1
|
Recent advance in nucleic acid amplification-integrated methods for DNA methyltransferase assay. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
2
|
Xu L, Zhou B, Song Y, Cai X, Lu W. Electron-Transfer Study and Single Nucleotide Discrimination of a DNA Sequence on a Polymer Gold Electrode (PGE) by Differential Pulse Voltammetry (DPV). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2035390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Long Xu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Binyu Zhou
- Department of Interventional Oncology, the People's Hospital of China Medical University, Shenyang, China
| | - Yaling Song
- Zhejiang GeneX Precision Medicine Co., Ltd, Hangzhou, P.R. China
| | - Xu Cai
- Department of Songbei Respiratory Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Lu
- Zhejiang GeneX Precision Medicine Co., Ltd, Hangzhou, P.R. China
| |
Collapse
|
3
|
Zhang S, Huang J, Lu J, Liu M, Chen X, Su S, Mo F, Zheng J. Electrochemical and Optical Biosensing Strategies for DNA Methylation Analysis. Curr Med Chem 2020; 27:6159-6187. [DOI: 10.2174/0929867326666190903161750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
DNA methylation is considered as a crucial part of epigenetic modifications and a popular
research topic in recent decades. It usually occurs with a methyl group adding to the fifth carbon
atom of cytosine while the base sequence of DNA remains unchanged. DNA methylation has significant
influences on maintaining cell functions, genetic imprinting, embryonic development and
tumorigenesis procedures and hence the analysis of DNA methylation is of great medical significance.
With the development of analytical techniques and further research on DNA methylation,
numerous DNA methylation detection strategies based on biosensing technology have been developed
to fulfill various study requirements. This article reviewed the development of electrochemistry
and optical biosensing analysis of DNA methylation in recent years; in addition, we also reviewed
some recent advances in the detection of DNA methylation using new techniques, such as
nanopore biosensors, and highlighted the key technical and biological challenges involved in these
methods. We hope this paper will provide useful information for the selection and establishment of
analysis of DNA methylation.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Jian Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jingrun Lu
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Min Liu
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Xi Chen
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Shasha Su
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Fei Mo
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang 550004, China
| | - Junsong Zheng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| |
Collapse
|
4
|
Araiza-Olivera D, Gutierrez-Aguilar M, Espinosa-García AM, García-García JA, Tapia-Orozco N, Sánchez-Pérez C, Palacios-Reyes C, Escárcega D, Villalón-López DN, García-Arrazola R. From bench to bedside: Biosensing strategies to evaluate endocrine disrupting compounds based on epigenetic events and their potential use in medicine. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103450. [PMID: 32622887 DOI: 10.1016/j.etap.2020.103450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
The relationship between endocrine system disorders and health risks due to chemical environmental compounds has become a growing concern in recent years. Involuntary exposure to endocrine disruptors (EDCs) is associated with the worldwide increase of diseases such as cancer, obesity, diabetes, and neurocortical disorders. EDCs are compounds that target the nuclear hormonereceptors (NHR) leading to epigenetic changes. Consequently, the use of biosensing strategies based on epigenetic events have a great potential to provide outstanding information about the exposition of EDCs and their evaluation in human health. This review addresses the novel trends in biosensing EDCs evaluation based on DNA methylation assays associated with different human diseases.
Collapse
Affiliation(s)
- D Araiza-Olivera
- Department of Chemistry and Biomolecules, Institute of Chemistry, UNAM, Mexico.
| | | | - A M Espinosa-García
- Unidad de Medicina Genómica, Hospital General de México, Dr. Balmis 148, Mexico City, Mexico.
| | - J A García-García
- Department of Education, Hospital General de México, Dr. Balmis 148, Mexico City, Mexico.
| | - N Tapia-Orozco
- Departmentof Food Science and Biotechnology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Ave. Universidad 3000, 04510, Coyoacán, Mexico City, Mexico.
| | - C Sánchez-Pérez
- Institute of Applied Sciences and Technology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Ave. Universidad 3000, 04510, Coyoacán, Mexico City, Mexico.
| | - C Palacios-Reyes
- Laboratory of Genetics and Molecular Diagnostics, Juarez Hospital of Mexico, Mexico City, Mexico.
| | - D Escárcega
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México, calle del Puente 222, Ejidos de Huipulco, Tlalpan 14380, Mexico City, Mexico.
