsenate-PGMA-MPs in real biological samples was investigated by SDS-PAGE analysis, and the results showed that Ti4+-arsenate-PGMA-MPs were able to enrich phosphoproteins efficiently.
Collapse
|
16
|
Preparation of zirconium arsenate‐modified monolithic column for selective enrichment of phosphopeptides. J Sep Sci 2020; 44:609-617. [DOI: 10.1002/jssc.202001051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 11/07/2022]
|
17
|
Selective adsorption of a new depressant Na2ATP on dolomite: Implications for effective separation of magnesite from dolomite via froth flotation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117278] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Yang K, Li S, Liu L, Chen Y, Zhou W, Pei J, Liang Z, Zhang L, Zhang Y. Epitope Imprinting Technology: Progress, Applications, and Perspectives toward Artificial Antibodies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902048. [PMID: 31423663 DOI: 10.1002/adma.201902048] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Epitope imprinting is a promising tool to generate antibody-like specific recognition sites. Recently, because of the ease of obtaining templates, the flexibility in selecting monomers, their resistance to harsh environments, and the high specificity toward targets, epitope-imprinted materials have attracted much attention in various fields, such as bioanalysis, clinical therapy, and pharmacy. Here, the discussion is focused on the current representative epitope imprinting technologies, including epitope bulk imprinting and epitope surface imprinting. Moreover, the application of epitope-imprinted materials to the recognition of peptides, proteins, and cells is reviewed. Finally, the remaining challenges arising from the intrinsic properties of epitope imprinting are discussed, and future development in the field is prospected.
Collapse
Affiliation(s)
- Kaiguang Yang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Senwu Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lukuan Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuwan Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wen Zhou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiaqi Pei
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
19
|
Yan Y, Deng C. Recent advances in nanomaterials for sample pre-treatment in phosphoproteomics research. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115655] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Capriotti AL, Antonelli M, Antonioli D, Cavaliere C, Chiarcos R, Gianotti V, Piovesana S, Sparnacci K, Laus M, Laganà A. Effect of shell structure of Ti-immobilized metal ion affinity chromatography core-shell magnetic particles for phosphopeptide enrichment. Sci Rep 2019; 9:15782. [PMID: 31673007 PMCID: PMC6823385 DOI: 10.1038/s41598-019-51995-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/28/2019] [Indexed: 11/09/2022] Open
Abstract
Magnetic materials in sample preparation for shotgun phosphoproteomics offer several advantages over conventional systems, as the enrichment can be achieved directly in solution, but they still suffer from some drawbacks, due to limited stability and selectivity, which is supposed to be affected by the hydrophilicity of the polymeric supports used for cation immobilization. The paper describes the development of an improved magnetic material with increased stability, thanks to a two-step covering of the magnetic core, for the enrichment of phosphopeptides in biological samples. Four materials were prepared featuring a polymeric shell with tunable hydrophilicity, obtained by "grafting from" polymerization of glycidyl methacrylate with 0-8.3% of polyethylene glycol methacrylate (PEGMA), the latter used to modulate the hydrophilicity of the material surface. Finally, the materials were functionalized with iminodiacetic acid for Ti4+ ion immobilization. The materials were analyzed for their composition by a combination of CHN elemental analysis and thermogravimetric analysis, also hyphenated to gas chromatography and mass spectrometric detection. Surface characteristics were evaluated by water contact angle measurements, scanning electron microscopy and energy dispersive X-ray spectrometry. These materials were applied to the enrichment of phosphopeptides from yeast protein digests. Peptides were identified by proteomics techniques using nano-high performance liquid chromatography coupled to mass spectrometry and bioinformatics. Qualitatively the peptides identified by the four systems were comparable, with 1606-1693 phosphopeptide identifications and a selectivity of 47-54% for all materials. The physico-chemical features of the identified peptides were also the same for the four materials. In particular, the grand average of hydropathy index values indicated that the enriched phosphopeptides were hydrophilic (ca. 90%), and only some co-enriched non-phosphorylated peptides were hydrophobic (21-28%), regardless of the material used for enrichment. Peptides had a pI ≤ 7, which indicated a well-known bias for acidic peptides binding, attributed to the interaction with the metal center itself. The results indicated that the enrichment of phosphopeptides and the co-enrichment of non-phosphorylated peptides is mainly driven by interactions with Ti4+ and does not depend on the amount of PEGMA chains in the polymer shell.
