1
|
Zohouri D, Lienard-Mayor T, Obeid S, Taverna M, Mai TD. A review on hyphenation of droplet microfluidics to separation techniques: From instrumental conception to analytical applications for limited sample volumes. Anal Chim Acta 2024; 1291:342090. [PMID: 38280779 DOI: 10.1016/j.aca.2023.342090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/29/2024]
Abstract
In this study, we review various strategies to couple sample processing in microfluidic droplets with different separation techniques, including liquid chromatography, mass spectrometry, and capillary electrophoresis. Separation techniques interfaced with droplet microfluidics represent an emerging trend in analytical chemistry, in which micro to femtoliter droplets serve as microreactors, a bridge between analytical modules, as well as carriers of target analytes between sample treatment and separation/detection steps. This allows to overcome the hurdles encountered in separation science, notably the low degree of module integration, working volume incompatibility, and cross contamination between different operational stages. For this droplet-separation interfacing purpose, this review covers different instrumental designs from all works on this topic up to May 2023, together with our viewpoints on respective advantages and considerations. Demonstration and performance of droplet-interfaced separation strategies for limited sample volumes are also discussed.
Collapse
Affiliation(s)
- Delaram Zohouri
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Théo Lienard-Mayor
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Sameh Obeid
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Myriam Taverna
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Thanh Duc Mai
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
2
|
Zhang X, Wang S, Wang J, Sun X, Xue J, Wang Z, Yang T, Weng L, Wang B, Luo G. A ddPCR platform based on a microfluidic chip with a dual-function flow-focusing structure for sample-to-result DNA quantification analysis. LAB ON A CHIP 2024; 24:738-750. [PMID: 38192250 DOI: 10.1039/d3lc01078c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Droplet digital PCR (ddPCR) is a powerful method for absolute nucleic acid quantification with high precision and accuracy. However, complicated operational steps have hampered the use and diffusion of ddPCR. Therefore, an automated, easy-to-use, low-sample-consumption, and portable ddPCR platform is urgently needed. This paper proposes a microfluidic ddPCR platform based on a microfluidic chip that can realize the sample-to-result function by switching the rotary valve, achieving the dual function of the flow-focusing structure for droplet generation and readout. Sample, generation oil, and analysis oil were pre-added to the reservoirs. Droplets were generated due to focusing flow, and after passing through the integrated temporary storage bin in the rotary valve, the droplets and oil subsequently entered the collecting tube, improving the droplet-to-oil volume ratio for enhanced thermal cycle performance. Droplets with an average diameter of 107.44 μm and a CV of 2.38% were generated using our chip under the optimal pressures. High-performance thermal cycling was achieved through improvements of the droplet-to-oil volume ratio of the sample, the integrated heating lid, the pure copper heating base, and the temperature-controlling algorithm. Gradient quantification experiments were conducted for the HER2 and CEP17 genes extracted from breast cancer cells, yielding strong linear correlations with R2 values of 0.9996 for FAM and 0.9989 for CY5. Moreover, pronounced linearity was obtained between the detected concentrations of HER2 and CEP17, indicated by a slope of 1.0091 and an R2 of 0.9997, signifying consistent HER2 : CEP17 ratios across various sample dilutions. The outcomes of the quantitative analysis, encompassing the dynamic range and the consistency of the HER2 : CEP17 ratio using our ddPCR platform, meet the standards required for breast cancer assessment and therapy. Our ddPCR platform is automated, portable, and capable of stable droplet generation, high-efficiency amplification, realization of the sample-to-result function based on dual-function flow-focusing structure, and accuracy absolute quantification, underscoring its significant potential for ddPCR analysis in clinical diagnostics.
Collapse
Affiliation(s)
- Xiaoliang Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China.
| | - Shun Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China.
| | - Jinxian Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China.
| | - Xiaojie Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China.
| | - Jinbing Xue
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China.
| | - Zhenya Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China.
| | - Tianhang Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China.
| | - Liangfei Weng
- Suzhou Guoke Medical Science & Technology Development Co. Ltd, Suzhou 215163, People's Republic of China
| | - Bidou Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China.
| | - Gangyin Luo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China.