| | - Demelza N Villalón-López
- Instituto Politénico Nacional-Escuela Nacional de Ciencias Biológicas, Departamento de Química Orgánica, Prolongación de Carpio y Plande Ayala, colonia Casco de Santo Tomás. Del, Miguel Hidalgo, 11350, Mexico.
| | - R García-Arrazola
- Departmentof Food Science and Biotechnology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Ave. Universidad 3000, 04510, Coyoacán, Mexico City, Mexico.
| |
Collapse
|
5
|
Zhang Y, Hao L, Zhao Z, Yang X, Wang L, Liu S. Immuno-DNA binding directed template-free DNA extension and enzyme catalysis for sensitive electrochemical DNA methyltransferase activity assay and inhibitor screening. Analyst 2020; 145:3064-3072. [DOI: 10.1039/d0an00008f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new electrochemical immuno-DNA sensing platform for DNA methyltransferase activity assay and inhibitor screening.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Lijie Hao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Zhen Zhao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Xiaoyan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Li Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Shufeng Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|
6
|
Electrochemical determination of the activity of DNA methyltransferase based on the methyl binding domain protein and a customized modular detector. Mikrochim Acta 2019; 186:229. [DOI: 10.1007/s00604-019-3309-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/11/2019] [Indexed: 12/31/2022]
|
7
|
Dai S, Lu W, Wang Y, Yao B. Universal DNA biosensing based on instantaneously electrostatic attraction between hexaammineruthenium (III) and DNA molecules. Biosens Bioelectron 2019; 127:101-107. [PMID: 30594074 DOI: 10.1016/j.bios.2018.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Despite rapid progress in DNA biosensors by employing various materials as well as techniques, most of the reported sensors are based on specific recognition of a DNA fragment, however can not perform universal measurement of DNA molecules (i.e. genomic DNA). In this work, we proposed a novel DNA biosensing method based on instantaneously electrostatic attraction (IEA) between hexaammineruthenium (III) and DNA molecules. The current variation of freely diffused Ru(NH3)63+ caused by its quick and strong static interaction with phosphate backbones was employed as a universal probe to detect DNA molecules in solution, with no need for immobilization of capture probes on the electrode. After optimization, 30 μL of 300 μM Ru(NH3)63+ solution was added onto the gold electrode with a working electrode diameter of 2 mm, and a detection limit of 3.8 ng/μL was achieved, which is equivalent to NanoDrop™ One spectrometer, the commonly used instrument for DNA quantification. Using reusable and inexpensive gold electrode, the approach provided an easy-operated sequence-independent DNA detection method, and was proved to be able to detect genomic and plasmid DNA directly.
Collapse
Affiliation(s)
- Siya Dai
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Wei Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yusheng Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bo Yao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Silver nanoclusters-assisted triple-amplified biosensor for ultrasensitive methyltransferase activity detection based on AuNPs/ERGO hybrids and hybridization chain reaction. Biosens Bioelectron 2018; 118:174-180. [DOI: 10.1016/j.bios.2018.07.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 11/17/2022]
|
9
|
Chen S, Lv Y, Shen Y, Ji J, Zhou Q, Liu S, Zhang Y. Highly Sensitive and Quality Self-Testable Electrochemiluminescence Assay of DNA Methyltransferase Activity Using Multifunctional Sandwich-Assembled Carbon Nitride Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6887-6894. [PMID: 29376630 DOI: 10.1021/acsami.7b17813] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
DNA methylation catalyzed by methylase plays a key role in many biological activities. However, developing a highly sensitive, simple, and reliable way for evaluation of DNA methyltransferase (MTase) activity is still a challenge. Here, we report a sandwich-assembled electrochemiluminescence (ECL) biosensor using multifunctional carbon nitride nanosheets (CNNS) to evaluate the Dam MTase activity. The CNNS could not only be used as an excellent substrate to conjugate a large amount of hairpin probe DNA to improve the sensitivity but also be utilized as an internal reliability checker and an analyte reporter in the bottom and top layers of the biosensor, respectively. Such a unique sandwich configuration of CNNS well coupled the advantages of ECL luminophor that were generally assembled in the bottom or top layer in a conventional manner. As a result, the biosensor exhibited an ultralow detection limit down to 0.043 U/mL and a linear range between 0.05 and 80 U/mL, superior to the MTase activity assay in most previous reports. We highlighted the great potential of emerging CNNS luminophor in developing highly sensitive and smart quality self-testable ECL sensing systems using a sandwiched configuration for early disease diagnosis, treatment, and management.