Collapse
Affiliation(s)
- Anna Laura Capriotti
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Michela Antonelli
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Diego Antonioli
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy
- INSTM, UdR Alessandria, Viale Teresa Michel 11, 15121, Alessandria, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Riccardo Chiarcos
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy
| | - Valentina Gianotti
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy
- INSTM, UdR Alessandria, Viale Teresa Michel 11, 15121, Alessandria, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Katia Sparnacci
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy
- INSTM, UdR Alessandria, Viale Teresa Michel 11, 15121, Alessandria, Italy
| | - Michele Laus
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy
- INSTM, UdR Alessandria, Viale Teresa Michel 11, 15121, Alessandria, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
- CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
21
|
Nanoparticle-based surface assisted laser desorption ionization mass spectrometry: a review. Mikrochim Acta 2019; 186:682. [DOI: 10.1007/s00604-019-3770-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022]
|
22
|
Zhang K, Hu D, Deng S, Han M, Wang X, Liu H, Liu Y, Xie M. Phytic acid functionalized Fe3O4 nanoparticles loaded with Ti(IV) ions for phosphopeptide enrichment in mass spectrometric analysis. Mikrochim Acta 2019; 186:68. [DOI: 10.1007/s00604-018-3177-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/12/2018] [Indexed: 01/04/2023]
|
23
|
Wang H, Tian Z. Facile synthesis of titanium(IV) ion-immobilized poly-glycidyl methacrylate microparticles functionalized with polyethylenimine and adenosine triphosphate for highly specific enrichment of intact phosphoproteins. J Sep Sci 2018; 41:4194-4202. [PMID: 30239132 DOI: 10.1002/jssc.201800689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 12/28/2022]
Abstract
In this study, a facile synthesis of the titanium(IV) ion-immobilized poly-glycidyl methacrylate microparticles functionalized with polyethylenimine and adenosine triphosphate was developed for efficient enrichment of intact phosphoproteins. The titanium(IV) ion-immobilized microparticles had higher saturated adsorption capacity for phosphoproteins (1217.6 mg/g for β-casein) than nonphosphoproteins (97.1 mg/g for bovine serum albumin) and the average particle diameter was about 1.4 μm with good dispersibility. In application, as demonstrated by SDS-PAGE, titanium(IV) ion-immobilized microparticles exhibited good performance in enriching intact phosphoproteins from standard protein mixtures of β-casein and bovine serum albumin with high specificity and selectivity. In addition, titanium(IV) ion-immobilized microparticles were also successfully applied in intact phosphoprotein enrichment from complex biological samples including nonfat milk, chicken egg white, and mouse heart tissue extract.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemical Science and Engineering and Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, P. R. China
| | - Zhixin Tian
- School of Chemical Science and Engineering and Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, P. R. China
| |
Collapse
|
24
|
Wang H, Tian Z. Facile synthesis of titanium (IV) ion immobilized adenosine triphosphate functionalized silica nanoparticles for highly specific enrichment and analysis of intact phosphoproteins. J Chromatogr A 2018; 1564:69-75. [PMID: 29907410 DOI: 10.1016/j.chroma.2018.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 02/08/2023]
Abstract
Analysis of phosphoproteins always faces the challenge of low stoichiometry, which demands highly selective and efficient enrichment in the initial sample preparation. Here we report our synthesis of the novel titanium (IV) ion immobilized adenosine triphosphate functionalized silica nanoparticles (Ti4+-ATP-NPs) for efficient enrichment of intact phosphoproteins. The average diameter of Ti4+-ATP-NPs was about 128 nm with good dispersibility and the saturated adsorption capacity for β-casein was 1046.5 mg/g. In addition, Ti4+-ATP-NPs exhibited high specificity and selectivity in enriching phosphoproteins from both standard protein mixtures and complex biological samples (non-fat milk, chicken egg white and mouse heart tissue extract) as demonstrated by SDS-PAGE.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemical Science & Engineering and Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Zhixin Tian
- School of Chemical Science & Engineering and Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China.
