1
|
Kalita H, Patowary M. Biocompatible Polymer Nano-Constructs: A Potent Platform for Cancer Theranostics. Technol Cancer Res Treat 2023; 22:15330338231160391. [PMID: 36855787 PMCID: PMC9983094 DOI: 10.1177/15330338231160391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Nano-constructs of biocompatible polymers have drawn wide attention owing to their potential as theranostics for simultaneous therapy and detection of cancer. The present mini review summarizes various nano-architectures of polymers that have been developed as theranostic agents for the simultaneous treatment and diagnosis of cancer in a single platform. Additionally, research prospects of polymeric cancer theranostics for the future have been highlighted.
Collapse
Affiliation(s)
- Himani Kalita
- Department of Chemistry, 28678Indian Institute of Technology Guwahati, Guwahati, India.,Department of Chemistry, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Manoj Patowary
- School of Engineering, 560377MIT-ADT University, Pune, Maharashtra, India
| |
Collapse
|
2
|
Li CZ, Chang HM, Hsu WL, Venkatesan P, Lin MHC, Lai PS. Curcumin-Loaded Oil-Free Self-Assembled Micelles Inhibit the Influenza A Virus Activity and the Solidification of Curcumin-Loaded Micelles for Pharmaceutical Applications. Pharmaceutics 2022; 14:2422. [PMID: 36365240 PMCID: PMC9697350 DOI: 10.3390/pharmaceutics14112422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Abstract
Curcumin, a well-known natural lipophilic phenolic compound, plays a vital role in inhibiting the influenza infection. Currently, many kinds of formulations for the enhancement of a water dispersion of curcumin have been developed; however, the anti-influenza abilities of formulated curcumin have been much less investigated. In this study, the optimized self-assembled micelles of RH 40/Tween 80 loaded with curcumin (Cur-M) in an oil-free-based system were spherical with a hydrodynamic size at 13.55 nm ± 0.208 and polydispersity at 0.144 characterized by atomic force microscopy and dynamic light scattering, respectively. Additionally, Cur-M significantly increased the bioactivity/stability of curcumin and effectively inhibited the influenza A virus infection and its replication after viral entry, indicating the alteration of the inhibition mechanisms of curcumin against virus infection via RH 40/Tween 80 micelle formulation. Furthermore, a solid formulation (Cur-SM) of Cur-M was successfully developed by a one-pot physical adsorption method using a small amount of adsorbent and ~50% of curcumin/Cur-M that could be burst released from Cur-SM in 1 h, facilitating the fast-releasing applications. Ultimately, all of the results show that Cur-SM acts as a good nano-formulation of curcumin with improved solubility/dispersity in aqueous solutions and demonstrate new anti-influenza mechanisms of curcumin for pharmaceutical development.
Collapse
Affiliation(s)
- Cun-Zhao Li
- Department of Chemistry, National Chung Hsing University, No. 145, Xingda Road, Taichung 402, Taiwan
| | - Hui-Min Chang
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, No. 145, Xingda Road, Taichung 402, Taiwan
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, No. 145, Xingda Road, Taichung 402, Taiwan
| | - Parthiban Venkatesan
- Department of Chemistry, National Chung Hsing University, No. 145, Xingda Road, Taichung 402, Taiwan
| | - Martin Hsiu-Chu Lin
- Department of Chemistry, National Chung Hsing University, No. 145, Xingda Road, Taichung 402, Taiwan
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, No. 145, Xingda Road, Taichung 402, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 613, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, No. 145, Xingda Road, Taichung 402, Taiwan
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, No. 145, Xingda Road, Taichung 402, Taiwan
| |
Collapse
|
3
|
Hernández Becerra E, Quinchia J, Castro C, Orozco J. Light-Triggered Polymersome-Based Anticancer Therapeutics Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:836. [PMID: 35269324 PMCID: PMC8912464 DOI: 10.3390/nano12050836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023]
Abstract
Polymersomes are biomimetic cell membrane-like model structures that are self-assembled stepwise from amphiphilic copolymers. These polymeric (nano)carriers have gained the scientific community's attention due to their biocompatibility, versatility, and higher stability than liposomes. Their tunable properties, such as composition, size, shape, and surface functional groups, extend encapsulation possibilities to either hydrophilic or hydrophobic cargoes (or both) and their site-specific delivery. Besides, polymersomes can disassemble in response to different stimuli, including light, for controlling the "on-demand" release of cargo that may also respond to light as photosensitizers and plasmonic nanostructures. Thus, polymersomes can be spatiotemporally stimulated by light of a wide wavelength range, whose exogenous response may activate light-stimulable moieties, enhance the drug efficacy, decrease side effects, and, thus, be broadly employed in photoinduced therapy. This review describes current light-responsive polymersomes evaluated for anticancer therapy. It includes light-activable moieties' features and polymersomes' composition and release behavior, focusing on recent advances and applications in cancer therapy, current trends, and photosensitive polymersomes' perspectives.