Collapse
Affiliation(s)
- Shiyu Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Yanqin Lv
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Yanfei Shen
- Medical School, Southeast University , Nanjing 210009, China
| | - Jingjing Ji
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| |
Collapse
|
10
|
Dudová Z, Bartošík M, Fojta M. Magnetic bead-based electrochemical assay for determination of DNA methyltransferase activity. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.02.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Ma F, Liu WJ, Tang B, Zhang CY. A single quantum dot-based nanosensor for the signal-on detection of DNA methyltransferase. Chem Commun (Camb) 2017; 53:6868-6871. [DOI: 10.1039/c7cc03736h] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
A label-free electrochemical biosensor for microRNA detection based on catalytic hairpin assembly and in situ formation of molybdophosphate. Talanta 2017; 163:65-71. [DOI: 10.1016/j.talanta.2016.10.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/12/2016] [Accepted: 10/23/2016] [Indexed: 01/10/2023]
|
13
|
Jiang B, Wei Y, Xu J, Yuan R, Xiang Y. Coupling hybridization chain reaction with DNAzyme recycling for enzyme-free and dual amplified sensitive fluorescent detection of methyltransferase activity. Anal Chim Acta 2017; 949:83-88. [DOI: 10.1016/j.aca.2016.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/27/2016] [Accepted: 11/05/2016] [Indexed: 12/20/2022]
|
14
|
Zhang H, Yang Y, Dong H, Cai C. A superstructure-based electrochemical assay for signal-amplified detection of DNA methyltransferase activity. Biosens Bioelectron 2016; 86:927-932. [DOI: 10.1016/j.bios.2016.07.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/11/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022]
|
15
|
Quantitation of DNA methyltransferase activity via chronocoulometry in combination with rolling chain amplification. Biosens Bioelectron 2016; 85:25-31. [DOI: 10.1016/j.bios.2016.04.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 11/18/2022]
|
16
|
Zhou J, Zhang X, Xiong E, Yu P, Li X, Chen J. SDR-recycling signal amplification for highly sensitive methyltransferase activity assay. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Abstract
In the field of genetics, epigenetics is the study of changes in gene expression without any change in DNA sequences. Chemical base modification in DNA by DNA methyltransferase, and specifically methylation, has been well studied as the main mechanism of epigenetics. Therefore, the determination of DNA methylation of, for example, 5'-methylcytosine in the CpG sequence in mammals has attracted attention because it should prove valuable in a wide range of research fields including diagnosis, drug discovery, and therapy. Methylated DNA bases and DNA methyltransferase activity are analyzed using conventional methods; however, these methods are time-consuming and require complex multiple operations. Therefore, new methods and devices for DNA methylation analysis are now being actively developed. Furthermore, microfluidic technology has also been applied to DNA methylation analysis because the microfluidic platform offers the promising advantage of making it possible to perform thousands of DNA methylation reactions in small reaction volumes, resulting in a high-throughput analysis with high sensitivity. This review discusses epigenetics and the microfluidic platforms developed for DNA methylation analysis.
Collapse
Affiliation(s)
- Ryoji Kurita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566 Japan.