| |
Collapse
|
3
|
A microfluidic droplet system for ultra-monodisperse droplet generation: a universal approach. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Piendl SK, Schönfelder T, Polack M, Weigelt L, van der Zwaag T, Teutenberg T, Beckert E, Belder D. Integration of segmented microflow chemistry and online HPLC/MS analysis on a microfluidic chip system enabling enantioselective analyses at the nanoliter scale. LAB ON A CHIP 2021; 21:2614-2624. [PMID: 34008641 DOI: 10.1039/d1lc00078k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, we introduce an approach to merge droplet microfluidics with an HPLC/MS functionality on a single chip to analyze the contents of individual droplets. This is achieved by a mechanical rotor-stator interface that precisely positions a microstructured PEEK rotor on a microfluidic chip in a pressure-tight manner. The developed full-body fused silica chip, manufactured by selective laser-induced etching, contained a segmented microflow compartment followed by a packed HPLC channel, which were interconnected by the microfluidic PEEK rotor on the fused silica lid with hair-thin through-holes. This enabled the targeted and leakage-free transfer of 10 nL fractions of droplets as small as 25 nL from the segmented microflow channel into the HPLC compartment that operated at pressures of up to 60 bar. In a proof of concept study, this approach was successfully applied to monitor reactions at the nanoliter scale and to distinguish the formed enantiomers.
Collapse
Affiliation(s)
- Sebastian K Piendl
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Thomas Schönfelder
- Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - Matthias Polack
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Laura Weigelt
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Till van der Zwaag
- Institut für Energie - und Umwelttechnik e. V., Bliersheimer Str. 58-60, 47229, Duisburg, Germany
| | - Thorsten Teutenberg
- Institut für Energie - und Umwelttechnik e. V., Bliersheimer Str. 58-60, 47229, Duisburg, Germany
| | - Erik Beckert
- Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| |
Collapse
|
5
|
Kalantarifard A, Alizadeh-Haghighi E, Saateh A, Elbuken C. Theoretical and experimental limits of monodisperse droplet generation. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
A new quantitative gel electrophoresis method with image-based detection for the determination of food dyes and metallic ions. Talanta 2021; 221:121602. [PMID: 33076133 DOI: 10.1016/j.talanta.2020.121602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/25/2023]
Abstract
This work describes an alternative application of gel electrophoresis for the separation and quantification of analytes with low molecular weights using an innovative and low-cost apparatus that enables the acquisition of image-based electropherograms with a webcam. As a proof of concept, the determination of Cu and Ni content in metallic alloys was evaluated by means of the separation and detection of the metallic ions, previously complexed with Eriochrome Black T. Furthermore, the determination of the food colouring agents Sunset Yellow FCF, Tartrazine, Brilliant Blue FCF and Amaranth Red in powder refreshment samples was investigated as alternative to well-stablished methods used for this purpose. For all investigated analytes, the corresponding electrophoretic peaks showed signal to noise ratios ranging from 10 to 180, suitable precision on areas (RSD < 3.5%) and linear relationships (R > 0.99) between RGB detected signals and concentrations of the standard solutions. Application of the method to the determination of Cu and Ni contents in metallic alloys provided results with no significant differences, at 95% confidence level, when compared to the results obtained with a FAAS based method. Apparent recoveries estimated for powder refreshment samples fortified with the food dyes ranged from 93% to 108% for added and found contents, suggesting the absence of matrix effects. The studies prove the feasibility of separation and quantification of coloured analytes by gel electrophoresis and image-based detection that can be useful for different samples.
Collapse
|
7
|
Peretzki AJ, Schmidt S, Flachowsky E, Das A, Gerhardt RF, Belder D. How electrospray potentials can disrupt droplet microfluidics and how to prevent this. LAB ON A CHIP 2020; 20:4456-4465. [PMID: 33103684 DOI: 10.1039/d0lc00936a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A pressure-resistant microfluidic glass chip that integrates a packed-bed HPLC column, a droplet generator and a monolithic electrospray emitter is presented. This approach enables a seamless coupling of chip-HPLC and droplet microfluidics with ESI-MS detection. For the electrical contacting of the emitter, an electrode was integrated into the channel, which reaches up to the emitter tip. The incidental finding that under certain circumstances, the electrospray potential can strongly disturb the droplet microfluidics by electrowetting, was investigated in detail. Strategies to avoid this are evaluated and include electrical shielding and/or chip layouts, where the droplet generator is positioned at a long distance from the emitter.