Collapse
Affiliation(s)
- Elisa Hernández Becerra
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (E.H.B.); (J.Q.)
| | - Jennifer Quinchia
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (E.H.B.); (J.Q.)
| | - Cristina Castro
- Engineering School, Pontificia Bolivariana University, Bloque 11, Cq. 1 No. 70-01, Medellín 050004, Colombia;
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (E.H.B.); (J.Q.)
| |
Collapse
|
4
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
|
6
|
Yang MY, Zhao RR, Fang YF, Jiang JL, Yuan XT, Shao JW. Carrier-free nanodrug: A novel strategy of cancer diagnosis and synergistic therapy. Int J Pharm 2019; 570:118663. [DOI: 10.1016/j.ijpharm.2019.118663] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/08/2023]
|
7
|
Mostovaya OA, Gorbachuk VV, Padnya PL, Vavilova AA, Evtugyn GA, Stoikov II. Modification of Oligo- and Polylactides With Macrocyclic Fragments: Synthesis and Properties. Front Chem 2019; 7:554. [PMID: 31428605 PMCID: PMC6687754 DOI: 10.3389/fchem.2019.00554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022] Open
Abstract
Products of lactic acid polycondensation (poly- and oligolactic acids) are widely used as packaging materials, drug delivery agents, implants etc. Variety of their applications is caused by a number of practically important properties, e.g., biocompatibility and biodegradability, non-toxicity, and mechanical durability. Modification of these polymers with different additives allows improving their properties and extending future applications. In this manner, stability toward degradation, recognition of some substrates, extended thermal stability etc. can be improved. Macrocyclic compounds are promising candidates as modifiers. They are able to provide polymer materials with additional binding sites, impart certain orientation to spatial arrangement of polymer chains, change hydrophilic-lipophilic balance, and redox properties. The latter one can be used for assembling various electrochemical sensors and biosensors that combine steric discrimination of the analytes caused by oligolactides and highly sensitive response to their quantities caused by redox labels introduced. Different composite materials based on oligolactides as matrices for such redox labels were described in the assemblies of biosensors for drugs, pesticides, and antioxidants detection. In this mini-review, methods for the synthesis of the lactic acid oligomers and those modified with the macrocyclic fragments (porphyrin, cyclodextrin, and cyclophane) have been described. The effects of modifiers on complexation, thermal, and aggregation properties of materials are described. Analytical performance of oligolactide based sensors and biosensors has been considered with particular emphasis to the mechanism of signal generation.
Collapse
Affiliation(s)
- Olga A. Mostovaya
- Department of Organic Chemistry, A. M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Vladimir V. Gorbachuk
- Department of Organic Chemistry, A. M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Pavel L. Padnya
- Department of Organic Chemistry, A. M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Alena A. Vavilova
- Department of Organic Chemistry, A. M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Gennady A. Evtugyn
- Department of Analytical Chemistry, A. M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Ivan I. Stoikov
- Department of Organic Chemistry, A. M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| |
Collapse
|
8
|
Tian J, Zhang W. Synthesis, self-assembly and applications of functional polymers based on porphyrins. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Mu X, Gan S, Wang Y, Li H, Zhou G. Stimulus-responsive vesicular polymer nano-integrators for drug and gene delivery. Int J Nanomedicine 2019; 14:5415-5434. [PMID: 31409996 PMCID: PMC6645615 DOI: 10.2147/ijn.s203555] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022] Open
Abstract
Over the past two decades, nano-sized biosystems have increasingly been utilized to deliver various pharmaceutical agents to a specific region, organ or tissue for controllable precision therapy. Whether solid nanohydrogel, nanosphere, nanoparticle, nanosheet, micelles and lipoproteins, or "hollow" nanobubble, liposome, nanocapsule, and nanovesicle, all of them can exhibit outstanding loading and releasing capability as a drug vehicle - in particular polymeric nanovesicle, a microscopic hollow sphere that encloses a water core with a thin polymer membrane. Besides excellent stability, toughness and liposome-like compatibility, polymeric nanovesicles offer considerable scope for tailoring properties by changing their chemical structure, block lengths, stimulus-responsiveness and even conjugation with biomolecules. In this review, we summarize the latest advances in stimulus-responsive polymeric nanovesicles for biomedical applications. Different functionalized polymers are in development to construct more complex multiple responsive nanovesicles in delivery systems, medical imaging, biosensors and so on.
