1
|
Yu X, Li Y, Li Y, Liu Y, Wang Y. A highly sensitive fluorescent sensor for reversible visual detection of fluoride ion and trace water in food products. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125245. [PMID: 39388943 DOI: 10.1016/j.saa.2024.125245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
A simple diphenylimidazole-based fluorescent sensor (DIP) had been designed for reversible fluorescence sensing of F- and trace water. The sensor showed superior selectivity for F- compared to other anions with fluorescence "turn on" mode. After adding F- to CH3CN solution of DIP, the emission color of DIP changed markedly from weak blue to strong cyan, which could be facilely discerned by the naked eye. The various technical analysis, including spectroscopies, 1H NMR titration and DFT calculation, indicated that the deprotonation of imidazole -NH and -OH occurred in the presence of F-. The detection limit of DIP toward F- could reach as low as 72.3 nM. Moreover, F--induced deprotonation of DIP-F- system exhibited high sensitivity for water with the detection limit of 0.0015 vol%. The reversible switching characteristic of DIP prompted it suitable for the construction of molecular logic gate. In addition, DIP and DIP-F- were successfully applied to the determination of F- content in toothpaste and water content in table salt, sugar and tea, respectively. Moreover, DIP and DIP-F--coated filter paper strips could be used as fluorescent display materials for inkless writing with repeatability.
Collapse
Affiliation(s)
- Xiangzheng Yu
- College of Chemistry, Jilin Normal University, Siping 136000, China
| | - Yue Li
- College of Chemistry, Jilin Normal University, Siping 136000, China
| | - Yang Li
- College of Chemistry, Jilin Normal University, Siping 136000, China
| | - Yucun Liu
- College of Chemistry, Jilin Normal University, Siping 136000, China.
| | - Yuan Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
2
|
Salomón-Flores MK, Viviano-Posadas AO, Valdes-García J, López-Guerrero V, Martínez-Otero D, Barroso-Flores J, German-Acacio JM, Bazany-Rodríguez IJ, Dorazco-González A. Optical sensing of L-dihydroxy-phenylalanine in water by a high-affinity molecular receptor involving cooperative binding of a metal coordination bond and boronate-diol. Dalton Trans 2024; 53:16541-16556. [PMID: 39327887 DOI: 10.1039/d4dt02108h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Selective recognition and sensing of catecholamine-based neurotransmitters by fluorescent synthetic receptors capable of operating in pure water is a central topic of modern supramolecular chemistry that impacts biological and analytical chemistry. Despite advances achieved in the recognition of some neurotransmitters such as dopamine, little effort has been invested in the optical recognition of other neurotransmitters of paramount importance in biochemistry and medicinal chemistry such as the drug L-dihydroxy-phenylalanine (levodopa). Herein, a cationic Cu(II)-terpyridine complex bearing an intramolecular fluorescent quinolinium ring covalently linked to phenylboronic acid (CuL1) was synthesized, structurally described by single-crystal X-ray diffraction and studied in-depth as a fluorescent receptor for neurotransmitters in water. The complex CuL1 was designed to act as a receptor for levodopa through two Lewis acids of different natures (Cu(II) and B atoms) as cooperative binding points. The receptor CuL1 was found to have a strongly acidified -B(OH)2 group (pKa = 6.2) and exceptionally high affinity for levodopa (K = 4.8 × 106 M-1) with selectivity over other related neurotransmitters such as dopamine, epinephrine, norepinephrine and nucleosides in the micromolar concentration range at physiological pH. Such levodopa affinity/selectivity for a boronic acid-based receptor in water is still rare. On the basis of spectroscopic tools (11B NMR, UV-vis, EPR, and fluorescence), high-resolution ESI-MS, crystal structure, and DFT calculations, the interaction mode of CuL1 with levodopa is proposed in a 1 : 1 model using two-point recognition involving a boronate-catechol esterification and a coordination bond Cu(II)-carboxylate. Furthermore, a visual sensing ensemble was constructed using CuL1 and the commercial fluorescent dye eosin Y. Levodopa is efficiently detected by the displacement of the eosin Y bound to the Cu(II)-receptor, monitoring its green emission. The use of Cu(II)-boronate complexes for fast and selective neurotransmitter sensing was unexplored until now.
Collapse
Affiliation(s)
- María K Salomón-Flores
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, México, 04510, CDMX, Mexico.
| | - Alejandro O Viviano-Posadas
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, México, 04510, CDMX, Mexico.
| | - Josue Valdes-García
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, México, 04510, CDMX, Mexico.
| | - Víctor López-Guerrero
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, México, 04510, CDMX, Mexico.
| | - Diego Martínez-Otero
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, México, 04510, CDMX, Mexico.
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Instituto de Química, Universidad Nacional Autónoma de México, Carretera Toluca-Atlacomulco Km 14.5, C. P. 50200, Toluca, Estado de México, Mexico
| | - Joaquín Barroso-Flores
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, México, 04510, CDMX, Mexico.
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Instituto de Química, Universidad Nacional Autónoma de México, Carretera Toluca-Atlacomulco Km 14.5, C. P. 50200, Toluca, Estado de México, Mexico
| | - Juan M German-Acacio
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, CP 14000, Mexico
| | - Iván J Bazany-Rodríguez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria CDMX, 04510 México, Mexico
| | - Alejandro Dorazco-González
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, México, 04510, CDMX, Mexico.
| |
Collapse
|
3
|
Liu Y, Zhu M, Ou J, Li K, Ju X, Tian Y, Niu Z. Multi-responsive sodium hyaluronate/tannic acid hydrogels with ROS scavenging ability promote the healing of diabetic wounds. Int J Biol Macromol 2024; 278:134896. [PMID: 39168206 DOI: 10.1016/j.ijbiomac.2024.134896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Oxidative stress caused by excessive reactive oxygen species (ROS) accumulation significantly hinders wound healing in patients with diabetes. Scavenging ROS and reducing inflammation are crucial for rapid healing. In this work, a multi-responsive sodium hyaluronate (HA)/tannic acid (TA) hydrogel was developed based on boronate ester bonds. Sodium hyaluronate with 3-aminophenyl boronic acid modification (HA-APBA) was mixed and crosslinked with TA to form HA-APBA/TA hydrogels. These hydrogels are injectable, self-healing, and biocompatible. The HA-APBA/TA hydrogels could release free TA through the collapse of the structure at low pH, high H2O2 concentration, and high glucose concentration, thus possessing good ROS scavenging ability. In full-thickness skin wounds of db/db mice, the HA-APBA/TA hydrogels promoted wound healing, collagen deposition, and significant angiogenesis. Furthermore, they have been shown to effectively reduce the levels of inflammatory factors in wounds and lower the expression of CD86, a pro-inflammatory macrophage surface marker. This resulted in a more effective transition of wound healing from the inflammatory phase to the proliferative phase. This study provides an optional strategy for alleviating oxidative stress and controlling excessive inflammation, thereby promoting diabetic wound healing.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinzhao Ou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - KeJia Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Ju
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ye Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhongwei Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Alkaş A, Kofsky JM, Sullivan EC, Nebel D, Robertson KN, Capicciotti CJ, Jakeman DL, Johnson ER, Thompson A. BODIPYs α-appended with distyryl-linked aryl bisboronic acids: single-step cell staining and turn-on fluorescence binding with D-glucose. Org Biomol Chem 2024; 22:7448-7459. [PMID: 39188164 DOI: 10.1039/d4ob01013b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Small-molecule sensors that are selective for particular sugars are rare. The synthesis of BODIPYs appended with two boronic acid units is reported, alongside cellular staining/labelling and turn-on fluorescence binding data for carbohydrates. The structural frameworks were designed using computational methods, leaning on the chelation characteristics of bis(boronic acids) and the photophysical properties of BODIPYs. Selective binding to glucose is demonstrated via emission and absorption methods, and the challenges of using NMR data for studying carbohydrate binding are discussed. Furthermore, crystal structures, cell permeability and imaging properties of the BODIPYs appended with two boronic acid units are described. This work presents boronic-acid-appended BODIPYs as a potential framework for tunable carbohydrate sensing and chemical biology staining.