Collapse
Affiliation(s)
- Andrea J Peretzki
- Institute of Analytical Chemistry, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
On-chip integration of normal phase high-performance liquid chromatography and droplet microfluidics introducing ethylene glycol as polar continuous phase for the compartmentalization of n-heptane eluents. J Chromatogr A 2020; 1612:460653. [DOI: 10.1016/j.chroma.2019.460653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/08/2019] [Accepted: 10/23/2019] [Indexed: 01/06/2023]
|
9
|
Haghighi F, Talebpour Z, Nezhad AS. Towards fully integrated liquid chromatography on a chip: Evolution and evaluation. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Kim JY, O’Hare D. Monolithic nano-porous polymer in microfluidic channels for lab-chip liquid chromatography. NANO CONVERGENCE 2018; 5:19. [PMID: 30101052 PMCID: PMC6061252 DOI: 10.1186/s40580-018-0151-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
In this paper, a nano-porous polymer has been integrated into the microfluidics device as on-chip monolithic liquid chromatography column for separation of chemical and biological samples. Monolithic nano-porous polymer (MNP) was formed and firmly grafted on the surface of the microfluidic channel. Neurotransmitters, 5-hydroxyindole-3-acetic acid (5-HIAA) and 5-hydroxytryptamine (serotonin, 5-HT), were successfully separated with the developed on-chip MNP column.
Collapse
Affiliation(s)
- Jin-young Kim
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988 South Korea
| | - Danny O’Hare
- Department of Bioengineering, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
11
|
Gerhardt RF, Peretzki AJ, Piendl SK, Belder D. Seamless Combination of High-Pressure Chip-HPLC and Droplet Microfluidics on an Integrated Microfluidic Glass Chip. Anal Chem 2017; 89:13030-13037. [DOI: 10.1021/acs.analchem.7b04331] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Renata F. Gerhardt
- Institute of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Andrea J. Peretzki
- Institute of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Sebastian K. Piendl
- Institute of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
12
|
Ochoa A, Álvarez-Bohórquez E, Castillero E, Olguin LF. Detection of Enzyme Inhibitors in Crude Natural Extracts Using Droplet-Based Microfluidics Coupled to HPLC. Anal Chem 2017; 89:4889-4896. [DOI: 10.1021/acs.analchem.6b04988] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Abraham Ochoa
- Laboratorio de Biofisicoquímica,
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Enrique Álvarez-Bohórquez
- Laboratorio de Biofisicoquímica,
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Eduardo Castillero
- Laboratorio de Biofisicoquímica,
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Luis F. Olguin
- Laboratorio de Biofisicoquímica,
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
13
|
Küster SK, Pabst M, Zenobi R, Dittrich PS. Automatisierte Detektion von Proteinphosphorylierung durch Nanoliter-Enzymreaktionen auf Mikroarrays. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Küster SK, Pabst M, Zenobi R, Dittrich PS. Screening for protein phosphorylation using nanoscale reactions on microdroplet arrays. Angew Chem Int Ed Engl 2014; 54:1671-5. [PMID: 25504774 DOI: 10.1002/anie.201409440] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Indexed: 12/25/2022]
Abstract
We present a novel and straightforward screening method to detect protein phosphorylations in complex protein mixtures. A proteolytic digest is separated by a conventional nanoscale liquid chromatography (nano-LC) separation and the eluate is immediately compartmentalized into microdroplets, which are spotted on a microarray MALDI plate. Subsequently, the enzyme alkaline phosphatase is applied to every second microarray spot to remove the phosphate groups from phosphorylated peptides, which results in a mass shift of n×-80 Da. The MALDI-MS scan of the microarray is then evaluated by a software algorithm to automatically identify the phosphorylated peptides by exploiting the characteristic chromatographic peak profile induced by the phosphatase treatment. This screening method does not require extensive MS/MS experiments or peak list evaluation and can be easily extended to other enzymatic or chemical reactions.