Collapse
Affiliation(s)
- Xin Mu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, People’s Republic of China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou510006, People’s Republic of China
| | - Shenglong Gan
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, People’s Republic of China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou510006, People’s Republic of China
| | - Yao Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, People’s Republic of China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou510006, People’s Republic of China
| | - Hao Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, People’s Republic of China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou510006, People’s Republic of China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, People’s Republic of China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou510006, People’s Republic of China
| |
Collapse
|
10
|
Sandland J, Malatesti N, Boyle R. Porphyrins and related macrocycles: Combining photosensitization with radio- or optical-imaging for next generation theranostic agents. Photodiagnosis Photodyn Ther 2018; 23:281-294. [DOI: 10.1016/j.pdpdt.2018.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/22/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
|
11
|
Enhanced Antitumor Effects of Epidermal Growth Factor Receptor Targetable Cetuximab-Conjugated Polymeric Micelles for Photodynamic Therapy. NANOMATERIALS 2018; 8:nano8020121. [PMID: 29470420 PMCID: PMC5853752 DOI: 10.3390/nano8020121] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/30/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022]
Abstract
Nanocarrier-based delivery systems are promising strategies for enhanced therapeutic efficacy and safety of toxic drugs. Photodynamic therapy (PDT)—a light-triggered chemical reaction that generates localized tissue damage for disease treatments—usually has side effects, and thus patients receiving photosensitizers should be kept away from direct light to avoid skin phototoxicity. In this study, a clinically therapeutic antibody cetuximab (C225) was conjugated to the surface of methoxy poly(ethylene glycol)-b-poly(lactide) (mPEG-b-PLA) micelles via thiol-maleimide coupling to allow tumor-targetable chlorin e6 (Ce6) delivery. Our results demonstrate that more C225-conjugated Ce6-loaded polymeric micelles (C225-Ce6/PM) were selectively taken up than Ce6/PM or IgG conjugated Ce6/PM by epidermal growth factor receptor (EGFR)-overexpressing A431 cells observed by confocal laser scanning microscopy (CLSM), thereby decreasing the IC50 value of Ce6-mediated PDT from 0.42 to 0.173 μM. No significant differences were observed in cellular uptake study or IC50 value between C225-Ce6/PM and Ce6/PM groups in lower EGFR expression HT-29 cells. For antitumor study, the tumor volumes in the C225-Ce6/PM-PDT group (percentage of tumor growth inhibition, TGI% = 84.8) were significantly smaller than those in the Ce6-PDT (TGI% = 38.4) and Ce6/PM-PDT groups (TGI% = 53.3) (p < 0.05) at day 21 through reduced cell proliferation in A431 xenografted mice. These results indicated that active EGFR targeting of photosensitizer-loaded micelles provides a possible way to resolve the dose-limiting toxicity of conventional photosensitizers and represents a potential delivery system for PDT in a clinical setting.
Collapse
|
12
|
Improved photodynamic efficiency for methylene blue from silica-methylene blue@tannic acid-Fe(III) ions complexes in aqueous solutions. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Manivasagan P, Bharathiraja S, Santha Moorthy M, Mondal S, Seo H, Dae Lee K, Oh J. Marine natural pigments as potential sources for therapeutic applications. Crit Rev Biotechnol 2017; 38:745-761. [PMID: 29124966 DOI: 10.1080/07388551.2017.1398713] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In recent years, marine natural pigments have emerged as a powerful alternative in the various fields of food, cosmetic, and pharmaceutical industries because of their excellent biocompatibility, bioavailability, safety, and stability. Marine organisms are recognized as a rich source of natural pigments such as chlorophylls, carotenoids, and phycobiliproteins. Numerous studies have shown that marine natural pigments have considerable medicinal potential and promising applications in human health. In this review, we summarize the marine natural pigments as potential sources for therapeutic applications, including: antioxidant, anticancer, antiangiogenic, anti-obesity, anti-inflammatory activities, drug delivery, photothermal therapy (PTT), photodynamic therapy (PDT), photoacoustic imaging (PAI), and wound healing. Marine natural pigments will offer a better platform for future theranostic applications.
Collapse
Affiliation(s)
- Panchanathan Manivasagan
- a Marine-Integrated Bionics Research Center , Pukyong National University , Busan , Republic of Korea
| | - Subramaniyan Bharathiraja
- a Marine-Integrated Bionics Research Center , Pukyong National University , Busan , Republic of Korea
| | - Madhappan Santha Moorthy
- a Marine-Integrated Bionics Research Center , Pukyong National University , Busan , Republic of Korea
| | - Sudip Mondal
- a Marine-Integrated Bionics Research Center , Pukyong National University , Busan , Republic of Korea
| | - Hansu Seo
- b Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus) , Pukyong National University , Busan , Republic of Korea
| | - Kang Dae Lee
- c Department of Otolaryngology Head and Neck Surgery , Kosin University Gospel Hospital, Kosin University College of Medicine , Busan , Republic of Korea
| | - Junghwan Oh
- a Marine-Integrated Bionics Research Center , Pukyong National University , Busan , Republic of Korea.,b Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus) , Pukyong National University , Busan , Republic of Korea
| |
Collapse
|
14
|
Huang H, Lovell JF. Advanced Functional Nanomaterials for Theranostics. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1603524. [PMID: 28824357 PMCID: PMC5560626 DOI: 10.1002/adfm.201603524] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nanoscale materials have been explored extensively as agents for therapeutic and diagnostic (i.e. theranostic) applications. Research efforts have shifted from exploring new materials in vitro to designing materials that function in more relevant animal disease models, thereby increasing potential for clinical translation. Current interests include non-invasive imaging of diseases, biomarkers and targeted delivery of therapeutic drugs. Here, we discuss some general design considerations of advanced theranostic materials and challenges of their use, from both diagnostic and therapeutic perspectives. Common classes of nanoscale biomaterials, including magnetic nanoparticles, quantum dots, upconversion nanoparticles, mesoporous silica nanoparticles, carbon-based nanoparticles and organic dye-based nanoparticles, have demonstrated potential for both diagnosis and therapy. Variations such as size control and surface modifications can modulate biocompatibility and interactions with target tissues. The needs for improved disease detection and enhanced chemotherapeutic treatments, together with realistic considerations for clinically translatable nanomaterials will be key driving factors for theranostic agent research in the near future.