| |
Collapse
|
25
|
Núñez C, Chantada-Vázquez MDP, Bravo SB, Vázquez-Estévez S. Novel functionalized nanomaterials for the effective enrichment of proteins and peptides with post-translational modifications. J Proteomics 2018; 181:170-189. [DOI: 10.1016/j.jprot.2018.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
|
26
|
Capriotti AL, Cavaliere C, Ferraris F, Gianotti V, Laus M, Piovesana S, Sparnacci K, Zenezini Chiozzi R, Laganà A. New Ti-IMAC magnetic polymeric nanoparticles for phosphopeptide enrichment from complex real samples. Talanta 2018; 178:274-281. [DOI: 10.1016/j.talanta.2017.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 12/22/2022]
|
27
|
La Barbera G, Capriotti AL, Cavaliere C, Ferraris F, Laus M, Piovesana S, Sparnacci K, Laganà A. Development of an enrichment method for endogenous phosphopeptide characterization in human serum. Anal Bioanal Chem 2018; 410:1177-1185. [DOI: 10.1007/s00216-017-0822-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 12/15/2022]
|
28
|
A Novel Method for Analysis of Tyrosine Phosphopeptides Based on a Centrifugal Enrichment Device. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Jiang J, Sun X, Li Y, Deng C, Duan G. Facile synthesis of Fe 3O 4@PDA core-shell microspheres functionalized with various metal ions: A systematic comparison of commonly-used metal ions for IMAC enrichment. Talanta 2017; 178:600-607. [PMID: 29136869 DOI: 10.1016/j.talanta.2017.09.071] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 01/04/2023]
Abstract
Metal ions differed greatly in affinity towards phosphopeptides, and thus it is essential to systematically compare the phosphopeptides enrichment ability of different metal ions usually used in the IMAC techniques. In this work, for the first time, eight metal ions, including Nb5+, Ti4+, Zr4+, Ga3+, Y3+, In3+, Ce4+, Fe3+, were immobilized on the polydopamine (PDA)-coated Fe3O4 (denoted as Fe3O4@PDA-Mn+), and systematically compared by the real biosamples, in addition to standard phosphopeptides. Fe3O4 microspheres were synthesized via the solvothermal reaction, followed by self-polymerization of dopamine on the surface. Then through taking advantage of the hydroxyl and amino group of PDA, the eight metal ions were easily adhered to the surface of Fe3O4@PDA. After characterization, the resultant Fe3O4@PDA-Mn+ microspheres were applied to phosphopeptides enrichment based on the binding affinity between metal ions and phosphopeptides. According to the results, different metal ions presented diverse phosphopeptides enrichment efficiency in terms of selectivity, sensitivity and the enrichment ability from real complex samples, and Fe3O4@PDA-Nb5+ and Fe3O4@PDA-Ti4+ showed obvious advantages of the phosphopeptides enrichment effect after the comparison. This systematic comparison may provide certain reference for the use and development of IMAC materials in the future.
Collapse
Affiliation(s)
- Jiebing Jiang
- Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xueni Sun
- Institute of Functional Genomics, University of Regensburg, Am BioPark 9, 93053 Regensburg, Germany
| | - Yan Li
- Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Chunhui Deng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Gengli Duan
- Pharmaceutical Analysis Department, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
30
|
Peptidomics as a tool for characterizing bioactive milk peptides. Food Chem 2017; 230:91-98. [DOI: 10.1016/j.foodchem.2017.03.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 02/02/2016] [Accepted: 03/03/2017] [Indexed: 11/18/2022]
|
31
|
Salimi K, Usta DD, Çelikbıçak Ö, Pınar A, Salih B, Tuncel A. Highly selective enrichment of phosphopeptides by titanium (IV) attached monodisperse-porous poly(vinylphosphonic acid- co -ethylene dimethacrylate) microspheres. J Chromatogr A 2017; 1496:9-19. [DOI: 10.1016/j.chroma.2017.03.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 11/15/2022]
|
32
|
Ti(IV) carrying polydopamine-coated, monodisperse-porous SiO 2 microspheres with stable magnetic properties for highly selective enrichment of phosphopeptides. Colloids Surf B Biointerfaces 2017; 153:280-290. [DOI: 10.1016/j.colsurfb.2017.02.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/27/2017] [Accepted: 02/20/2017] [Indexed: 11/21/2022]
|
33
|
Wang Q, He XM, Chen X, Zhu GT, Wang RQ, Feng YQ. Pyridoxal 5'-phosphate mediated preparation of immobilized metal affinity material for highly selective and sensitive enrichment of phosphopeptides. J Chromatogr A 2017; 1499:30-37. [PMID: 28390667 DOI: 10.1016/j.chroma.2017.03.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 01/02/2023]
Abstract