Collapse
Affiliation(s)
- Adil Alkaş
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada.
| | - Joshua M Kofsky
- Department of Chemistry, Department of Biomedical and Molecular Sciences, Department of Surgery, Queen's University, Kingston, K7L 3N6, Canada
| | - Em C Sullivan
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada.
| | - Daisy Nebel
- Department of Chemistry, Department of Biomedical and Molecular Sciences, Department of Surgery, Queen's University, Kingston, K7L 3N6, Canada
| | - Katherine N Robertson
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Chantelle J Capicciotti
- Department of Chemistry, Department of Biomedical and Molecular Sciences, Department of Surgery, Queen's University, Kingston, K7L 3N6, Canada
| | - David L Jakeman
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada.
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Erin R Johnson
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada.
| | - Alison Thompson
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3, Canada.
| |
Collapse
|
5
|
Salomón-Flores MK, Valdes-García J, Viviano-Posadas AO, Martínez-Otero D, Barroso-Flores J, Bazany-Rodríguez IJ, Dorazco-González A. Molecular two-point recognition of fructosyl valine and fructosyl glycyl histidine in water by fluorescent Zn(II)-terpyridine complexes bearing boronic acids. Dalton Trans 2024; 53:8692-8708. [PMID: 38700377 DOI: 10.1039/d4dt00260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Selective recognition of fructosyl amino acids in water by arylboronic acid-based receptors is a central field of modern supramolecular chemistry that impacts biological and medicinal chemistry. Fructosyl valine (FV) and fructosyl glycyl histidine (FGH) occur as N-terminal moieties of human glycated hemoglobin; therefore, the molecular design of biomimetic receptors is an attractive, but very challenging goal. Herein, we report three novel cationic Zn-terpyridine complexes bearing a fluorescent N-quinolinium nucleus covalently linked to three different isomers of strongly acidified phenylboronic acids (ortho-, 2Zn; meta-, 3Zn and para-, 4Zn) for the optical recognition of FV, FGH and comparative analytes (D-fructose, Gly, Val and His) in pure water at physiological pH. The complexes were designed to act as fluorescent receptors using a cooperative action of boric acid and a metal chelate. Complex 3Zn was found to display the most acidic -B(OH)2 group (pKa = 6.98) and exceptionally tight affinity for FV (K = 1.43 × 105 M-1) with a strong quenching analytical response in the micromolar concentration range. The addition of fructose and the other amino acids only induced moderate optical changes. On the basis of several spectroscopic tools (1H, 11B NMR, UV-Vis, and fluorescence titrations), ESI mass spectrometry, X-ray crystal structure, and DFT calculations, the interaction mode between 3Zn and FV is proposed in a 1 : 1 model through a cooperative two-point recognition involving a sp3 boronate-diol esterification with simultaneous coordination bonding of the carboxylate group of Val to the Zn atom. Fluorescence quenching is attributed to a static complexation photoinduced electron transfer mechanism as evidenced by lifetime experiments. The addition of FGH to 3Zn notably enhanced its emission intensity with micromolar affinity, but with a lower apparent binding constant than that observed for FV. FGH interacts with 3Zn through boronate-diol complexation and coordination of the imidazole ring of His. DFT-optimized structures of complexes 3Zn-FV and 3Zn-FGH show a picture of binding which shows that the Zn-complex has a suitable (B⋯Zn) distance to the two-point recognition with these analytes. Molecular recognition of fructosyl amino acids by transition-metal-based receptors has not been explored until now.
Collapse
Affiliation(s)
- María K Salomón-Flores
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
| | - Josue Valdes-García
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
| | - Alejandro O Viviano-Posadas
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
| | - Diego Martínez-Otero
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, C. P. 50200, Toluca, Estado de México, Mexico
| | - Joaquín Barroso-Flores
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, C. P. 50200, Toluca, Estado de México, Mexico
| | - Iván J Bazany-Rodríguez
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
| | - Alejandro Dorazco-González
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, 04510, CDMX, Mexico.
| |
Collapse
|
6
|
Wu A, Hillesheim PC, Nelson PN, Zeller M, Carignan G, Li J, Ki DW. New type of tin(IV) complex based turn-on fluorescent chemosensor for fluoride ion recognition: elucidating the effect of molecular structure on sensing property. Dalton Trans 2024; 53:6932-6940. [PMID: 38567414 DOI: 10.1039/d4dt00461b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A novel type of chemosensor based on tin(IV) complexes incorporating hydroxyquinoline derivatives has been designed and investigated for selectively detecting fluoride ions. Sn(meq)2Cl2 (meq = 2-methyl-8-quinolinol) (complex 1) exhibits a significant enhancement in luminescence upon the introduction of fluoride ions. This enhancement greatly surpasses that observed with Snq2Cl2 and Sn(dmqo)2Cl2 (q = 8-hydroxyquinnoline; dmqo = 5,7-dimethyl-8-quinolinol). Furthermore, complex 1 displays excellent sensitivity and selectivity for fluoride detection in comparison to halides and other anions. As a result, complex 1 serves as an outstanding turn-on fluorescent chemosensor, effectively sensing fluoride ions. The Benesi-Hilderbrand method and Job's plot confirmed that complex 1 associates with F- in a 1 : 2 binding stoichiometry. Also, complex 1 exhibited a large binding constant (pKb = 10.4 M-2) and a low detection limit (100 nM). To gain a deeper insight into the photophysical properties and the underlying mechanism governing the formation of the tin(IV) fluoride complex via halide exchange, we successfully synthesized partially fluorinated Sn(meq)2F0.67Cl1.33 (2) and fully fluorinated Sn(meq)2F2 (3), all of which were characterized through computational studies, thereby elucidating their photophysical properties. DFT studies reveal that converting Sn(meq)2Cl2 to Sn(meq)2F2, an endergonic process, leads to greater stability due to reducing steric hindrance about the metal center. Furthermore, the fluorinated complex significantly increases dipole moment, resulting in high affinity toward the F- ion.
Collapse
Affiliation(s)
- Andrew Wu
- School of Natural Sciences and Mathematics, Stockton University, Galloway, New Jersey 08205, USA.
| | - Patrick C Hillesheim
- Department of Chemistry and Physics, Ave Maria University, Ave Maria, Florida, 34142, USA
| | - Peter N Nelson
- Department of Chemistry, The University of the West Indies Mona, Jamaica
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Gia Carignan
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Daniel W Ki
- School of Natural Sciences and Mathematics, Stockton University, Galloway, New Jersey 08205, USA.
| |
Collapse
|
7
|
Sahoo A, Acharya AN. Synthesis and characterization of La QDs: sensors for anions and H 2O 2. SENSORS & DIAGNOSTICS 2024; 3:1476-1493. [DOI: 10.1039/d4sd00142g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The development of sensitive and accurate fluorescence sensors for the detection of anions and reactive oxygen species (ROS, H2O2) is essential as they play significant roles in biological and chemical processes.
Collapse
Affiliation(s)
- Amit Sahoo
- School of Basic Sciences & Humanities (Chemistry), Odisha University of Technology and Research, Bhubaneswar-751029, Odisha, India
| | - Achyuta N. Acharya
- School of Basic Sciences & Humanities (Chemistry), Odisha University of Technology and Research, Bhubaneswar-751029, Odisha, India
| |
Collapse
|
8
|
Green MJ, Ge H, Flower SE, Pourzand C, Botchway SW, Wang HC, Kuganathan N, Kociok-Köhn G, Li M, Xu S, James TD, Pascu SI. Fluorescent naphthalimide boronates as theranostics: structural investigations, confocal fluorescence and multiphoton fluorescence lifetime imaging microscopy in living cells. RSC Chem Biol 2023; 4:1082-1095. [PMID: 38033726 PMCID: PMC10685793 DOI: 10.1039/d3cb00112a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/17/2023] [Indexed: 12/02/2023] Open
Abstract
New design and synthetic strategies were developed to generate functional phenyl boronic acid (BA)-based fluorescent probes incorporating the 1,8-naphthalimide (NI) tag. This fluorescent core was anchored onto the BA unit through small organic linkers consisting of nitrogen groups which can arrest, and internally stabilise the phenyl-boronate units. The newly synthesised fluorophores were characterised spectroscopically by NMR spectroscopy and mass spectrometry and evaluated for their ability to bind to a naturally occurring polysaccharide, β-d-glucan in DMSO and simultaneously as act as in vitro cell imaging reagents. The uptake of these new NI-boronic acid derivatives was studied living cancer cells (HeLa, PC-3) in the presence, and absence, of β-d-glucan. Time-correlated single-photon counting (TCSPC) of DMSO solutions and two-photon fluorescence-lifetime imaging microscopy (FLIM) techniques allowed an insight into the probes' interaction with their environment. Their cellular uptake and distributions were imaged using laser scanning confocal fluorescence microscopy under single- and two-photon excitation regimes (λmax 910 nm). FLIM facilitated the estimation of the impact of the probe's cellular surroundings using the fluorophore lifetime. The extent to which this was mediated by the β-d-glucan was visualised by 2-photon FLIM in living cells. The fluorescence lifetime observed under a range of temperatures varied appreciably, indicating that changes in the environment can be sensed by these probes. In all cases, the cellular membrane penetration of these new probes was remarkable even under variable temperature conditions and localisation was widely concentrated in the cellular cytoplasm, without specific organelle trapping: we conclude that these new probes show promise for cellular imaging in living cancer cells.