Collapse
Affiliation(s)
- Haoyuan Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, United States
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, United States
| |
Collapse
|
15
|
Zhou Q, Xu L, Liu F, Zhang W. Construction of reduction-responsive photosensitizers based on amphiphilic block copolymers and their application for photodynamic therapy. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.04.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Zhang R, Xing R, Jiao T, Ma K, Chen C, Ma G, Yan X. Carrier-Free, Chemophotodynamic Dual Nanodrugs via Self-Assembly for Synergistic Antitumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13262-9. [PMID: 27176934 DOI: 10.1021/acsami.6b02416] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
There are tremendous challenges from both tumor and its therapeutic formulations affecting the effective treatment of tumor, including tumor recurrence, and complex multistep preparations of formulation. To address these issues, herein a simple and green approach based on the self-assembly of therapeutic agents including a photosensitizer (chlorine e6, Ce6) and a chemotherapeutic agent (doxorubicin, DOX) was developed to prepare carrier-free nanoparticles (NPs) with the ability to inhibit tumor recurrence. The designed NPs were formed by self-assembly of Ce6 and DOX associated with electrostatic, π-π stacking and hydrophobic interactions. They have a relatively uniform size of average 70 nm, surface charge of -20 mV and high drug encapsulation efficiency, which benefits the favorable accumulation of drugs at the tumor region through a potential enhanced permeability and retention (EPR) effect as compared to their counterpart of free Ce6 solution. In addition, they could eradiate tumors without recurrence in a synergistic way following one treatment cycle. Furthermore, the NPs are safe without any activation of inflammation or immune response in separated organs. Taken together, the rationale of these pure nanodrugs via the self-assembly approach might open an alternative avenue and give inspiration to fabricate new carrier-free nanodrugs for tumor theranostics, especially for two small molecular antitumor drugs with the aim of combinational antitumor therapy in a synergistic way.
Collapse
Affiliation(s)
- Ruiyun Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University , Qinhuangdao 066004, China
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University , Qinhuangdao 066004, China
| | - Ruirui Xing
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University , Qinhuangdao 066004, China
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University , Qinhuangdao 066004, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University , Qinhuangdao 066004, China
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University , Qinhuangdao 066004, China
| | - Kai Ma
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University , Qinhuangdao 066004, China
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University , Qinhuangdao 066004, China
| | - Chengjun Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
17
|
Feng C, Piao M, Li D. Stereocomplex-Reinforced PEGylated Polylactide Micelle for Optimized Drug Delivery. Polymers (Basel) 2016; 8:E165. [PMID: 30979255 PMCID: PMC6432443 DOI: 10.3390/polym8040165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 11/25/2022] Open
Abstract
The instability of PEGylated polylactide micelles is a challenge for drug delivery. Stereocomplex interaction between racemic polylactide chains with different configurations provides an effective strategy to enhance the stability of micelles as the nanocarriers of drugs. In this work, a stereocomplex micelle (SCM) self-assembled from the amphiphilic triblock copolymers comprising poly(ethylene glycol) (PEG), and dextrorotatory and levorotatory polylactides (PDLA and PLLA) was applied for efficient drug delivery. The spherical SCM showed the smallest scale and the lowest critical micelle concentration (CMC) than the micelles with single components attributed to the stereocomplex interaction between PDLA and PLLA. 10-Hydroxycamptothecin (HCPT) as a model antitumor drug was loaded into micelles. Compared with the loading micelles from individual PDLA and PLLA, the HCPT-loaded SCM exhibited the highest drug loading efficiency (DLE) and the slowest drug release in phosphate-buffered saline (PBS) at pH 7.4, indicating its enhanced stability in circulation. More fascinatingly, the laden SCM was demonstrated to have the highest cellular uptake of HCPT and suppress malignant cells most effectively in comparison to the HCPT-loaded micelles from single copolymer. In summary, the stereocomplex-enhanced PLA⁻PEG⁻PLA micelle may be promising for optimized drug delivery in the clinic.