Phosphorylation is a crucial post-translational modification, which plays pivotal roles in various biological processes. Analysis of phosphopeptides by mass spectrometry (MS) is intractable on account of their low stoichiometry and the ion suppression from non-phosphopeptides. Thus, enrichment of phosphopeptides before MS analysis is indispensable. In this work, we employed pyridoxal 5'-phosphate (PLP), as an immobilized metal affinity chromatography (IMAC) ligand for the enrichment of phosphopeptides. PLP was grafted onto several substrates such as silica (SiO2), oxidized carbon nanotube (OCNT) and silica coated magnetic nanoparticles (Fe3O4@SiO2). Then the metal ions Fe3+, Ga3+ and Ti4+ were incorporated for the selective enrichment of phosphopeptides. It is indicated that Fe3O4@SiO2-PLP-Ti4+ has a superior selectivity towards phosphopeptides under as much as 1000-fold interferences of non-phosphopeptides. Further, Fe3O4@SiO2-PLP-Ti4+ exhibited high efficiency in selective enrichments of phosphopeptides from complex biological samples, including human serum and tryptic digested non-fat milk. Finally, Fe3O4@SiO2-PLP-Ti4+ was successfully employed in the sample pretreatment for profiling phosphopeptides in a tryptic digest of rat brain proteins. Our experimental results evidenced a great potential of this new chelator-based material in phosphoproteomics study.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xiao-Mei He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xi Chen
- Wuhan Institute of Biotechnology, Wuhan 430072, PR China
| | - Gang-Tian Zhu
- Key Laboratory of Tectonics and Petroleum Resources (Ministry of Education), China University of Geosciences, Wuhan 430075, PR China
| | - Ren-Qi Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China; College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
34
|
Wang H, Jiao F, Gao F, Huang J, Zhao Y, Shen Y, Zhang Y, Qian X. Facile synthesis of magnetic covalent organic frameworks for the hydrophilic enrichment of N-glycopeptides. J Mater Chem B 2017; 5:4052-4059. [DOI: 10.1039/c7tb00700k] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Magnetic covalent organic frameworks were synthesized as novel hydrophilic materials for specific enrichment of glycopeptides.
Collapse
Affiliation(s)
- Heping Wang
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Fenglong Jiao
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Fangyuan Gao
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Junjie Huang
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Yan Zhao
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Yangjun Zhang
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics
- National Center for Protein Science Beijing
- Beijing Institute of Radiation Medicine
- Beijing 102206
- China
| |
Collapse
|
35
|
Peng J, Zhang H, Li X, Liu S, Zhao X, Wu J, Kang X, Qin H, Pan Z, Wu R. Dual-Metal Centered Zirconium-Organic Framework: A Metal-Affinity Probe for Highly Specific Interaction with Phosphopeptides. ACS APPLIED MATERIALS & INTERFACES 2016; 8:35012-35020. [PMID: 27983800 DOI: 10.1021/acsami.6b12630] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The highly specific affinity between probes and phosphopeptides is the fundamental interaction for selective identification of phosphoproteomes that uncover the mechanisms of signal transduction, cell cycle, enzymatic regulation, and gene expression in biological systems. In this study, a metal-affinity probe possessing both interactions of metal oxide affinity chromatography (MOAC) and immobilized metal ion affinity chromatography (IMAC) was facilely prepared by immobilizing zirconium(IV) on a zirconium-organic framework of UiO-66-NH2, which holds dual-metal centers of not only the inherent Zr-O cluster but also the immobilized Zr(IV) center. This dual-metal centered zirconium-organic framework (DZMOF) demonstrates as a highly specific metal-affinity probe toward the extraction of phosphopeptides due to the metal-affinity interactions of MOAC and IMAC toward either mono-phosphorylated or multi-phosphorylated peptides. The binding energies of zirconium 3d5/2 and 3d3/2 in this DZMOF are 183.07 and 185.47 eV, respectively, which are higher than those of the intact UiO-66-NH2 (182.84 and 185.17 eV, respectively), confirming the higher metal-affinity interaction between the DZMOF and phosphopeptides. This high metal-affinity probe presents an unprecedented strong performance in anti-nonspecific interference during the capturing of phosphopeptides of β-casein with the molar ratio of β-casein vs bovine serum albumin up to ca. 1:5000. The enrichment of phosphopeptides from a human saliva sample by DZMOF further confirms the great potential of DZMOF in the extraction of low-abundance phosphopeptides for real complex biological samples.