Collapse
Affiliation(s)
- Megan J Green
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
| | - Haobo Ge
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
| | - Stephen E Flower
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
| | - Charareh Pourzand
- Department of Life Sciences, University of Bath BA2 7AY UK
- Centre for Therapeutic Innovation, University of Bath BA2 7AY UK
| | - Stanley W Botchway
- STFC Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus Harwell Oxfordshire OX11 0QX UK
| | - Hui-Chen Wang
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
| | | | - Gabriele Kociok-Köhn
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
- Materials and Chemical Characterisation Facility (MC2), University of Bath Calverton Down Bath BA2 7AY UK
| | - Meng Li
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Suying Xu
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University Baoding 071003 P. R. China
| | - Tony D James
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
| | - Sofia I Pascu
- Department of Chemistry, University of Bath Calverton Down Bath BA2 7AY UK
- Centre for Therapeutic Innovation, University of Bath BA2 7AY UK
| |
Collapse
|
9
|
Hu M, Shi S, Peng X, Pu X, Yu X. A synergistic strategy of dual-crosslinking and loading intelligent nanogels for enhancing anti-coagulation, pro-endothelialization and anti-calcification properties in bioprosthetic heart valves. Acta Biomater 2023; 171:466-481. [PMID: 37793601 DOI: 10.1016/j.actbio.2023.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Currently, glutaraldehyde (GA)-crosslinked bioprosthetic heart valves (BHVs) still do not guarantee good biocompatibility and long-term effective durability for clinical application due to their subacute thrombus, inflammation, calcification, tearing and limited durability. In this study, double-modified xanthan gum (oxidized/vinylated xanthan gum (O2CXG)) was acquired from xanthan gum for subsequent double crosslinking and modification platform construction. Sulfonic acid groups with anticoagulant properties were also introduced through the free radical polymerization of vinyl sulfonate (VS) and vinyl on O2CXG. Taking advantage of the drug-loading function of xanthan gum, the treated pericardium was further loaded with inflammation-triggered dual drug-loaded nanogel (heparin (Hep) and atorvastatin (Ator)). Mechanical properties of O2CXG-crosslinked porcine pericardium (O2CXG-PP) were significantly improved via the first network formed by Schiff base bonds and the second C-C bonds network. Due to the presence of sulfonic acid groups as well as the dual drug release from nanogels under the stimulation of H2O2, the hemocompatibility, anti-inflammatory, pro-endothelialization and anti-calcification properties of the crosslinked pericardium modified with nanogels loaded with Hep and Ator (O2CXG+VS+(Hep+Ator) nanogel-PP) was significantly better than that of GA-crosslinked PP (GA-PP). The collaborative strategy of double crosslinking and sequential release of anticoagulant/endothelium-promoting drugs triggered by inflammation could effectively meet the requirement of enhanced multiple performance and long-term durability of bioprosthetic heart valves and provide a valuable pattern for multi-functionalization of blood contacting materials. STATEMENT OF SIGNIFICANCE: Currently, glutaraldehyde-crosslinked bioprosthetic heart valves (BHVs) are subject to subacute thrombus, inflammation, calcification and tearing, which would not guarantee good biocompatibility and long-term effective durability. We developed a cooperative strategy of double crosslinking and surface modification in which double-modified xanthan gum plays a cornerstone. The mechanical properties of this BHV were significantly improved via the first network formed by Schiff base bonds and the second C-C bonds network. Inflammation-triggered combination delivery of heparin and atorvastatin has been demonstrated to enhance anticoagulation, anti-inflammatory and pro-endothelialization of BHVs by utilizing local inflammatory response. The collaborative strategy could effectively meet the requirement of enhanced multiple performance and long-term durability of BHVs and provide a valuable pattern for the multi-functionalization of blood-contacting materials.
Collapse
Affiliation(s)
- Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Shubin Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xu Peng
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, PR China
| | - Xinyun Pu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
10
|
Saito K, Kusumoto S, Nozaki K. Boron Polycation Supported by Cyclic Bis(carbodiphosphorane). Chemistry 2023; 29:e202302060. [PMID: 37534571 DOI: 10.1002/chem.202302060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
A novel cyclic bis(carbodiphosphorane) ligand was prepared and investigated in coordination with group 13 elements, B, Al, and Ga. Al and Ga afforded dinuclear adduct where two metal centers were bridged by the bis(carbodiphosphorane) ligand. In contrast, the reaction with boron trichloride afforded a monomeric dicationic three-coordinate boron species composed of one boron moieties and one ligand. The structures of these products were determined by X-ray crystallography. In the dicationic boron compound, the sterically constrained cyclic structure enforced the boron center to acquire strained trigonal geometry with wide C-B-C angle of 140°. Furthermore, theoretical investigation with DFT and NBO suggested a significant contribution of tricationic two-coordinate boron resonance structure supported by two CDP ligands.
Collapse
Affiliation(s)
- Kakeru Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shuhei Kusumoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
11
|
Wang K, Yang X, Zhang S, Zhang P, Huang S. Nanopore Discrimination of Nucleotide Sugars. NANO LETTERS 2023; 23:8620-8627. [PMID: 37690030 DOI: 10.1021/acs.nanolett.3c02455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Nucleotide sugars, the glycosyl donors in the biosynthesis of carbohydrates, are critical ingredients in the growth and development of all living organisms. A variety of nucleotide sugars simultaneously exist in biological samples. They, however, have only minor structural differences, which make them extremely difficult to discriminate. In this work, a phenylboronic acid (PBA)-modified Mycobacterium smegmatis porin A (MspA) hetero-octamer was applied to sense nucleotide sugars. Five representative nucleotide sugars, including guanosine diphosphate mannose (GDP-Man), adenosine diphosphate glucose (ADP-Glc), uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), uridine diphosphate glucose (UDP-Glc), and uridine diphosphate glucoronic acid (UDP-GlcA), were successfully distinguished. A custom machine learning algorithm was also employed to automatically identify events, reporting a general accuracy of 99.4%. This sensing strategy provides a rapid, direct, and accurate method for identifying different nucleotide sugars. However, single-molecule identification of nucleotide sugars has never been previously reported, to the best of our knowledge.
Collapse
Affiliation(s)
- Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Xian Yang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| |
Collapse
|
12
|
Chang Y, Chen Y, Wu M, Liu L, Song Q. Electrochemical detection of glycoproteins using boronic acid-modified metal-organic frameworks as dual-functional signal reporters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4452-4458. [PMID: 37641924 DOI: 10.1039/d3ay01164j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The sensitive analysis of glycoproteins is of great importance for early diagnosis and prognosis of diseases. In this work, a sandwich-type electrochemical aptasensor was developed for the detection of glycoproteins using 4-formylphenylboric acid (FPBA)-modified Cu-based metal-organic frameworks (FPBA-Cu-MOFs) as dual-functional signal probes. The target captured by the aptamer-modified electrode allowed the attachment of FPBA-Cu-MOFs based on the interaction between boronic acid and glycan on glycoproteins. Large numbers of Cu2+ ions in FPBA-Cu-MOFs produced an amplified signal for the direct voltammetric detection of glycoproteins. The electrochemical aptasensor showed a detection limit as low as 6.5 pg mL-1 for prostate specific antigen detection. The method obviates the use of antibody and enzymes for molecular recognition and signal output. The dual-functional MOFs can be extended to the design of other biosensors for the determination of diol-containing biomolecules in clinical diagnosis.