| | | |
Collapse
|
18
|
Liu S, Wei W, Sun X, Wang L. Ultrasensitive electrochemical DNAzyme sensor for lead ion based on cleavage-induced template-independent polymerization and alkaline phosphatase amplification. Biosens Bioelectron 2016; 83:33-8. [DOI: 10.1016/j.bios.2016.04.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/28/2016] [Accepted: 04/11/2016] [Indexed: 11/16/2022]
|
19
|
Li Y, Yu C, Han H, Zhao C, Zhang X. Sensitive SERS detection of DNA methyltransferase by target triggering primer generation-based multiple signal amplification strategy. Biosens Bioelectron 2016; 81:111-116. [DOI: 10.1016/j.bios.2016.02.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 12/25/2022]
|
20
|
DNA–gold nanoparticles network based electrochemical biosensors for DNA MTase activity. Talanta 2016; 152:228-35. [DOI: 10.1016/j.talanta.2016.01.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 11/23/2022]
|
21
|
Zhou H, Han T, Wei Q, Zhang S. Efficient Enhancement of Electrochemiluminescence from Cadmium Sulfide Quantum Dots by Glucose Oxidase Mimicking Gold Nanoparticles for Highly Sensitive Assay of Methyltransferase Activity. Anal Chem 2016; 88:2976-83. [PMID: 26857780 DOI: 10.1021/acs.analchem.6b00450] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein, an original electrochemiluminescence (ECL) method for the detection of DNA methyltransferase (MTase) activity is presented based on the efficient enhanced ECL of CdS quantum dots (QDs) through catalytic generation of coreactant and energy transfer by glucose oxidase mimicking gold nanoparticles (Au NPs). Briefly, a double-stranded DNA (ds-DNA) containing the symmetric sequence of 5'-CCGG-3' was bonded to the CdS QDs modified glassy carbon electrode (GCE). After that, the electrode was incubated with M.SssI CpG MTase which catalyzed the methylation of the specific CpG dinucleotides. Subsequently, the electrode was treated with a restriction endonuclease HpaII which could recognize and cut off the 5'-CCGG-3' sequence. Once the CpG site in the 5'-CCGG-3' was methylated, the recognition function of HpaII was blocked, and it could not cut off the ds-DNA. Later, Au NPs were combined with the end of the ds-DNA section which was not cut off and has -SH groups. Therefore, the higher M.SssI MTase activity could lead to more Au NPs immobilized on ds-DNA. Au NPs could not only catalyze the oxidation of glucose with cosubstrate oxygen, producing gluconate and hydrogen peroxide (H2O2) which served as the ECL coreactant of CdS QDs, but also enhanced CdS QDs ECL via energy transfer (ET). Thus, the methylation event corresponding to the MTase activity could be monitored and amplified by this method. Finally, a logarithmic linear correlation between the ECL intensity of CdS QDs and the activity of M.SssI MTase that ranged from 1.0 to 120 U mL(-1) with the detection limit of 0.05 U mL(-1) was obtained.
Collapse
Affiliation(s)
- Hong Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University , Linyi 276005, People's Republic of China
| | - Tongqian Han
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, People's Republic of China
| | - Qin Wei
- Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, People's Republic of China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University , Linyi 276005, People's Republic of China
| |
Collapse
|
22
|
Wang L, Yu F, Wang F, Chen Z. Electrochemical detection of DNA methylation using a glassy carbon electrode modified with a composite made from carbon nanotubes and β-cyclodextrin. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3122-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Poh WJ, Wee CPP, Gao Z. DNA Methyltransferase Activity Assays: Advances and Challenges. Am J Cancer Res 2016; 6:369-91. [PMID: 26909112 PMCID: PMC4737724 DOI: 10.7150/thno.13438] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/12/2015] [Indexed: 12/28/2022] Open
Abstract
DNA methyltransferases (MTases), a family of enzymes that catalyse the methylation of DNA, have a profound effect on gene regulation. A large body of evidence has indicated that DNA MTase is potentially a predictive biomarker closely associated with genetic disorders and genetic diseases like cancer. Given the attention bestowed onto DNA MTases in molecular biology and medicine, highly sensitive detection of DNA MTase activity is essential in determining gene regulation, epigenetic modification, clinical diagnosis and therapeutics. Conventional techniques such as isotope labelling are effective, but they often require laborious sample preparation, isotope labelling, sophisticated equipment and large amounts of DNA, rendering them unsuitable for uses at point-of-care. Simple, portable, highly sensitive and low-cost assays are urgently needed for DNA MTase activity screening. In most recent technological advances, many alternative DNA MTase activity assays such as fluorescent, electrochemical, colorimetric and chemiluminescent assays have been proposed. In addition, many of them are coupled with nanomaterials and/or enzymes to significantly enhance their sensitivity. Herein we review the progress in the development of DNA MTase activity assays with an emphasis on assay mechanism and performance with some discussion on challenges and perspectives. It is hoped that this article will provide a broad coverage of DNA MTase activity assays and their latest developments and open new perspectives toward the development of DNA MTase activity assays with much improved performance for uses in molecular biology and clinical practice.