Collapse
Affiliation(s)
- Jiaxi Peng
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian, 116023, China
- University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Hongyan Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian, 116023, China
- University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Xin Li
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian, 116023, China
- University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Shengju Liu
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian, 116023, China
- University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Xingyun Zhao
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian, 116023, China
- University of Chinese Academy of Sciences , Beijing, 100049, China
| | - Jing Wu
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences , Wenzhou, 325000, China
| | - Xiaohui Kang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian, 116023, China
| | - Hongqiang Qin
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian, 116023, China
| | - Zaifa Pan
- College of Chemical Engineering and Materials Science, Zhejiang University of Technology , Hangzhou, 310014, China
| | - Ren'an Wu
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian, 116023, China
| |
Collapse
|
36
|
Magnetic mesoporous carbon composites incorporating hydrophilic metallic nanoparticles for enrichment of phosphopeptides prior to their determination by MALDI-TOF mass spectrometry. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2046-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Piovesana S, Capriotti AL, Cavaliere C, Ferraris F, Iglesias D, Marchesan S, Laganà A. New Magnetic Graphitized Carbon Black TiO2 Composite for Phosphopeptide Selective Enrichment in Shotgun Phosphoproteomics. Anal Chem 2016; 88:12043-12050. [DOI: 10.1021/acs.analchem.6b02345] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Susy Piovesana
- Dipartimento
di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Anna Laura Capriotti
- Dipartimento
di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Cavaliere
- Dipartimento
di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Ferraris
- Dipartimento
di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Daniel Iglesias
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri
1, 34127 Trieste, Italy
| | - Silvia Marchesan
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri
1, 34127 Trieste, Italy
| | - Aldo Laganà
- Dipartimento
di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
38
|
Qi W, Liu Z, Zhang W, Halawa MI, Xu G. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV). SENSORS (BASEL, SWITZERLAND) 2016; 16:s16101674. [PMID: 27754349 PMCID: PMC5087462 DOI: 10.3390/s16101674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/19/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
Zr(IV) can form phosphate and Zr(IV) (-PO₃2--Zr4+-) complex owing to the high affinity between Zr(IV) with phosphate. Zr(IV) can induce the aggregation of gold nanoparticles (AuNPs), while adenosine triphosphate(ATP) can prevent Zr(IV)-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRA)sensor for ATP have been developed using AuNPs based on the high affinity between Zr(IV)with ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV). After the addition of ATP, ATP reacts with Zr(IV) and prevents AuNPs from aggregation, enabling the detection of ATP. Because of the fast interaction of ATP with Zr(IV), ATP can be detected with a detection limit of 0.5 μM within 2 min by the naked eye. Moreover, ATP can be detected by the PRA technique with higher sensitivity. The A520nm/A650nm values in PRA spectra increase linearly with the concentrations of ATP from 0.1 μM to 15 μM (r = 0.9945) with a detection limit of 28 nM. The proposed visual and PRA sensor exhibit good selectivity against adenosine, adenosine monophosphate, guanosine triphosphate, cytidine triphosphate and uridine triphosphate. The recoveries for the analysis of ATP in synthetic samples range from 95.3% to 102.0%. Therefore, the proposed novel sensor for ATP is promising for real-time or on-site detection of ATP.
Collapse
Affiliation(s)
- Wenjing Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Zhongyuan Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Wei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Mohamed Ibrahim Halawa
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- Chinese Academy of Sciences, University of Chinese Academy of Sciences, No. 19A Yuquanlu, Beijing 100049, China.