Collapse
Affiliation(s)
- Yong Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Jiangsu 214122, P. R. China.
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China.
| | - Yixuan Chen
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China.
| | - Mian Wu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China.
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, P. R. China.
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Jiangsu 214122, P. R. China.
| |
Collapse
|
13
|
Liu L, Ma X, Chang Y, Guo H, Wang W. Biosensors with Boronic Acid-Based Materials as the Recognition Elements and Signal Labels. BIOSENSORS 2023; 13:785. [PMID: 37622871 PMCID: PMC10452607 DOI: 10.3390/bios13080785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
It is of great importance to have sensitive and accurate detection of cis-diol-containing biologically related substances because of their important functions in the research fields of metabolomics, glycomics, and proteomics. Boronic acids can specifically and reversibly interact with 1,2- or 1,3-diols to form five or six cyclic esters. Based on this unique property, boronic acid-based materials have been used as synthetic receptors for the specific recognition and detection of cis-diol-containing species. This review critically summarizes the recent advances with boronic acid-based materials as recognition elements and signal labels for the detection of cis-diol-containing biological species, including ribonucleic acids, glycans, glycoproteins, bacteria, exosomes, and tumor cells. We also address the challenges and future perspectives for developing versatile boronic acid-based materials with various promising applications.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xiaohua Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Hang Guo
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenqing Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
14
|
Goshisht MK, Tripathi N, Patra GK, Chaskar M. Organelle-targeting ratiometric fluorescent probes: design principles, detection mechanisms, bio-applications, and challenges. Chem Sci 2023; 14:5842-5871. [PMID: 37293660 PMCID: PMC10246671 DOI: 10.1039/d3sc01036h] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Biological species, including reactive oxygen species (ROS), reactive sulfur species (RSS), reactive nitrogen species (RNS), F-, Pd2+, Cu2+, Hg2+, and others, are crucial for the healthy functioning of cells in living organisms. However, their aberrant concentration can result in various serious diseases. Therefore, it is essential to monitor biological species in cellular organelles such as the cell membrane, mitochondria, lysosome, endoplasmic reticulum, Golgi apparatus, and nucleus. Among various fluorescent probes for species detection within the organelles, ratiometric fluorescent probes have drawn special attention as a potential way to get beyond the drawbacks of intensity-based probes. This method depends on measuring the intensity change of two emission bands (caused by an analyte), which produces an efficient internal referencing that increases the detection's sensitivity. This review article discusses the literature publications (from 2015 to 2022) on organelle-targeting ratiometric fluorescent probes, the general strategies, the detecting mechanisms, the broad scope, and the challenges currently faced by fluorescent probes.
Collapse
Affiliation(s)
- Manoj Kumar Goshisht
- Department of Chemistry, Natural and Applied Sciences, University of Wisconsin-Green Bay 2420 Nicolet Drive Green Bay WI 54311-7001 USA
- Department of Chemistry, Government Naveen College Tokapal Bastar Chhattisgarh 494442 India
| | - Neetu Tripathi
- Department of Chemistry, Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Goutam Kumar Patra
- Department of Chemistry, Faculty of Physical Sciences Guru Ghasidas Vishwavidyalaya Bilaspur Chhattisgarh 495009 India
| | - Manohar Chaskar
- Department of Technology, Savitribai Phule Pune University Ganeshkhind Pune 411007 India
| |
Collapse
|
15
|
Hecko S, Schiefer A, Badenhorst CPS, Fink MJ, Mihovilovic MD, Bornscheuer UT, Rudroff F. Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chem Rev 2023; 123:2832-2901. [PMID: 36853077 PMCID: PMC10037340 DOI: 10.1021/acs.chemrev.2c00304] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Many successful stories in enzyme engineering are based on the creation of randomized diversity in large mutant libraries, containing millions to billions of enzyme variants. Methods that enabled their evaluation with high throughput are dominated by spectroscopic techniques due to their high speed and sensitivity. A large proportion of studies relies on fluorogenic substrates that mimic the chemical properties of the target or coupled enzymatic assays with an optical read-out that assesses the desired catalytic efficiency indirectly. The most reliable hits, however, are achieved by screening for conversions of the starting material to the desired product. For this purpose, functional group assays offer a general approach to achieve a fast, optical read-out. They use the chemoselectivity, differences in electronic and steric properties of various functional groups, to reduce the number of false-positive results and the analytical noise stemming from enzymatic background activities. This review summarizes the developments and use of functional group probes for chemoselective derivatizations, with a clear focus on screening for enzymatic activity in protein engineering.
Collapse
Affiliation(s)
- Sebastian Hecko
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Astrid Schiefer
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christoffel P S Badenhorst
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Michael J Fink
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
16
|
A Fluorescent Turn-On Sensor Toward Multiple Heavy Metal Ions Based on Meso-anisole Modified BODIPY Scaffold. J Fluoresc 2023; 33:631-637. [PMID: 36472775 DOI: 10.1007/s10895-022-03110-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
A fluorescent turn-on sensor (BOPA) was configured by anchoring bis(pyridin-2-ylmethyl)-amine (DPA) unit to the BODIPY scaffold. It exhibits highly sensitivity and selectivity towards Pb2+, Ba2+, Cr3+, Cd2+, Hg2+, Zn2+ against the competent metal ions. Job's plot analysis supports the 1:1 stoichiometry of BOPA and metal ions. And linear relationship between fluorescence intensity and concentration of Zn2+ (representative metal ion) was observed over the range 0 ~ 20 μM Zn2+. The limit detection of BOPA in recognition of Pb2+, Ba2+, Cr3+, Cd2+, Hg2+, Zn2+ was ranged from 15.99 to 43.57 nM. Photo induced transfer (PET) in the excited state of BOPA determines the emission "off/on". Coordination of metal ions by DPA significantly weakened the electron-donating ability of nitrogen atom and inhibits the PET, recovering emission of BODIPY. In addition, the attachment of anisole at meso-position of BODIPY finely modulated the recognition of metal ions category.
Collapse
|
17
|
Haveric A, Haveric S, Hadzic M, Ezic J, Cetković T, Galic B. Moderate Toxicity of Potential Boron-containing Therapeutic, Dipotassium-trioxohydroxytetrafl uorotriborate -K2(B3O3F4OH) in Rats and Mice. BRAZ J PHARM SCI 2023; 59. [DOI: 10.1590/s2175-97902023e21384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
18
|
Lee AW, Chang PL, Liaw SK, Lu CH, Chen JK. Inflammation-Responsive Nanovalves of Polymer-Conjugated Dextran on a Hole Array of Silicon Substrate for Controlled Antibiotic Release. Polymers (Basel) 2022; 14:polym14173611. [PMID: 36080686 PMCID: PMC9459923 DOI: 10.3390/polym14173611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Poly(methacrylic acid) (PMAA) brushes were tethered on a silicon surface possessing a 500-nm hole array via atom transfer radical polymerization after the modification of the halogen group. Dextran-biotin (DB) was sequentially immobilized on the PMAA chains to obtain a P(MAA-DB) brush surrounding the hole edges on the silicon surface. After loading antibiotics inside the holes, biphenyl-4,4′-diboronic acid (BDA) was used to cross-link the P(MAA-DB) chains through the formation of boronate esters to cap the hole and block the release of the antibiotics. The boronate esters were disassociated with reactive oxygen species (ROS) to open the holes and release the antibiotics, thus indicating a reversible association. The total amount of drug inside the chip was approximately 52.4 μg cm−2, which could be released at a rate of approximately 1.6 μg h−1 cm−2 at a ROS concentration of 10 nM. The P(MAA-DB) brush-modified chip was biocompatible without significant toxicity toward L929 cells during the antibiotic release. The inflammation-triggered antibiotic release system based on a subcutaneous implant chip not only exhibits excellent efficacy against bacteria but also excellent biocompatibility, recyclability, and sensitivity, which can be easily extended to other drug delivery systems for numerous biomedical applications without phagocytosis- and metabolism-related issues.