Collapse
|
24
|
Zhang W, Zu X, Song Y, Zhu Z, Yang CJ. Detection of DNA methyltransferase activity using allosteric molecular beacons. Analyst 2016; 141:579-84. [DOI: 10.1039/c5an01763g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abnormal DNA methylation patterns caused by altered DNA methyltransferase (MTase) activity are closely associated with cancer. Herein, using DNA adenine methylation methyltransferase (Dam MTase) as a model analyte, we designed an allosteric molecular beacon (aMB) for sensitive detection of Dam MTase activity.
Collapse
Affiliation(s)
- Weiting Zhang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- Collaborative Innovation Center of Chemistry for Energy Materials
- Key Laboratory for Chemical Biology of Fujian Province
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
| | - Xiaolong Zu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- Collaborative Innovation Center of Chemistry for Energy Materials
- Key Laboratory for Chemical Biology of Fujian Province
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
| | - Yanling Song
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- Collaborative Innovation Center of Chemistry for Energy Materials
- Key Laboratory for Chemical Biology of Fujian Province
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- Collaborative Innovation Center of Chemistry for Energy Materials
- Key Laboratory for Chemical Biology of Fujian Province
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
| | - Chaoyong James Yang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- Collaborative Innovation Center of Chemistry for Energy Materials
- Key Laboratory for Chemical Biology of Fujian Province
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- College of Chemistry and Chemical Engineering
| |
Collapse
|
25
|
Zhao H, Yin H, Yang Y. Label-free electrochemical detection of DNA methyltransferase activity via a DNA tetrahedron-structured probe. RSC Adv 2016. [DOI: 10.1039/c6ra01845a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Label-free electrochemical detection of DNA methyltransferase activityviaDNA tetrahedron-structured probe.
Collapse
Affiliation(s)
- Hongyu Zhao
- The Second Hospital of Nanjing
- Affiliated to Medical School of Southeast University
- Nanjing
- China
| | - Hai Yin
- Chinese People's Liberation Army 454 Hospital
- Nanjing
- China
| | - Yongfeng Yang
- The Second Hospital of Nanjing
- Affiliated to Medical School of Southeast University
- Nanjing
- China
| |
Collapse
|
26
|
Label-free electrochemical detection of methyltransferase activity and inhibitor screening based on endonuclease HpaII and the deposition of polyaniline. Biosens Bioelectron 2015; 73:188-194. [DOI: 10.1016/j.bios.2015.05.066] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/22/2015] [Accepted: 05/29/2015] [Indexed: 11/22/2022]
|
27
|
Methyltransferase activity assay based on the use of exonuclease III, the hemin/G-quadruplex system and reduced graphene oxide on a gold electrode, and a study on enzyme inhibition. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1645-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Gang J. Simple and Sensitive Fluorescence Assay of Restriction Endonuclease on Graphene Oxide. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jongback Gang
- Department of Nano Chemistry; Gachon University; Gyeonggi-do 461-701 South Korea
| |
Collapse
|
29
|
Li W, Liu X, Hou T, Li H, Li F. Ultrasensitive homogeneous electrochemical strategy for DNA methyltransferase activity assay based on autonomous exonuclease III-assisted isothermal cycling signal amplification. Biosens Bioelectron 2015; 70:304-9. [DOI: 10.1016/j.bios.2015.03.060] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/13/2022]
|
30
|
Liu W, Lai H, Huang R, Zhao C, Wang Y, Weng X, Zhou X. DNA methyltransferase activity detection based on fluorescent silver nanocluster hairpin-shaped DNA probe with 5’-C-rich/G-rich-3’ tails. Biosens Bioelectron 2015; 68:736-740. [DOI: 10.1016/j.bios.2015.02.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/25/2015] [Accepted: 02/05/2015] [Indexed: 12/31/2022]
|
31
|
Shen Q, Han L, Fan G, Zhang JR, Jiang L, Zhu JJ. "Signal-on" photoelectrochemical biosensor for sensitive detection of human T-Cell lymphotropic virus type II DNA: dual signal amplification strategy integrating enzymatic amplification with terminal deoxynucleotidyl transferase-mediated extension. Anal Chem 2015; 87:4949-56. [PMID: 25871300 DOI: 10.1021/acs.analchem.5b00679] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel "signal-on" photoelectrochemical (PEC) biosensor for sensitive detection of human T-cell lymphotropic virus type II (HTLV-II) DNA was developed on the basis of enzymatic amplification coupled with terminal deoxynucleotidyl transferase (TdT)-mediated extension strategy. The intensity of the photocurrent signal was proportional to the concentration of the HTLV-II DNA-target DNA (tDNA) by dual signal amplification. In this protocol, GR-CdS:Mn/ZnS nanocomposites were used as photoelectric conversion material, while pDNA was used as the tDNA recognizing unit. Moreover, the TdT-mediated extension and the enzymatic signal amplification technique were used to enhance the sensitivity of detection. Using this novel dual signal amplification strategy, the prototype of PEC DNA sensor can detect as low as ∼0.033 fM of HTLV-II DNA with a linear range of 0.1-5000 fM, with excellent differentiation ability even for single-base mismatches. This PEC DNA assay opens a promising platform to detect various DNA targets at ultralow levels for early diagnoses of different diseases.