Collapse
Affiliation(s)
- Chunsheng Feng
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Meihua Piao
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Di Li
- Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
18
|
Fu C, Bongers A, Wang K, Yang B, Zhao Y, Wu H, Wei Y, Duong HTT, Wang Z, Tao L. Facile synthesis of a multifunctional copolymer via a concurrent RAFT-enzymatic system for theranostic applications. Polym Chem 2016. [DOI: 10.1039/c5py01652e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Through a straightforward concurrent RAFT-enzymatic multicomponent polymerization system and subsequent post-polymerization modifications, a multi-functional copolymer for theranostic application has been efficiently prepared.
Collapse
Affiliation(s)
- Changkui Fu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Andre Bongers
- Biomedical Resources Imaging Laboratory
- Mark Wainwright Analytical Centre
- The University of New South Wales
- Sydney
- Australia
| | - Ke Wang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Bin Yang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yuan Zhao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Haibo Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | | | - Zhiming Wang
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
19
|
Paul AK, Karunakaran SC, Joseph J, Ramaiah D. Amino Acid-Porphyrin Conjugates: Synthesis and Study of their Photophysical and Metal Ion Recognition Properties. Photochem Photobiol 2015; 91:1348-55. [DOI: 10.1111/php.12527] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/14/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Albish K. Paul
- Photosciences and Photonics Section; Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology; Thiruvananthapuram Kerala India
| | - Suneesh C. Karunakaran
- Photosciences and Photonics Section; Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology; Thiruvananthapuram Kerala India
| | - Joshy Joseph
- Photosciences and Photonics Section; Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology; Thiruvananthapuram Kerala India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-NIIST Campus; Thiruvananthapuram India
| | - Danaboyina Ramaiah
- Photosciences and Photonics Section; Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science and Technology; Thiruvananthapuram Kerala India
- CSIR-North East Institute of Science and Technology; Jorhat Assam India
| |
Collapse
|
20
|
Gradova MA, Artemov VV, Lobanov AV. Aggregation behavior of tetraphenylporphyrin in aqueous surfactant solutions: Chiral premicellar J-aggregate formation. J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424615500595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Porphyrin-surfactant interactions in aqueous solutions are known to result in the selfassembly of various supramolecular structures, including pigment-surfactant complexes, J- and H-aggregates, and solubilized dye species. Detailed studies on the mechanisms of the intermolecular interactions governing the above self-assembly processes allow to predict the aggregation state and hence, the photophysical properties of the dye-surfactant assemblies in order to perform a direct synthesis of the desired porphyrin-based nanostructures at the appropriate experimental conditions. This paper describes a novel example of the surfactant-induced J-aggregate formation from the diprotonated hydrophobic tetraphenylporphyrin species in submicellar aqueous anionic surfactant solutions. The above assemblies are characterized by a rod-like morphology and possess supramolecular chirality according to the CD measurements.
Collapse
Affiliation(s)
- Margaret A. Gradova
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin Str. 4, Moscow 119991, Russia
| | - Vladimir V. Artemov
- Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninsky Pr. 59, Moscow 119333, Russia
| | - Anton V. Lobanov
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin Str. 4, Moscow 119991, Russia
| |
Collapse
|
21
|
Avci P, Erdem SS, Hamblin MR. Photodynamic therapy: one step ahead with self-assembled nanoparticles. J Biomed Nanotechnol 2015; 10:1937-52. [PMID: 25580097 DOI: 10.1166/jbn.2014.1953] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy (PDT) is a promising treatment modality for cancer with possible advantages over current treatment alternatives. It involves combination of light and a photosensitizer (PS), which is activated by absorption of specific wavelength light and creates local tissue damage through generation of reactive oxygen species (ROS) that induce a cascade of cellular and molecular events. However, as of today, PDT is still in need of improvement and nanotechnology may play a role. PDT frequently employs PS with molecular structures that are highly hydrophobic, water insoluble and prone to aggregation. Aggregation of PS leads to reduced ROS generation and thus lowers the PDT activity. Some PS such as 5-aminolevulinic acid (ALA) cannot penetrate through the stratum corneum of the skin and systemic administration is not an option due to frequently encountered side effects. Therefore PS are often encapsulated or conjugated in/on nano-drug delivery vehicles to allow them to be better taken up by cells and to more selectively deliver them to tumors or other target tissues. Several nano-drug delivery vehicles including liposomes, fullerosomes and nanocells have been tested and reviewed. Here we cover non-liposomal self-assembled nanoparticles consisting of polymeric micelles including block co-polymers, polymeric micelles, dendrimers and porphysomes.