Collapse
Affiliation(s)
- Ai-Wei Lee
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan
- Department of Materials and Science Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Pao-Lung Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan
| | - Shien-Kuei Liaw
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chien-Hsing Lu
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Ph.D. Program in Translational Medicine, Institute of Biomedical Sciences, Rong-Hsing Research Center for Translational Medicine, National Chung-Hsing University, Taichung 40227, Taiwan
- Correspondence: (C.-H.L.); (J.-K.C.); Tel.: +886-2-27376523 (J.-K.C.); Fax: +886-2-27376544 (J.-K.C.)
| | - Jem-Kun Chen
- Department of Materials and Science Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Correspondence: (C.-H.L.); (J.-K.C.); Tel.: +886-2-27376523 (J.-K.C.); Fax: +886-2-27376544 (J.-K.C.)
| |
Collapse
|
19
|
Zhang S, Cao Z, Fan P, Wang Y, Jia W, Wang L, Wang K, Liu Y, Du X, Hu C, Zhang P, Chen HY, Huang S. A Nanopore‐Based Saccharide Sensor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Yao Liu
- Nanjing University Chemistry CHINA
| | | | | | | | | | - Shuo Huang
- Nanjing University Chemistry 163 Xianlin AveSchool of Chemistry and Chemical EngineeringXixia District 210023 Nanjing CHINA
| |
Collapse
|
20
|
Zhang S, Cao Z, Fan P, Wang Y, Jia W, Wang L, Wang K, Liu Y, Du X, Hu C, Zhang P, Chen HY, Huang S. A Nanopore-Based Saccharide Sensor. Angew Chem Int Ed Engl 2022; 61:e202203769. [PMID: 35718742 DOI: 10.1002/anie.202203769] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Indexed: 12/19/2022]
Abstract
Saccharides play critical roles in many forms of cellular activities. Saccharide structures are however complicated and similar, setting a technical hurdle for direct identification. Nanopores, which are emerging single molecule tools sensitive to minor structural differences between analytes, can be engineered to identity saccharides. A hetero-octameric Mycobacterium smegmatis porin A nanopore containing a phenylboronic acid was prepared, and was able to clearly identify nine monosaccharide types, including D-fructose, D-galactose, D-mannose, D-glucose, L-sorbose, D-ribose, D-xylose, L-rhamnose and N-acetyl-D-galactosamine. Minor structural differences between saccharide epimers can also be distinguished. To assist automatic event classification, a machine learning algorithm was developed, with which a general accuracy score of 0.96 was achieved. This sensing strategy is generally suitable for other saccharide types and may bring new insights to nanopore saccharide sequencing.
Collapse
Affiliation(s)
- Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Zhenyuan Cao
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Pingping Fan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Chengzhen Hu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| |
Collapse
|
21
|
Diboronate crosslinking: Introducing glucose specificity in glucose-responsive dynamic-covalent networks. J Control Release 2022; 348:601-611. [PMID: 35714732 DOI: 10.1016/j.jconrel.2022.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/24/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022]
Abstract
Dynamic-covalent motifs are increasingly used for hydrogel crosslinking, leveraging equilibrium-governed reversible bonds to prepare viscoelastic materials with dynamic properties and self-healing character. The bonding between aryl boronates and diols is one dynamic-covalent chemistry of interest. The extent of network crosslinking using this motif may be subject to competition from ambient diols such as glucose; this approach has long been explored for glucose-directed release of insulin to control diabetes. However, the majority of such work has used phenylboronic acids (PBAs) that suffer from low-affinity glucose binding, limiting material responsiveness. Moreover, many PBA chemistries also bind with higher affinity to certain non-glucose analytes like fructose and lactate than they do to glucose, limiting their specificity of sensing and therapeutic deployment. Here, dynamic-covalent hydrogels are prepared that, for the first time, use a new diboronate motif with enhanced glucose binding-and importantly improved glucose specificity-leveraging the ability of rigid diboronates to simultaneously bind two sites on a single glucose molecule. Compared to long-used PBA-based approaches, diboronate hydrogels offer more glucose-responsive insulin release that is minimally impacted by non-glucose analytes. Improved responsiveness translates to more rapid blood glucose correction in a rodent diabetes model. Accordingly, this new dynamic-covalent crosslinking chemistry is useful in realizing more sensitive and specific glucose-responsive materials.
Collapse
|
22
|
Martínez-Aguirre MA, Ortega-Valdovinos LR, Villamil-Ramos R, Yatsimirsky AK. Anion Recognition by Benzoxaborole. J Org Chem 2022; 87:7734-7746. [PMID: 35612515 DOI: 10.1021/acs.joc.2c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The binding types (H-bonding or coordinate) and stability constants for complexes of 11 mono- and di-anions with benzoxaborole (1) were determined by 1H and 11B NMR titrations in DMSO or MeCN. Compared to phenylboronic acid (PBA), 1 is a stronger Lewis acid and a poorer H-bond donor with only one B-OH group, which is expected therefore to recognize anions mostly through the coordinate bonding. This is the case however only with F-, HPO42-, and PhPO32- anions, which are coordinately bonded to 1, and partially with SO42-, which forms only the H-bonded complex with PBA, but both H-bonded and coordinate complexes with 1. The majority of tested anions (AcO-, PhPO3H-, (PhO)2PO2-, Cl-, and Br-) form H-bonded complexes with both 1 and PBA, whereas H2PO4- changes the binding mode from coordinate for PBA to H-bonded for 1. The preferable binding type for each anion is confirmed by calculations of DFT-optimized structures of the anion complexes of 1. The preferable binding type can be rationalized considering the effects of the steric hindrance, more significant for the coordinate bonding, and of increased anion basicity, which is favorable for both binding types, but enhances the strength of coordinate bonding more significantly than the strength of H-bonding.
Collapse
Affiliation(s)
| | | | - Raúl Villamil-Ramos
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209 Cuernavaca, Morelos, México
| | - Anatoly K Yatsimirsky
- Facultad de Química, Universidad Nacional Autónoma de México, 04510 México D.F., México
| |
Collapse
|
23
|
Katashima T, Kudo R, Naito M, Nagatoishi S, Miyata K, Chung UI, Tsumoto K, Sakai T. Experimental Comparison of Bond Lifetime and Viscoelastic Relaxation in Transient Networks with Well-Controlled Structures. ACS Macro Lett 2022; 11:753-759. [PMID: 35594190 DOI: 10.1021/acsmacrolett.2c00152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We demonstrate an experimental comparison of the bond lifetime, estimated using surface plasmon resonance (SPR), and the viscoelastic relaxation time of transient networks with well-controlled structures (dynamically cross-linked Tetra-PEG gel). SPR and viscoelastic measurements revealed that the temperature dependences of the two characteristic times are in agreement, while the viscoelastic response is delayed with respect to the lifetime by a factor of 2-3, dependent on the network strand length. Polymers cross-linked by temporary interactions form transient networks, which show fascinating viscoelasticity with a single relaxation mode. However, the molecular understanding of such simple viscoelasticity has remained incomplete because of the difficulty of experimentally evaluating bond lifetimes and heterogeneous structures in conventional transient networks. Our results suggest that bond dissociation and recombination both contribute to the macromechanical response. This report on direct bond-lifetime-viscoelastic-relaxation time comparison provides important information for the molecular design of transient network materials.
Collapse
Affiliation(s)
- Takuya Katashima
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryota Kudo
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoru Nagatoishi
- Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ung-il Chung
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
24
|
Ohshiro K, Sasaki Y, Zhou Q, Didier P, Nezaki T, Yasuike T, Kamiko M, Minami T. A microfluidic organic transistor for reversible and real-time monitoring of H 2O 2 at ppb/ppt levels in ultrapure water. Chem Commun (Camb) 2022; 58:5721-5724. [PMID: 35416219 DOI: 10.1039/d2cc01224c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A microfluidic organic transistor functionalized with phenylboronic acid firstly succeeded in reversible and real-time monitoring of H2O2 at ppb/ppt levels in ultrapure water, which would be used not only as portable chemical sensors but also as monitoring tools to clarify unknown reaction mechanisms of phenylboronic acid with H2O2.