Collapse
Affiliation(s)
- Qingming Shen
- †Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P. R. China
| | - Li Han
- †Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P. R. China
| | - Gaochao Fan
- ‡State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Jian-Rong Zhang
- ‡State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Liping Jiang
- ‡State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Jun-Jie Zhu
- ‡State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| |
Collapse
|
32
|
Deng H, Yang X, Gao Z. MoS2nanosheets as an effective fluorescence quencher for DNA methyltransferase activity detection. Analyst 2015; 140:3210-5. [DOI: 10.1039/c4an02133a] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A fluorometric DNA methyltransferase activity assay is described. MoS2nanosheets are employed as the fluorescence quencherviavan der Waals interactions with fluorophore labeled substrate DNA.
Collapse
Affiliation(s)
- Huimin Deng
- Department of Chemistry
- National University of Singapore
- Singapore 117543
| | - Xinjian Yang
- Department of Chemistry
- National University of Singapore
- Singapore 117543
| | - Zhiqiang Gao
- Department of Chemistry
- National University of Singapore
- Singapore 117543
| |
Collapse
|
33
|
Ma Y, Chen L, Zhang L, Liao S, Zhao J. A sensitive strategy for the fluorescence detection of DNA methyltransferase activity based on the graphene oxide platform and T7 exonuclease-assisted cyclic signal amplification. Analyst 2015; 140:4076-82. [DOI: 10.1039/c5an00417a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A sensitive fluorescence detection method for DNA methyltransferase is developed based on graphene oxide and T7 exonuclease-assisted signal amplification.
Collapse
Affiliation(s)
- Yefei Ma
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Lini Chen
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Liangliang Zhang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Suqi Liao
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Jingjin Zhao
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Conservation of Education Ministry
| |
Collapse
|
34
|
Xue Q, Zhang Y, Xu S, Li H, Wang L, Li R, Zhang Y, Yue Q, Gu X, Zhang S, Liu J, Wang H. Magnetic nanoparticles-cooperated fluorescence sensor for sensitive and accurate detection of DNA methyltransferase activity coupled with exonuclease III-assisted target recycling. Analyst 2015; 140:7637-44. [DOI: 10.1039/c5an01546d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A magnetic nanoparticles-cooperated fluorescence sensor for DNA methyltransferase activity was developed by coupling with exonuclease III-assisted target recycling.
Collapse
|
35
|
Luo X, Li Y, Zheng J, Qi H, Liang Z, Ning X. The determination of DNA methyltransferase activity by quenching of tris(2,2′-bipyridine)ruthenium electrogenerated chemiluminescence with ferrocene. Chem Commun (Camb) 2015; 51:9487-90. [DOI: 10.1039/c5cc02817e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrogenerated chemiluminescence biosensing method for the determination of DNA methyltransferase activity is developed by the quenching of tris(2,2′-bipyridine)ruthenium ECL by ferrocene.