Collapse
|
22
|
Huang H, Song W, Rieffel J, Lovell JF. Emerging applications of porphyrins in photomedicine. FRONTIERS IN PHYSICS 2015; 3:23. [PMID: 28553633 PMCID: PMC5445930 DOI: 10.3389/fphy.2015.00023] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biomedical applications of porphyrins and related molecules have been extensively pursued in the context of photodynamic therapy. Recent advances in nanoscale engineering have opened the door for new ways that porphyrins stand to potentially benefit human health. Metalloporphyrins are inherently suitable for many types of medical imaging and therapy. Traditional nanocarriers such as liposomes, dendrimers and silica nanoparticles have been explored for photosensitizer delivery. Concurrently, entirely new classes of porphyrin nanostructures are being developed, such as smart materials that are activated by specific biochemicals encountered at disease sites. Techniques have been developed that improve treatments by combining biomaterials with photosensitizers and functional moieties such as peptides, DNA and antibodies. Compared to simpler structures, these more complex and functional designs can potentially decrease side effects and lead to safer and more efficient phototherapies. This review examines recent research on porphyrin-derived materials in multimodal imaging, drug delivery, bio-sensing, phototherapy and probe design, demonstrating their bright future for biomedical applications.
Collapse
Affiliation(s)
- Haoyuan Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Wentao Song
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - James Rieffel
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
23
|
Abstract
Disease heterogeneity within and between patients necessitates a patient-focused approach to cancer treatment. This exigency forms the basis for the medical practice termed personalized medicine. An emerging, important component of personalized medicine is theranostics. Theranostics describes the co-delivery of therapeutic and imaging agents in a single formulation. Co-delivery enables noninvasive, real-time visualization of drug fate, including drug pharmacokinetic and biodistribution profiles and intratumoral accumulation. These technological advances assist drug development and ultimately may translate to improved treatment planning at the bedside. Nanocarriers are advantageous for theranostics as their size and versatility enables integration of multiple functional components in a single platform. This chapter focuses on recent developments in advanced lipid theranostic nanomedicine from the perspective of the "all-in-one" or the "one-for-all" approach. The design paradigm of "all-in-one" is the most common approach for assembling theranostic lipid nanoparticles, where the advantages of theranostics are achieved by combining multiple components that each possesses a specific singular function for therapeutic activity or imaging contrast. We will review lipoprotein nanoparticles and liposomes as representatives of the "all-in-one" approach. Complementary to the "all-in-one" approach is the emerging paradigm of the "one-for-all" approach where nanoparticle components are intrinsically multifunctional. We will discuss the "one-for-all" approach using porphysomes as a representative. We will further discuss how the concept of "one-for-all" might overcome the regulatory hurdles facing theranostic lipid nanomedicine.
Collapse
|
24
|
Xu L, Liu L, Liu F, Li W, Chen R, Gao Y, Zhang W. Photodynamic therapy of oligoethylene glycol dendronized reduction-sensitive porphyrins. J Mater Chem B 2015; 3:3062-3071. [DOI: 10.1039/c5tb00276a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OEGylation of porphyrins via a disulfide linkage to form a novel class of dendritic porphyrin photosensitizers (PSs) is presented.
Collapse
Affiliation(s)
- Lei Xu
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Lichao Liu
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Feng Liu
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Wen Li
- Laboratory of Polymer Chemistry
- Department of Polymer Materials
- College of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
| | - Ruobin Chen
- Laboratory of Polymer Chemistry
- Department of Polymer Materials
- College of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
25
|
Dai XH, Wang ZM, Pan JM, Yuan SS, Yan YS, liu DM, Sun L. Star-shaped poly(l-lactide)-b-poly(lactobionamidoethyl methacrylate) with porphyrin core: synthesis, self-assembly, singlet oxygen research and recognition properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:1755-70. [DOI: 10.1080/09205063.2014.946878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
Feng Z, Zhi-Ming W, Ya-Fei H, Xiao-Hui D, Yan-Ru G, Jian-Ming P, Yong-Sheng Y, Sun L. Synthesis, self-assembly, and drug release behavior of star-shaped poly(ε-caprolactone)-b-poly(ethylene oxide) block copolymer with porphyrin core. J Appl Polym Sci 2014. [DOI: 10.1002/app.40996] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zhao Feng
- Hospital Affiliated to Jiangsu University; Zhenjiang 212013 People's Republic of China
| | - Wang Zhi-Ming
- Department of Chemical Engineering; School of Chemistry and Chemical Technology; Jiangsu University; Zhenjiang 212013 People's Republic of China
| | - Huang Ya-Fei
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 People's Republic of China
| | - Dai Xiao-Hui
- Department of Chemical Engineering; School of Chemistry and Chemical Technology; Jiangsu University; Zhenjiang 212013 People's Republic of China
- State Key Laboratory of Natural and Biomimetic Drugs; Peking University; Beijing 100191 People's Republic of China
| | - Ge Yan-Ru
- School of Pharmacy; Jiangsu University; Zhenjiang 212013 People's Republic of China
| | - Pan Jian-Ming
- Department of Chemical Engineering; School of Chemistry and Chemical Technology; Jiangsu University; Zhenjiang 212013 People's Republic of China
| | - Yan Yong-Sheng
- Department of Chemical Engineering; School of Chemistry and Chemical Technology; Jiangsu University; Zhenjiang 212013 People's Republic of China
- State Key Laboratory of Natural and Biomimetic Drugs; Peking University; Beijing 100191 People's Republic of China
| | - Lin Sun
- CSR Qingdao Sifang Co. Ltd.; Qingdao Shandong 266111 China
| |
Collapse
|
27
|
Biomimetic star-shaped porphyrin-cored poly(l-lactide)-b-glycopolymer block copolymers for targeted photodynamic therapy. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3244-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
28
|
Dai XH, Wang ZM, Gao LY, Pan JM, Wang XH, Yan YS, Liu DM. Star-shaped poly(l-lactide)-b-poly(ethylene glycol) with porphyrin core: synthesis, self-assembly, drug-release behavior and singlet oxygen research. NEW J CHEM 2014. [DOI: 10.1039/c3nj01621h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
pH-induced block copolymer SPPLA-b-PEG with porphyrin core for photodynamic therapy.