Collapse
Affiliation(s)
- Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Qi Zhou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Pierre Didier
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan. .,LIMMS/CNRS-IIS(UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Takasuke Nezaki
- Kurita Water Industries Ltd., 4-10-1 Nakano, Nakano-ku, Tokyo, 164-0001, Japan
| | - Tomoharu Yasuike
- Kurita Water Industries Ltd., 4-10-1 Nakano, Nakano-ku, Tokyo, 164-0001, Japan
| | - Masao Kamiko
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan. .,LIMMS/CNRS-IIS(UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
25
|
Novel fluoride selective voltammetric sensing method by amino phenylboronic acid-zirconium oxide nanoparticles modified gold electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
26
|
Marfavi A, Yeo JH, Leslie KG, New EJ, Rendina LM. New boron-based coumarin fluorophores for bioimaging applications
†. Aust J Chem 2022. [DOI: 10.1071/ch21320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Das A, Das G. A chromone-based multi-selective sensor: applications in paper strips and real sample. NEW J CHEM 2022. [DOI: 10.1039/d2nj04115d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chromone-based multi-selective sensor: applications in a paper strip and real sample.
Collapse
Affiliation(s)
- Asesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
28
|
Chatterjee S, Tripathi NM, Bandyopadhyay A. The modern role of boron as a 'magic element' in biomedical science: chemistry perspective. Chem Commun (Camb) 2021; 57:13629-13640. [PMID: 34846393 DOI: 10.1039/d1cc05481c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Boron was misconstrued as a toxic element for animals, which retarded the growth of boron-containing drug discovery in the last century. Nevertheless, modern applications of boronic acid derivatives are attractive in biomedical applications after the declaration that boron is a 'probable essential element' for humans by the WHO. Additionally, the approval of five boronic acid-containing drugs by the FDA has vastly impacted the use of boron in medicinal chemistry, chemical biology, drug delivery, biomaterial exploration, pharmacological improvements, and nutrition. This review article focuses on the chemistries attributed to boronic acids at physiological pH, enticing chemists to multidisciplinary applications. Prospective uses of boronic acid in pharma and chemical biology, along with prospects and challenges, are also part of the deliberation. Understanding these fundamental chemistries and interactions of boronic acid in biological systems will enable solving future challenges in drug discovery and executing space-age applications.
Collapse
Affiliation(s)
- Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology, Ropar, Punjab, 140001, India.
| | - Nitesh Mani Tripathi
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology, Ropar, Punjab, 140001, India.
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology, Ropar, Punjab, 140001, India.
| |
Collapse
|
29
|
Yadav R, Kwamen C, Niemeyer J. Development of Fluorescent Chemosensors for Amino‐Sugars. Isr J Chem 2021. [DOI: 10.1002/ijch.202000104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rohan Yadav
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE) University of Duisburg-Essen Universitätsstrasse 7 45141 Essen Germany
| | - Carel Kwamen
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE) University of Duisburg-Essen Universitätsstrasse 7 45141 Essen Germany
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE) University of Duisburg-Essen Universitätsstrasse 7 45141 Essen Germany
| |
Collapse
|
30
|
Tsuchido Y, Nodomi N, Hashimoto T, Hayashita T. Micelle-Type Sensor for Saccharide Recognition by Using Boronic Acid Fluorescence Amphiphilic Probe and Surfactants. SOLVENT EXTRACTION AND ION EXCHANGE 2021. [DOI: 10.1080/07366299.2021.1876988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yuji Tsuchido
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Nana Nodomi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Takashi Hayashita
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| |
Collapse
|
31
|
Williams GT, Haynes CJE, Fares M, Caltagirone C, Hiscock JR, Gale PA. Advances in applied supramolecular technologies. Chem Soc Rev 2021; 50:2737-2763. [DOI: 10.1039/d0cs00948b] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supramolecular chemistry has successfully built a foundation of fundamental understanding. However, with this now achieved, we show how this area of chemistry is moving out of the laboratory towards successful commercialisation.
Collapse
Affiliation(s)
| | | | - Mohamed Fares
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
| | - Claudia Caltagirone
- Dipartimento di Scienze Chimiche e Geologiche
- Università degli Studi di Cagliari
- 09042 Monserrato (CA)
- Italy
| | | | - Philip A. Gale
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
- The University of Sydney Nano Institute (Sydney Nano)
| |
Collapse
|
32
|
Ortega-Valdovinos LR, Valdes-García J, Bazany-Rodríguez IJ, Lugo-González JC, Dorazco-González A, Yatsimirsky AK. Anion recognition by anthracene appended ortho-aminomethylphenylboronic acid: a new PET-based sensing mechanism. NEW J CHEM 2021. [DOI: 10.1039/d1nj02684d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carboxylate, phosphate and sulphate anions form hydrogen bonded complexes with the B(OH)2 group of the receptor 1 producing a turn-off fluorescence response, while the malonate monoanion induces the opposite turn-on effect.
Collapse
Affiliation(s)
| | - Josue Valdes-García
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria México, 04510, CDMX, Mexico
| | - Iván J. Bazany-Rodríguez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria México, 04510, CDMX, Mexico
| | | | - Alejandro Dorazco-González
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria México, 04510, CDMX, Mexico
| | | |
Collapse
|
33
|
Reeh K, Summers PA, Gould IR, Woscholski R, Vilar R. Design, synthesis and evaluation of a tripodal receptor for phosphatidylinositol phosphates. Sci Rep 2020; 10:18450. [PMID: 33116198 PMCID: PMC7595110 DOI: 10.1038/s41598-020-75484-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/15/2020] [Indexed: 11/30/2022] Open
Abstract
Phosphatidylinositol phosphates (PIPs) are membrane phospholipids that play crucial roles in a wide range of cellular processes. Their function is dictated by the number and positions of the phosphate groups in the inositol ring (with seven different PIPs being active in the cell). Therefore, there is significant interest in developing small-molecule receptors that can bind selectively to these species and in doing so affect their cellular function or be the basis for molecular probes. However, to date there are very few examples of such molecular receptors. Towards this aim, herein we report a novel tripodal molecule that acts as receptor for mono- and bis-phosphorylated PIPs in a cell free environment. To assess their affinity to PIPs we have developed a new cell free assay based on the ability of the receptor to prevent alkaline phosphatase from hydrolysing these substrates. The new receptor displays selectivity towards two out of the seven PIPs, namely PI(3)P and PI(3,4)P2. To rationalise these results, a DFT computational study was performed which corroborated the experimental results and provided insight into the host-guest binding mode.
Collapse
Affiliation(s)
- Katharina Reeh
- Department of Chemistry, Imperial College London, White City Campus, 84 Wood Lane, London, W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, White City Campus, 84 Wood Lane, London, W12 0BZ, UK
| | - Peter A Summers
- Department of Chemistry, Imperial College London, White City Campus, 84 Wood Lane, London, W12 0BZ, UK
| | - Ian R Gould
- Department of Chemistry, Imperial College London, White City Campus, 84 Wood Lane, London, W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, White City Campus, 84 Wood Lane, London, W12 0BZ, UK
| | - Rudiger Woscholski
- Department of Chemistry, Imperial College London, White City Campus, 84 Wood Lane, London, W12 0BZ, UK
- Institute of Chemical Biology, Imperial College London, White City Campus, 84 Wood Lane, London, W12 0BZ, UK
| | - Ramon Vilar
- Department of Chemistry, Imperial College London, White City Campus, 84 Wood Lane, London, W12 0BZ, UK.
- Institute of Chemical Biology, Imperial College London, White City Campus, 84 Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
34
|
Yu F, Chen Y, Jiang H, Wang X. Recent advances of BINOL-based sensors for enantioselective fluorescence recognition. Analyst 2020; 145:6769-6812. [PMID: 32960189 DOI: 10.1039/d0an01225d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enantioselective fluorescent sensors show large potential for fast, real-time, and highly sensitive measurement of the concentration and enantiomeric composition of chiral molecules. Among all of the sensors, BINOL-based sensors have been actively investigated and extensively used to carry out highly enantioselective, sensitive recognition of chiral α-hydroxycarboxylic acids, amino acids, amino acid derivatives, amino alcohols and amines. In this manuscript, the recent progress of chiral BINOL-based sensors for enantioselective fluorescence recognition of different substrates is reviewed and discussed. The structure of BINOL is tuned by introducing various groups or molecules which systematically changed its fluorescence properties and offered potential for rapid assays of chiral organic molecules. From the development of this area, we gain fresh insight into the challenges and chances of BINOL-based sensors.