Collapse
Affiliation(s)
- Simon K Küster
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich (Switzerland)
| | | | | | | |
Collapse
|
15
|
De Marco C, Credi C, Briatico-Vangosa F, Bianchi E, Ciftlik AT, Gijs M, Dubini G, Levi M, Turri S. Fabrication of biocompatible monolithic microchannels with high pressure-resistance using direct polymerization of PEG-modified PMMA. J Appl Polym Sci 2014. [DOI: 10.1002/app.41031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Carmela De Marco
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”; Politecnico di Milano; Piazza Leonardo da Vinci 32 20133 Milan Italy
| | - Caterina Credi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”; Politecnico di Milano; Piazza Leonardo da Vinci 32 20133 Milan Italy
| | - Francesco Briatico-Vangosa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”; Politecnico di Milano; Piazza Leonardo da Vinci 32 20133 Milan Italy
| | - Elena Bianchi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”; Politecnico di Milano; Piazza Leonardo da Vinci 32 20133 Milan Italy
| | - Ata Tuna Ciftlik
- Laboratory of Microsystems; École Polytechnique Fédérale de Lausanne; CH-1015 Lausanne Switzerland
| | - Martin Gijs
- Laboratory of Microsystems; École Polytechnique Fédérale de Lausanne; CH-1015 Lausanne Switzerland
| | - Gabriele Dubini
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”; Politecnico di Milano; Piazza Leonardo da Vinci 32 20133 Milan Italy
| | - Marinella Levi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”; Politecnico di Milano; Piazza Leonardo da Vinci 32 20133 Milan Italy
| | - Stefano Turri
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”; Politecnico di Milano; Piazza Leonardo da Vinci 32 20133 Milan Italy
| |
Collapse
|
16
|
Küster SK, Pabst M, Jefimovs K, Zenobi R, Dittrich PS. High-resolution droplet-based fractionation of nano-LC separations onto microarrays for MALDI-MS analysis. Anal Chem 2014; 86:4848-55. [PMID: 24725135 DOI: 10.1021/ac4041982] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present a robust droplet-based device, which enables the fractionation of ultralow flow rate nanoflow liquid chromatography (nano-LC) eluate streams at high frequencies and high peak resolution. This is achieved by directly interfacing the separation column to a micro T-junction, where the eluate stream is compartmentalized into picoliter droplets. This immediate compartmentalization prevents peak dispersion during eluate transport and conserves the chromatographic performance. Subsequently, nanoliter eluate fractions are collected at a rate of one fraction per second on a high-density microarray to retain the separation with high temporal resolution. Chromatographic separations of up to 45 min runtime can thus be archived on a single microarray possessing 2700 sample spots. The performance of this device is demonstrated by fractionating the separation of a tryptic digest of a known protein mixture onto the microarray chip and subsequently analyzing the sample archive using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Resulting peak widths are found to be significantly reduced compared to standard continuous flow spotting technologies as well as in comparison to a conventional nano-LC-electrospray ionization-mass spectrometry interface. Moreover, we demonstrate the advantage of our high-definition nanofractionation device by applying two different MALDI matrices to all collected fractions in an alternating fashion. Since the information that is obtained from a MALDI-MS measurement depends on the choice of MALDI matrix, we can extract complementary information from neighboring spots containing almost identical composition but different matrices.
Collapse
Affiliation(s)
- Simon K Küster
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
17
|
Kim JY, Chang SI, deMello AJ, O’Hare D. Integration of monolithic porous polymer with droplet-based microfluidics on a chip for nano/picoliter volume sample analysis. NANO CONVERGENCE 2014; 1:3. [PMID: 28191388 PMCID: PMC5271139 DOI: 10.1186/s40580-014-0003-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/29/2014] [Indexed: 05/25/2023]
Abstract
In this paper, a porous polymer nanostructure has been integrated with droplet-based microfluidics in a single planar format. Monolithic porous polymer (MPP) was formed selectively within a microfluidic channel. The resulting analyte bands were sequentially comartmentalised into droplets. This device reduces band broadening and the effects of post-column dead volume by the combination of the two techniques. Moreover it offers the precise control of nano/picoliter volume samples.
Collapse
Affiliation(s)
- Jin-young Kim
- Department of Biosystems Science and Engineering, Bioegineering Laboratory, ETH Zurich, CH-4058 Basel, Switzerland
| | - Soo-Ik Chang
- Department of Biochemistry, Chungbuk National University, Cheongju, Chungbuk 361-763 Korea
| | - Andrew J deMello
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Bioscience, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Danny O’Hare
- Department of Bioengineering, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
18
|
Simone G. Micro analysis to map the glycome code. Proteomics 2014; 14:994-1000. [DOI: 10.1002/pmic.201300324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Giuseppina Simone
- Center for Advanced Biomaterials for Health Care Italian Institute of Technology @ CRIB; Largo Barsanti e Matteucci; Italy
| |
Collapse
|
19
|
Regalado EL, Kozlowski MC, Curto JM, Ritter T, Campbell MG, Mazzotti AR, Hamper BC, Spilling CD, Mannino MP, Wan L, Yu JQ, Liu J, Welch CJ. Support of academic synthetic chemistry using separation technologies from the pharmaceutical industry. Org Biomol Chem 2014; 12:2161-6. [DOI: 10.1039/c3ob42195c] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Sun M, Vanapalli SA. Generation of Chemical Concentration Gradients in Mobile Droplet Arrays via Fragmentation of Long Immiscible Diluting Plugs. Anal Chem 2013; 85:2044-8. [DOI: 10.1021/ac303526y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Meng Sun
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|