Collapse
Affiliation(s)
- Xiaoe Luo
- Key Laboratory of Electroanalytical Chemistry
- Institute of Analytical Science
- Northwest University
- Xi'an
- P. R. China
| | - Yan Li
- Key Laboratory of Electroanalytical Chemistry
- Institute of Analytical Science
- Northwest University
- Xi'an
- P. R. China
| | - Jianbin Zheng
- Key Laboratory of Electroanalytical Chemistry
- Institute of Analytical Science
- Northwest University
- Xi'an
- P. R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an
- P. R. China
| | - Zhenxing Liang
- Key Laboratory on Fuel Cell Technology of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- P. R. China
| | - Xiaohui Ning
- Key Laboratory of Electroanalytical Chemistry
- Institute of Analytical Science
- Northwest University
- Xi'an
- P. R. China
| |
Collapse
|
36
|
Xue Q, Wang L, Jiang W. Label-free molecular beacon-based quadratic isothermal exponential amplification: a simple and sensitive one-pot method to detect DNA methyltransferase activity. Chem Commun (Camb) 2015. [DOI: 10.1039/c5cc05410a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An illustration of the label-free molecular beacon-mediated quadratic isothermal exponential amplification strategy (LFMB-QIEA) for target Dam MTase detection.
Collapse
Affiliation(s)
- Qingwang Xue
- School of Pharmacy
- Shandong University
- Jinan 250012
- P. R. China
- Department of Chemistry
| | - Lei Wang
- School of Pharmacy
- Shandong University
- Jinan 250012
- P. R. China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P. R. China
| |
Collapse
|
37
|
Wei W, Gao C, Xiong Y, Zhang Y, Liu S, Pu Y. A fluorescence method for detection of DNA and DNA methylation based on graphene oxide and restriction endonuclease HpaII. Talanta 2015; 131:342-7. [DOI: 10.1016/j.talanta.2014.07.094] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 07/25/2014] [Accepted: 07/30/2014] [Indexed: 01/07/2023]
|
38
|
Hu Y, Shen Q, Li W, Liu Z, Nie Z, Yao S. A TdT-mediated cascade signal amplification strategy based on dendritic DNA matrix for label-free multifunctional electrochemical biosensing. Biosens Bioelectron 2015; 63:331-338. [DOI: 10.1016/j.bios.2014.07.066] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/21/2022]
|
39
|
Xue Q, Lv Y, Xu S, Zhang Y, Wang L, Li R, Yue Q, Li H, Gu X, Zhang S, Liu J. Highly sensitive fluorescence assay of DNA methyltransferase activity by methylation-sensitive cleavage-based primer generation exponential isothermal amplification-induced G-quadruplex formation. Biosens Bioelectron 2014; 66:547-53. [PMID: 25506903 DOI: 10.1016/j.bios.2014.12.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 12/31/2022]
Abstract
Site-specific identification of DNA methylation and assay of MTase activity are imperative for determining specific cancer types, provide insights into the mechanism of gene repression, and develop novel drugs to treat methylation-related diseases. Herein, we developed a highly sensitive fluorescence assay of DNA methyltransferase by methylation-sensitive cleavage-based primer generation exponential isothermal amplification (PG-EXPA) coupled with supramolecular fluorescent Zinc(II)-protoporphyrin IX (ZnPPIX)/G-quadruplex. In the presence of DNA adenine methylation (Dam) MTase, the methylation-responsive sequence of hairpin probe is methylated and cleaved by the methylation-sensitive restriction endonuclease Dpn I. The cleaved hairpin probe then functions as a signal primer to initiate the exponential isothermal amplification reaction (EXPAR) by hybridizing with a unimolecular DNA containing three functional domains as the amplification template, producing a large number of G-quadruplex nanostructures by utilizing polymerases and nicking enzymes as mechanical activators. The G-quadruplex nanostructures act as host for ZnPPIX that lead to supramolecular complexes ZnPPIX/G-quadruplex, which provides optical labels for amplified fluorescence detection of Dam MTase. While in the absence of Dam MTase, neither methylation/cleavage nor PG-EXPA reaction can be initiated and no fluorescence signal is observed. The proposed method exhibits a wide dynamic range from 0.0002 to 20U/mL and an extremely low detection limit of 8.6×10(-5)U/mL, which is superior to most conventional approaches for the MTase assay. Owing to the specific site recognition of MTase toward its substrate, the proposed sensing system was able to readily discriminate Dam MTase from other MTase such as M.SssI and even detect the target in a complex biological matrix. Furthermore, the application of the proposed sensing strategy for screening Dam MTase inhibitors was also demonstrated with satisfactory results. This novel method not only provides a promising platform for monitoring activity and inhibition of DNA MTases, but also shows great potentials in biological process researches, drugs discovery and clinical diagnostics.