Collapse
Affiliation(s)
- Fangfang Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | | | | | | |
Collapse
|
35
|
Yan F, Ma X, Jin Q, Tong Y, Tang H, Lin X, Liu J. Phenylboronic acid-functionalized vertically ordered mesoporous silica films for selective electrochemical determination of fluoride ion in tap water. Mikrochim Acta 2020; 187:470. [DOI: 10.1007/s00604-020-04422-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/30/2020] [Indexed: 02/01/2023]
|
36
|
Hiller NDJ, do Amaral e Silva NA, Tavares TA, Faria RX, Eberlin MN, de Luna Martins D. Arylboronic Acids and their Myriad of Applications Beyond Organic Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000396] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Noemi de Jesus Hiller
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Nayane Abreu do Amaral e Silva
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Thais Apolinário Tavares
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Robson Xavier Faria
- Laboratório de Toxoplasmose e outras Protozooses; Instituto Oswaldo Cruz, Fiocruz; Av. Brasil, 4365 Manguinhos Rio de Janeiro RJ 21040-360 Brasil
| | - Marcos Nogueira Eberlin
- Mackenzie Presbyterian University; School of Engineering; Rua da Consolação, 930 SP 01302-907 São Paulo Brasil
| | - Daniela de Luna Martins
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| |
Collapse
|
37
|
|
38
|
Danchin A. Isobiology: A Variational Principle for Exploring Synthetic Life. Chembiochem 2020; 21:1781-1792. [DOI: 10.1002/cbic.202000060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Antoine Danchin
- Stellate TherapeuticsInstitut Cochin 24 rue du Faubourg Saint-Jacques 75014 Paris France
| |
Collapse
|
39
|
Avinash I, Parveen S, Anantharaman G. Backbone Boron-Functionalized Imidazoles/Imidazolium Salts: Synthesis, Structure, Metalation Studies, and Fluoride Sensing Properties. Inorg Chem 2020; 59:5646-5661. [DOI: 10.1021/acs.inorgchem.0c00348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Iruthayaraj Avinash
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Sabeeha Parveen
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Ganapathi Anantharaman
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
40
|
Singh A, Mohan M, Trivedi DR. Design and synthesis of malonohydrazide based colorimetric receptors for discrimination of maleate over fumarate and detection of F -, AcO - and AsO 2- ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117883. [PMID: 31818641 DOI: 10.1016/j.saa.2019.117883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/22/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
In this study, we have designed and synthesized two new organic receptors R1 and R2 based on malonohydrazide for the recognition of biologically important anions. The receptor R1 capable of colorimetric discrimination of maleate over fumarate ion, exhibit significant color change from pale yellow to wine red due to intermolecular hydrogen bond between the R1 and maleate ion, supported by 1HNMR titration, where the peak at δ12.0 ppm attributed to the NH proton experiences a downfield shift upon binding with maleate ion. Receptor R1, equipped with two electron-withdrawing NO2 moieties as the chromogenic signaling unit enhance the hydrogen bonding tendency and acidity, and thus when comparing with receptor R2, R1 displayed substantial higher redshift (∆λmax) of 148 nm, 143 nm, and 140 nm towards F-, AcO-, and maleate anion in the DMSO. In addition, the synthesized receptors R1 and R2 are able to detect F-, AcO-, and AsO2- ions as their sodium salts in an aqueous solution with visual color change. Receptor R1 exhibit electrochemical response towards F- and AcO- ions. The receptors R1 and R2 are successfully applied for quantitative detection of F- ion in the toothpaste solution in an aqueous medium. Additionally, R1 and R2 exhibit fluorescence enhancement towards F- and AcO- ions in the DMSO. As well, R1 and R2 demonstrate to be potentially useful colorimetric chemosensor for sensing maleate ion using the test strip. The theoretical calculation based on TD-DFT corroborates well with the experimental results of the receptors R1 and R2 with fluoride, acetate and maleate.
Collapse
Affiliation(s)
- Archana Singh
- Supramolecular Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar 575 025, Karnataka, India
| | - Makesh Mohan
- Department of Physics, National Institute of Technology Karnataka (NITK), Surathkal, India
| | - Dharshak R Trivedi
- Supramolecular Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar 575 025, Karnataka, India.
| |
Collapse
|
41
|
Bi X, Wang Y, Wang D, Liu L, Zhu W, Zhang J, Zha X. A mitochondrial-targetable dual functional near-infrared fluorescent probe to monitor pH and H2O2 in living cells and mice. RSC Adv 2020; 10:26874-26879. [PMID: 35515755 PMCID: PMC9055531 DOI: 10.1039/d0ra03905e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022] Open
Abstract
A lower pH level and high hydrogen peroxide (H2O2) concentration in mitochondria is closely associated with a variety of diseases including cancer and inflammation. Thus, determination of changes in the level of acidic pH and H2O2 is of great importance and could provide new insights into the key functions under both physiological and pathological conditions. Herein, we present a novel mitochondria-targetable probe NIR-pH-H2O2, as the first near infrared (NIR) fluorescent small molecule, to monitor changes of endogenous pH (pka = 6.17) and H2O2 with high sensitivity, good compatibility and low cytotoxicity. Futhermore, it was successfully employed to monitor pH and H2O2 in a mouse acute inflammation model. These results demonstrate that NIR-pH-H2O2 is a novel bifunctional mitochondrial-targeted NIR probe to sense acidic pH and H2O2in vitro and in vivo, indicating its huge potential for the diagnosis of pH and H2O2-related diseases. A lower pH level and high hydrogen peroxide (H2O2) concentration in mitochondria is closely associated with a variety of diseases including cancer and inflammation.![]()
Collapse
Affiliation(s)
- Xueyuan Bi
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Yingying Wang
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Dandan Wang
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Liming Liu
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Wen Zhu
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Junjie Zhang
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Xiaoming Zha
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- China
| |
Collapse
|
42
|
Sun X, Chapin BM, Metola P, Collins B, Wang B, James TD, Anslyn EV. The mechanisms of boronate ester formation and fluorescent turn-on in ortho-aminomethylphenylboronic acids. Nat Chem 2019; 11:768-778. [PMID: 31444486 PMCID: PMC8573735 DOI: 10.1038/s41557-019-0314-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 07/19/2019] [Indexed: 11/09/2022]
Abstract
ortho-Aminomethylphenylboronic acids are used in receptors for carbohydrates and various other compounds containing vicinal diols. The presence of the o-aminomethyl group enhances the affinity towards diols at neutral pH, and the manner in which this group plays this role has been a topic of debate. Further, the aminomethyl group is believed to be involved in the turn-on of the emission properties of appended fluorophores upon diol binding. In this treatise, a uniform picture emerges for the role of this group: it primarily acts as an electron-withdrawing group that lowers the pKa of the neighbouring boronic acid thereby facilitating diol binding at neutral pH. The amine appears to play no role in the modulation of the fluorescence of appended fluorophores in the protic-solvent-inserted form of the boronic acid/boronate ester. Instead, fluorescence turn-on can be consistently tied to vibrational-coupled excited-state relaxation (a loose-bolt effect). Overall, this Review unifies and discusses the existing data as of 2019 whilst also highlighting why o-aminomethyl groups are so widely used, and the role they play in carbohydrate sensing using phenylboronic acids.
Collapse
Affiliation(s)
- Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Brette M Chapin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Pedro Metola
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Byron Collins
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK.
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
43
|
Zhao H, Hussain S, Liu X, Li S, Lv F, Liu L, Wang S. Design of an Amphiphilic Perylene Diimide for Optical Recognition of Anticancer Drug through a Chirality-Induced Helical Structure. Chemistry 2019; 25:9834-9839. [PMID: 31173417 DOI: 10.1002/chem.201901948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2019] [Indexed: 01/02/2023]
Abstract
Introduction of chirality into a supramolecular self-assembly system plays an indispensable role in attaining specific molecular recognition ability. Herein, a chiral anticancer drug 5'-deoxy-5-fluorouridine (5'DFU) was explored for inducing the self-assembly of a cationic perylene diimide derivative containing boronic acid groups (PDI-PBA) into a highly ordered right-handed helical structure. As a result, PDI-PBA exhibited a molecular recognition ability towards 5'DFU among other cis-diols and anticancer drugs. With the help of a dynamic covalent bond and favorable hydrogen-bonding interactions, chirality transfer from chiral 5'DFU to achiral PDI-PBA breaks down the strong π-π stacking of PDI-PBA and makes it reorganize into highly ordered helical supramolecular structures. This work provides an insight into chiral anticancer drug tuning interactions of π-chromophores and the inducement of hierarchical self-assembly to achieve specific molecular recognition.