Collapse
Affiliation(s)
- Xiao-Hui Dai
- Department of Chemical Engineering
- School of Chemistry and Chemical Technology
- Jiangsu University
- Zhenjiang 212013, P. R. China
- State Key Laboratory of Natural and Biomimetic Drugs
| | - Zhi-Ming Wang
- Department of Chemical Engineering
- School of Chemistry and Chemical Technology
- Jiangsu University
- Zhenjiang 212013, P. R. China
| | - Lu-You Gao
- Department of Chemical Engineering
- School of Chemistry and Chemical Technology
- Jiangsu University
- Zhenjiang 212013, P. R. China
| | - Jian-Ming Pan
- Department of Chemical Engineering
- School of Chemistry and Chemical Technology
- Jiangsu University
- Zhenjiang 212013, P. R. China
| | - Xiao-Hong Wang
- Department of Chemical Engineering
- School of Chemistry and Chemical Technology
- Jiangsu University
- Zhenjiang 212013, P. R. China
| | - Yong-Sheng Yan
- Department of Chemical Engineering
- School of Chemistry and Chemical Technology
- Jiangsu University
- Zhenjiang 212013, P. R. China
- State Key Laboratory of Natural and Biomimetic Drugs
| | - Dong-Ming Liu
- Hospital Affiliated to Jiangsu University
- Zhenjiang 212013, P. R. China
| |
Collapse
|
29
|
Jang WD, Yim D, Hwang IH. Photofunctional hollow nanocapsules for biomedical applications. J Mater Chem B 2014; 2:2202-2211. [DOI: 10.1039/c4tb00076e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
30
|
Lu G, Zhang X, Cai X, Fang Y, Zhu M, Zhu W, Ou Z, Kadish KM. Synthesis, structural characterization and protonation/deprotonation of hydroxyl-substituted free-base tetraphenylporphyrins in nonaqueous media. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424613500557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A series of hydroxyl-substituted free-base tetraphenylporphyrins was synthesized and characterized by UV-vis spectroscopy, 1 H NMR and mass spectrometry. The porphyrins are represented as (HOPh) n(t BuPh )4-n PH 2, where Ph presents a phenyl group, HO and t Bu are substituents on the para-positions of the phenyl rings of the macrocycle, n = 0–4 and P represents the dianion of tetraphenylporphyrin. The UV-visible properties of each porphyrin were examined in dichloromethane (DCM), N,N′-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) before and after addition of trifluoroacetic acid (TFA) or sodium hydroxide (NaOH) to solution. Equilibrium constants for protonation ( log βn) and deprotonation [Formula: see text] of each compound were determined using standard equations. The protonations occur in a single step involving a simultaneous two proton addition at the porphyrin central nitrogens. The phenolic protons on (HOPh) n(t BuPh )4-n PH 2 are easier to deprotonate than the core nitrogen protons of the porphyrins and this reaction occurs in a single step involving the simultaneous loss of 1–4 protons on the hydroxyl groups followed by a loss of two protons from the central nitrogens. The effect of HO substituents on UV-visible spectra and the magnitude of the protonation/deprotonation constants ( log βn and [Formula: see text]) are discussed. Two of the porphyrins, (t BuPh )4 PH 2 and trans- (HOPh) 2(t BuPh )2 PH 2, are also characterized by a single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Guifen Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xiufeng Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xu Cai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuanyuan Fang
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| | - Min Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weihua Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhongping Ou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| |
Collapse
|
31
|
Roberts DA, Schmidt TW, Crossley MJ, Perrier S. Tunable Self-Assembly of Triazole-Linked Porphyrin-Polymer Conjugates. Chemistry 2013; 19:12759-70. [DOI: 10.1002/chem.201301133] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Indexed: 11/10/2022]
|
32
|
Krasia-Christoforou T, Georgiou TK. Polymeric theranostics: using polymer-based systems for simultaneous imaging and therapy. J Mater Chem B 2013; 1:3002-3025. [PMID: 32261003 DOI: 10.1039/c3tb20191k] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polymer-based nanomedicine is a large and fast growing field. Polymer-based systems have been extensively used as therapeutic carriers as well as bioimaging agents for example in tumour diagnosis. However, fewer polymeric systems have been able to combine both therapy and imaging in a new field that is called theranostics (theragnostics). This review aims to summarise the recent developments and trends on polymeric theranostics. Four different types of therapies/treatments are examined namely drug delivery, gene delivery, photodynamic therapy and hyperthermia treatment combined with different imaging moieties like magnetic resonance imaging agents, fluorescent agents and microbubbles for ultrasound imaging.