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
39
|
Jabeen F, Najam-ul-Haq M, Ashiq MN, Rainer M, Huck CW, Bonn GK. Gadolinium oxide: Exclusive selectivity and sensitivity in the enrichment of phosphorylated biomolecules. J Sep Sci 2016; 39:4175-4182. [DOI: 10.1002/jssc.201600651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/20/2016] [Accepted: 08/20/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Fahmida Jabeen
- Division of Analytical Chemistry, Institute of Chemical Sciences; Bahauddin Zakariya University; Multan Pakistan
- Institute of Analytical Chemistry and Radiochemistry; Leopold-Franzens University; Innsbruck Austria
| | - Muhammad Najam-ul-Haq
- Division of Analytical Chemistry, Institute of Chemical Sciences; Bahauddin Zakariya University; Multan Pakistan
- Institute of Analytical Chemistry and Radiochemistry; Leopold-Franzens University; Innsbruck Austria
| | - Muhammad Naeem Ashiq
- Division of Analytical Chemistry, Institute of Chemical Sciences; Bahauddin Zakariya University; Multan Pakistan
| | - Matthias Rainer
- Institute of Analytical Chemistry and Radiochemistry; Leopold-Franzens University; Innsbruck Austria
| | - Christian W. Huck
- Institute of Analytical Chemistry and Radiochemistry; Leopold-Franzens University; Innsbruck Austria
| | - Guenther K. Bonn
- Institute of Analytical Chemistry and Radiochemistry; Leopold-Franzens University; Innsbruck Austria
| |
Collapse
|
40
|
Effective approach towards Si-bilayer-IDA modified CoFe2O4 magnetic nanoparticles for high efficient protein separation. Colloids Surf B Biointerfaces 2016; 146:468-74. [DOI: 10.1016/j.colsurfb.2016.06.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 11/21/2022]
|
41
|
Qi X, Chen L, Zhang C, Xu X, Zhang Y, Bai Y, Liu H. NiCoMnO4: A Bifunctional Affinity Probe for His-Tagged Protein Purification and Phosphorylation Sites Recognition. ACS APPLIED MATERIALS & INTERFACES 2016; 8:18675-18683. [PMID: 27381638 DOI: 10.1021/acsami.6b04280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A bifunctional affinity probe NiCoMnO4 was designed and prepared with controllable morphology and size using facile methods. It was observed that the probe could be applied in His-tagged proteins purification and phosphopeptides enrichment simply through the buffer modulation. NiCoMnO4 particles showed satisfactory cycling performance for His-tagged proteins purification and broad pH-tolerance of loading buffer for phosphopeptides affinity. Therefore, a high-throughput, cost-effective, and efficient protein/peptide purification method was developed within 10 min based on the novel bifunctional affinity probe.
Collapse
Affiliation(s)
- Xiaoyue Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Long Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Chaoqun Zhang
- Beijing Nuclear Magnetic Resonance Center, College of Life Science, Peking University , Beijing 100871, China
| | - Xinyuan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Yiding Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
42
|
Wang J, Li J, Wang Y, Gao M, Zhang X, Deng C. A novel double-component MOAC honeycomb composite with pollen grains as a template for phosphoproteomics research. Talanta 2016; 154:141-9. [DOI: 10.1016/j.talanta.2016.03.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/14/2016] [Accepted: 03/19/2016] [Indexed: 02/08/2023]
|
43
|
Phosphopeptide enrichment: Development of magnetic solid phase extraction method based on polydopamine coating and Ti4+-IMAC. Anal Chim Acta 2016; 909:67-74. [DOI: 10.1016/j.aca.2016.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/18/2015] [Accepted: 01/02/2016] [Indexed: 11/19/2022]
|
44
|
Aasebø E, Forthun RB, Berven F, Selheim F, Hernandez-Valladares M. Global Cell Proteome Profiling, Phospho-signaling and Quantitative Proteomics for Identification of New Biomarkers in Acute Myeloid Leukemia Patients. Curr Pharm Biotechnol 2016; 17:52-70. [PMID: 26306748 PMCID: PMC5388801 DOI: 10.2174/1389201016666150826115626] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/29/2015] [Accepted: 07/23/2015] [Indexed: 12/31/2022]
Abstract
The identification of protein biomarkers for acute myeloid leukemia (AML) that could find applications in AML diagnosis and prognosis, treatment and the selection for bone marrow transplant requires substantial comparative analyses of the proteomes from AML patients. In the past years, several studies have suggested some biomarkers for AML diagnosis or AML classification using methods for sample preparation with low proteome coverage and low resolution mass spectrometers. However, most of the studies did not follow up, confirm or validate their candidates with more patient samples. Current proteomics methods, new high resolution and fast mass spectrometers allow the identification and quantification of several thousands of proteins obtained from few tens of μg of AML cell lysate. Enrichment methods for posttranslational modifications (PTM), such as phosphorylation, can isolate several thousands of site-specific phosphorylated peptides from AML patient samples, which subsequently can be quantified with high confidence in new mass spectrometers. While recent reports aiming to propose proteomic or phosphoproteomic biomarkers on the studied AML patient samples have taken advantage of the technological progress, the access to large cohorts of AML patients to sample from and the availability of appropriate control samples still remain challenging.