Collapse
Affiliation(s)
- Hao Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sameer Hussain
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaoyan Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shengliang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
44
|
Seraj S, Rouhani S, Faridbod F. Naphthalimide-based optical turn-on sensor for monosaccharide recognition using boronic acid receptor. RSC Adv 2019; 9:17933-17940. [PMID: 35520557 PMCID: PMC9064670 DOI: 10.1039/c9ra01757g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/26/2019] [Indexed: 02/04/2023] Open
Abstract
A highly selective and sensitive fluorescent sensor for the determination of fructose is developed. The fluorescent sensor was prepared by incorporating a new naphthalimide dye with a planar structure as a selectophore and graphene oxide (GO) nanoplatelets as a quencher for rapid optical detection of fructose. The designed probe, made with the high fusion loop-containing dye, along with the GO nanoplatelets, detected fructose over the other monosaccharides very well. The proposed sensor displays a linear response range of 7 × 10-5 to 3 × 10-2 M with a low limit of detection of 23 × 10-6 M in solution at pH 7.4. This sensor shows a good selectivity towards fructose with respect to other saccharides. The proposed sensor was then applied to the determination of fructose in human plasma with satisfactory results.
Collapse
Affiliation(s)
- Sanaz Seraj
- Department of Organic Colorants, Institute for Color Science and Technology Tehran Iran
| | - Shohre Rouhani
- Department of Organic Colorants, Institute for Color Science and Technology Tehran Iran
- Center of Excellence for Color Science and Technology (CECST), Institute for Color Science and Technology Tehran Iran
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran Tehran Iran
| |
Collapse
|
45
|
Phapale D, Kushwaha A, Das D. A simple benzimidazole styryl-based colorimetric chemosensor for dual sensing application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:111-118. [PMID: 30771591 DOI: 10.1016/j.saa.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
A new colorimetric styryl-benzimidazole based receptor to recognize more than one analyte trans-2-[4'-(dimethylamino)styryl]benzimidazole) (L1) has been synthesized and fully characterized by 13C and 1H NMR, elemental analysis, UV-vis spectroscopy, and HRMS. Investigation of sensing ability of receptor L1 was carried out in presence of multiple anions (Br-, CN-, Cl-, ClO4-, F-, HSO4-, PF6-, NO3-, S2-, OH-, AcO- and H2PO4-) and cations (Cu2+, Cr3+, Al3+, Mg2+, Cd2+, Ni2+, Fe3+, K+, Fe2+, Mn2+, Ag+, Hg2+, Ca2+, Co2+, Pb2+, Na+, and Zn2+) by using UV-vis spectroscopy. Receptor L1 showed colorimetric response towards only for HSO4- ion. Receptor L1-HSO4- interaction confirmed with the help of 1H NMR titration. Among various cations, L1 selectively sense the Cu2+ and Al3+ with the drastic colour change from yellow to green and dark yellow respectively. The stoichiometric binding ratio of L1 with HSO4-, Cu2+, and Al3+ found to be 1:1 by jobs method and HRMS data proved the complex formation between L1 and Cu2+/Al3+ with very low detection limit. In addition to explore practical applicability of L1, paper strips have been made and used to detect HSO4- and Cu2+ ions, respectively, up to 10 ppm level.
Collapse
Affiliation(s)
- Daulat Phapale
- Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Archana Kushwaha
- Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Dipanwita Das
- Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
46
|
Lv J, Wu G, Liu Y, Li C, Huang F, Zhang Y, Liu J, An Y, Ma R, Shi L. Injectable dual glucose-responsive hydrogel-micelle composite for mimicking physiological basal and prandial insulin delivery. Sci China Chem 2019. [DOI: 10.1007/s11426-018-9419-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Zhao H, Kim Y, Park G, Gabbai FP. Controlling the fluoridophilicity of sulfonium boranes via chelation, Coulombic and hydrophobic effects. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.01.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Wu Q, Tu F, Long L, Qin B. Self-assembly of intramolecularly hydrogen-bonded amphiphilic diboronic acid for saccharide recognition. J Colloid Interface Sci 2019; 537:325-332. [DOI: 10.1016/j.jcis.2018.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 01/25/2023]
|
49
|
Yu L, Cai WJ, Ye T, Feng YQ. A new boronic acid reagent for the simultaneous determination of C 27-, C 28-, and C 29-brassinosteroids in plant tissues by chemical labeling-assisted liquid chromatography-mass spectrometry. Anal Bioanal Chem 2019; 411:1623-1632. [PMID: 30715574 DOI: 10.1007/s00216-019-01612-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/20/2018] [Accepted: 01/15/2019] [Indexed: 01/19/2023]
Abstract
Brassinosteroids (BRs) are endogenous plant growth-promoting hormones affecting growth and development during the entire life cycle of plants. Naturally occurring BRs can be classified into C27-, C28-, or C29-BRs based on the nature of the alkyl groups occupying the C-24 position in the side chain of the 5a-cholestane carbon skeleton. However, while C27-BRs exhibit similar bioactivities to C28- and C29-BRs, the biosynthetic pathways of C27-BRs in plants have not yet been clearly characterized. In addition to a lack of biochemical and enzymatic evidence regarding the biosynthetic pathways of C27-BRs, even most of the intermediate compounds on their pathways have not been explored and identified due to the lower endogenous levels of C27-BRs. Therefore, the development of highly sensitive analytical methods is essential for studying the biosynthetic pathways and physiological functions of C27-BRs. Accordingly, this study establishes qualitative and quantitative methods for identifying and detecting C27-, C28-, and C29-BRs using a newly synthesized boronic acid reagent denoted as 2-methyl-4-phenylaminomethylphenylboronic acid (2-methyl-4-PAMBA) in conjunction with liquid chromatography-mass spectrometry (LC-MS). Labeling with 2-methyl-4-PAMBA provides derivatives with excellent stability, and the detection sensitivities of BRs, particularly for C27-BRs, are dramatically improved. The limits of detection (with a signal-to-noise ratio of 3) for six BRs, including 2 C27-BRs (28-norCS and 28-norBL), 3 C28-BRs (CS, BL, and TY), and a single C29-BR (28-homoBL), are found to be 0.10-1.68 pg/mL after labeling with 2-methyl-4-PAMBA. Finally, the proposed analytical method is successfully applied for the detection of endogenous BRs in small mass samples of Oryza sativa seedlings, Rape flowers, Arabidopsis shoots, and Arabidopsis flowers. In addition, a method for profiling potential BRs in plants is also developed using LC-MS in multiple reaction monitoring scan mode assisted by 2-methyl-4-PAMBA and 2-methyl-4-PAMBA-d5 labeling. The developed method is able to identify 10 potential BRs in a Rape flower extract. The proposed quantitative and qualitative methods established by 2-methyl-4-PAMBA labeling are helpful for facilitating an understanding of the physiological functions and biosynthetic pathways of BRs, particularly for C27-BRs. Graphical abstract.
Collapse
Affiliation(s)
- Lei Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, Hubei, China
| | - Wen-Jing Cai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, Hubei, China
| | - Tiantian Ye
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, Hubei, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, Hubei, China.
| |
Collapse
|
50
|
Dopamine/2-Phenylethylamine Sensitivity of Ion-Selective Electrodes Based on Bifunctional-Symmetrical Boron Receptors. SENSORS 2019; 19:s19020283. [PMID: 30642018 PMCID: PMC6358993 DOI: 10.3390/s19020283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 01/15/2023]
Abstract
Piperazine-based compounds bearing two phenylboronic acid or two benzoxaborole groups (PBPA and PBBB) were applied as dopamine receptors in polymeric membranes (PVC/DOS) of ion-selective electrodes. The potentiometric sensitivity and selectivity of the sensors towards dopamine were evaluated and compared with the results obtained for 2-phenylethylamine. Since the developed electrodes displayed strong interference from 2-phenylethylamine, single-molecule geometry optimizations were performed using the density functional theory (DFT) method in order to investigate the origin of dopamine/2-phenylethylamine selectivity. The results indicated that phenylboronic acid and benzoxaborole receptors bind dopamine mainly through the dative B⁻N bond (like 2-phenylethylamine) and the potentiometric selectivity is mainly governed by the higher lipophilicity of 2-phenylethylamine.
Collapse
|