Collapse
Affiliation(s)
- Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China.
| | - Yanqin Lv
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Shuling Xu
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Yuanfu Zhang
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Lei Wang
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Rui Li
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Qiaoli Yue
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Haibo Li
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Xiaohong Gu
- Shandong Provincial Key Lab of Test Technology on Food Quality and Safety, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shuqiu Zhang
- Shandong Provincial Key Lab of Test Technology on Food Quality and Safety, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jifeng Liu
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China; Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
40
|
Yan Z, Li Y, Zheng J, Zhou M. Electrogenerated chemiluminescence biosensing method for methyltransferase activity using tris(1, 10-phenanthroline) ruthenium-assembled graphene oxide. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
41
|
Chen J, Wang Y, Li W, Zhou H, Li Y, Yu C. Nucleic Acid-Induced Tetraphenylethene Probe Noncovalent Self-Assembly and the Superquenching of Aggregation-Induced Emission. Anal Chem 2014; 86:9866-72. [DOI: 10.1021/ac502496h] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jian Chen
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yan Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenying Li
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Huipeng Zhou
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yongxin Li
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Cong Yu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
42
|
Li Y, Yan Z, Zheng J, Qi H. Label-free and amplified electrogenerated chemiluminescence biosensing method for the determination of DNA methyltransferase activity using signal reagent-assembled graphene oxide. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
DNA-AuNPs based signal amplification for highly sensitive detection of DNA methylation, methyltransferase activity and inhibitor screening. Biosens Bioelectron 2014; 58:40-7. [DOI: 10.1016/j.bios.2014.02.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/23/2023]
|
44
|
Zhou Y, Li B, Wang M, Yang Z, Yin H, Ai S. Enzyme-based electrochemical biosensor for sensitive detection of DNA demethylation and the activity of DNA demethylase. Anal Chim Acta 2014; 840:28-32. [DOI: 10.1016/j.aca.2014.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/08/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
|
45
|
Xu Z, Yin H, Han Y, Zhou Y, Ai S. DNA-based hybridization chain reaction amplification for assaying the effect of environmental phenolic hormone on DNA methyltransferase activity. Anal Chim Acta 2014; 829:9-14. [DOI: 10.1016/j.aca.2014.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 02/01/2023]
|
46
|
Wang Y, Chen J, Chen Y, Li W, Yu C. Polymer-Induced Perylene Probe Excimer Formation and Selective Sensing of DNA Methyltransferase Activity through the Monomer–Excimer Transition. Anal Chem 2014; 86:4371-8. [DOI: 10.1021/ac500195u] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yan Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jian Chen
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Yang Chen
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Wenying Li
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Cong Yu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
47
|
Huang Y, Shi M, Zhao L, Zhao S, Hu K, Chen ZF, Chen J, Liang H. Carbon nanotube signal amplification for ultrasensitive fluorescence polarization detection of DNA methyltransferase activity and inhibition. Biosens Bioelectron 2014; 54:285-91. [DOI: 10.1016/j.bios.2013.10.065] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/02/2013] [Accepted: 10/21/2013] [Indexed: 12/26/2022]
|
48
|
Zhao Y, Chen F, Lin M, Fan C. A methylation-blocked cascade amplification strategy for label-free colorimetric detection of DNA methyltransferase activity. Biosens Bioelectron 2014; 54:565-70. [DOI: 10.1016/j.bios.2013.11.055] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 01/13/2023]
|
49
|
Deng H, Yang X, Yeo SPX, Gao Z. Highly Sensitive Electrochemical Methyltransferase Activity Assay. Anal Chem 2014; 86:2117-23. [DOI: 10.1021/ac403716g] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huimin Deng
- Department of Chemistry, National University of Singapore, Singapore 117543
| | - Xinjian Yang
- Department of Chemistry, National University of Singapore, Singapore 117543
| | | | - Zhiqiang Gao
- Department of Chemistry, National University of Singapore, Singapore 117543
| |
Collapse
|
50
|
Quach QH, Chung BH. A signal-on fluorescent assay for DNA methyltransferase activity using a methylation-resistant endonuclease. Analyst 2014; 139:2674-7. [DOI: 10.1039/c3an02129g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|