Collapse
Affiliation(s)
| | | | | | | | - Maria Hernandez-Valladares
- Department of Biomedicine, Faculty of Medicine, Building for Basic Biology, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| |
Collapse
|
45
|
Batalha ÍL, Roque ACA. Phosphopeptide Enrichment Using Various Magnetic Nanocomposites: An Overview. Methods Mol Biol 2016; 1355:193-209. [PMID: 26584927 DOI: 10.1007/978-1-4939-3049-4_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Magnetic nanocomposites are hybrid structures consisting of an iron oxide (Fe3O4/γ-Fe2O3) superparamagnetic core and a coating shell which presents affinity for a specific target molecule. Within the scope of phosphopeptide enrichment, the magnetic core is usually first functionalized with an intermediate layer of silica or carbon to improve dispersibility and increase specific area, and then with an outer layer of a phosphate-affinity material. Fe3O4-coating materials include metal oxides, rare earth metal-based compounds, immobilized-metal ions, polymers, and many others. This chapter provides a generic overview of the different materials that can be found in literature and their advantages and drawbacks.
Collapse
Affiliation(s)
- Íris L Batalha
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK.
| | - Ana Cecília A Roque
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
46
|
Li J, Wang F, Wan H, Liu J, Liu Z, Cheng K, Zou H. Magnetic nanoparticles coated with maltose-functionalized polyethyleneimine for highly efficient enrichment of N-glycopeptides. J Chromatogr A 2015; 1425:213-20. [DOI: 10.1016/j.chroma.2015.11.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/02/2015] [Accepted: 11/10/2015] [Indexed: 02/08/2023]
|
47
|
Zhang L, Liang Z, Zhang L, Zhang Y, Shao S. Facile synthesis of gallium ions immobilized and adenosine functionalized magnetic nanoparticles with high selectivity for multi-phosphopeptides. Anal Chim Acta 2015; 900:46-55. [DOI: 10.1016/j.aca.2015.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
|
48
|
Sun X, Liu X, Feng J, Li Y, Deng C, Duan G. Hydrophilic Nb5+-immobilized magnetic core–shell microsphere – A novel immobilized metal ion affinity chromatography material for highly selective enrichment of phosphopeptides. Anal Chim Acta 2015; 880:67-76. [DOI: 10.1016/j.aca.2015.04.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 04/05/2015] [Accepted: 04/16/2015] [Indexed: 01/03/2023]
|
49
|
Bai H, Fan C, Zhang W, Pan Y, Ma L, Ying W, Wang J, Deng Y, Qian X, Qin W. A pH-responsive soluble polymer-based homogeneous system for fast and highly efficient N-glycoprotein/glycopeptide enrichment and identification by mass spectrometry. Chem Sci 2015; 6:4234-4241. [PMID: 29218189 PMCID: PMC5707513 DOI: 10.1039/c5sc00396b] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/21/2015] [Indexed: 12/24/2022] Open
Abstract
A homogeneous reaction system was developed for facile and highly efficient enrichment of biomolecules by exploiting the reversible self-assembly of a stimuli-responsive polymer.