Collapse
Affiliation(s)
- Theodora Krasia-Christoforou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus.
| | | |
Collapse
|
33
|
Ma D, Liu ZH, Zheng QQ, Zhou XY, Zhang Y, Shi YF, Lin JT, Xue W. Star-shaped polymer consisting of a porphyrin core and poly(L-lysine) dendron arms: synthesis, drug delivery, and in vitro chemo/photodynamic therapy. Macromol Rapid Commun 2013; 34:548-52. [PMID: 23386244 DOI: 10.1002/marc.201200742] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/16/2012] [Indexed: 01/11/2023]
Abstract
A novel star-shaped polymer, porphyrin-poly(L-lysine) dendrons (PP-PLLD), is synthesized by the click reaction between azido-modified porphyrin and propargyl focal point poly(L-lysine) dendrons. Its chemical structure is characterized by (1) H nuclear magnetic resonance, Fourier transform infrared spectroscopy, and gel permeation chromatography (GPC) is analyses etc. Due to its amphiphilic property, the obtained PP-PLLD has a low critical micelle concentration in an aqueous solution, and can load doxorubicin (DOX) with a loading amount of 64 μg mg(-1) . By in vitro toxicity assay, PP-PLLD has no dark cytotoxicity but has significant phototoxicity. Moreover, DOX-loaded PP-PLLD shows a higher cytotoxicity under the light condition than PP-PLLD or DOX alone, suggesting PP-PLLD has a potential application in combined photodynamic therapy and chemotherapy.
Collapse
Affiliation(s)
- Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, PR China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bioluminescence resonance energy transfer using luciferase-immobilized quantum dots for self-illuminated photodynamic therapy. Biomaterials 2013; 34:1204-12. [DOI: 10.1016/j.biomaterials.2012.08.044] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/21/2012] [Indexed: 12/11/2022]
|
35
|
Takanami T. Functionalization of Porphyrins through C-C Bond Formation Reactions with Functional Group-Bearing Organometallic Reagents. HETEROCYCLES 2013. [DOI: 10.3987/rev-13-775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Effects of the Addition ofOrtho- andPara-NH2Substituted Tetraphenylporphyrins on the Structure of Nylon 66. INT J POLYM SCI 2013. [DOI: 10.1155/2013/323854] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The synthetic tetrapyrrole macrocycles, such as porphyrins (H2P) and phthalocyanines (H2Pc), exhibit interesting physicochemical properties suitable to be used in modern technology. For many applications, those species should be trapped or fixed inside graphite, hydrotalcites, silica, TiO2, or polymers. Methodologies for the optimization of the properties of porphyrins, trapped or fixed inside polymers, have been barely developed. Our research works in the development of methodologies for the optimization of incorporation and display of properties of tetrapyrrole macrocycles inside inorganic, polymeric, or hybrid networks. This paper shows some results about the effect of the spatial disposition of the amine (–NH2) groups attached on the periphery of substituted tetraphenylporphyrins, on the Nylon 66 structure and on the display of the physicochemical properties of the trapped macrocycles. Nylon 66 was synthesized from adipoyl chloride and hexamethylenediamine in presence of tetraphenylporphyrins substituted with –NH2groups localized at theortho- orpara-positions of the phenyls. Cobalt complexes formation was used to quantify the amount of porphyrins in the polymer fibers. Characterization results show that the spatial position of amine groups of the porphyrins has important structural and textural effect on the Nylon 66 fibers and on the fluorescence of the porphyrins integrated into the fibers.
Collapse
|
37
|
Sugita N, Hayashi S, Hino F, Takanami T. Palladium-catalyzed Kumada Coupling Reaction of Bromoporphyrins with Silylmethyl Grignard Reagents: Preparation of Silylmethyl-substituted Porphyrins as a Multipurpose Synthon for Fabrication of Porphyrin Systems. J Org Chem 2012; 77:10488-97. [DOI: 10.1021/jo302122f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Noriaki Sugita
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588,
Japan
| | - Satoshi Hayashi
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588,
Japan
| | - Fumio Hino
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588,
Japan
| | - Toshikatsu Takanami
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588,
Japan
| |
Collapse
|