Liquid phase homogeneous reactions using soluble polymer supports have found numerous applications in homogeneous catalysis and organic synthesis because of their advantages of no interface mass transfer limitation and a high conversion rate. However, their application in analytical separation is limited by the inefficient/inconvenient recovery of the target molecules from the extremely complex biological samples. Here, we report a stimuli-responsive polymer system for facile and efficient enrichment of trace amounts of biomolecules from complex biological samples. The soluble polymer supports provide a homogeneous reaction system with fast mass transfer and facilitate interactions between the supports and the target molecules. More importantly, the stimuli-responsive polymers exhibit reversible self-assembly and phase separation under pH variations, which leads to facial sample recovery with a high yield of the target biomolecules. The stimuli-responsive polymer is successfully applied to the enrichment of low abundant N-glycoproteins/glycopeptides, which play crucial roles in various key biological processes in mammals and are closely correlated with the occurrence, progression and metastasis of cancer. N-Glycoprotein is coupled to the stimuli-responsive polymer using the reported hydrazide chemistry with pre-oxidation of the oligosaccharide structure. Highly efficient enrichment of N-glycoproteins/N-glycopeptides with >95% conversion rate is achieved within 1 h, which is eight times faster than using solid/insoluble hydrazide enrichment materials. Mass spectrometry analysis achieves low femtomolar identification sensitivity and obtained 1317 N-glycopeptides corresponding to 458 N-glycoproteins in mouse brain, which is more than twice the amount obtained after enrichment using commercial solid/insoluble materials. These results demonstrate the capability of this “smart” polymer system to combine stimuli-responsive and target-enrichment moieties to achieve improved identification of key biological and disease related biomolecules.
Collapse
Affiliation(s)
- Haihong Bai
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Tianjin Baodi Hospital , Beijing Institute of Radiation Medicine , China . ; .,School of Life Science and Technology , Beijing Institute of Technology , Beijing , China
| | - Chao Fan
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Tianjin Baodi Hospital , Beijing Institute of Radiation Medicine , China . ;
| | - Wanjun Zhang
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Tianjin Baodi Hospital , Beijing Institute of Radiation Medicine , China . ;
| | - Yiting Pan
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Tianjin Baodi Hospital , Beijing Institute of Radiation Medicine , China . ; .,School of Life Science and Technology , Beijing Institute of Technology , Beijing , China
| | - Lin Ma
- Research Center for Analytical Sciences , College of Sciences , Northeastern University , Shenyang , China
| | - Wantao Ying
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Tianjin Baodi Hospital , Beijing Institute of Radiation Medicine , China . ;
| | - Jianhua Wang
- Research Center for Analytical Sciences , College of Sciences , Northeastern University , Shenyang , China
| | - Yulin Deng
- School of Life Science and Technology , Beijing Institute of Technology , Beijing , China
| | - Xiaohong Qian
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Tianjin Baodi Hospital , Beijing Institute of Radiation Medicine , China . ;
| | - Weijie Qin
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Tianjin Baodi Hospital , Beijing Institute of Radiation Medicine , China . ;
| |
Collapse
|
50
|
Wang ZG, Lv N, Bi WZ, Zhang JL, Ni JZ. Development of the affinity materials for phosphorylated proteins/peptides enrichment in phosphoproteomics analysis. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8377-92. [PMID: 25845677 DOI: 10.1021/acsami.5b01254] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Reversible protein phosphorylation is a key event in numerous biological processes. Mass spectrometry (MS) is the most powerful analysis tool in modern phosphoproteomics. However, the direct MS analysis of phosphorylated proteins/peptides is still a big challenge because of the low abundance and insufficient ionization of phosphorylated proteins/peptides as well as the suppression effects of nontargets. Enrichment of phosphorylated proteins/peptides by affinity materials from complex biosamples is the most widely used strategy to enhance the MS detection. The demand of efficiently enriching phosphorylated proteins/peptides has spawned diverse affinity materials based on different enrichment principles (e.g., electronic attraction, chelating). In this review, we summarize the recent development of various affinity materials for phosphorylated proteins/peptides enrichment. We will highlight the design and fabrication of these affinity materials, discuss the enrichment mechanisms involved in different affinity materials, and suggest the future challenges and research directions in this field.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- ‡University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Nan Lv
- †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- ‡University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wen-Zhi Bi
- †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- ‡University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ji-Lin Zhang
- †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jia-Zuan Ni
- †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- §College of Life Science, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|