1
|
Hnid I, Guan L, Chatir E, Cobo S, Lafolet F, Maurel F, Lacroix JC, Sun X. Visualization and Comprehension of Electronic and Topographic Contrasts on Cooperatively Switched Diarylethene-Bridged Ditopic Ligand. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1318. [PMID: 35458026 PMCID: PMC9029802 DOI: 10.3390/nano12081318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/22/2022]
Abstract
Diarylethene is a prototypical molecular switch that can be reversibly photoisomerized between its open and closed forms. Ligands bpy-DAE-bpy, consisting of a phenyl-diarylethene-phenyl (DAE) central core and bipyridine (bpy) terminal substituents, are able to self-organize. They are investigated by scanning tunneling microscopy at the solid-liquid interface. Upon light irradiation, cooperative photochromic switching of the ligands is recognized down to the submolecular level. The closed isomers show different electron density of states (DOS) contrasts, attributed to the HOMO or LUMO molecular orbitals observed. More importantly, the LUMO images show remarkable differences between the open and closed isomers, attributed to combined topographic and electronic contrasts mainly on the DAE moieties. The electronic contrasts from multiple HOMO or LUMO distributions, combined with topographic distortion of the open or closed DAE, are interpreted by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Imen Hnid
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| | - Lihao Guan
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| | - Elarbi Chatir
- Department of Chemistry, Université Grenoble Alpes, DCM-UMR 5250, F-38000 Grenoble, France; (E.C.); (S.C.)
| | - Saioa Cobo
- Department of Chemistry, Université Grenoble Alpes, DCM-UMR 5250, F-38000 Grenoble, France; (E.C.); (S.C.)
| | - Frédéric Lafolet
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| | - François Maurel
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| | - Jean-Christophe Lacroix
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| | - Xiaonan Sun
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| |
Collapse
|
2
|
Lvov AG, Bredihhin A. Azulene as an ingredient for visible-light- and stimuli-responsive photoswitches. Org Biomol Chem 2021; 19:4460-4468. [PMID: 33949609 DOI: 10.1039/d1ob00422k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The azulene molecule features a unique combination of optical, luminescence, and stimuli-responsive properties. This makes the azulene motif a promising functional group to be introduced in photoswitches. Recent challenges in the field of photochromic compounds require the development of new approaches to molecules that are switched by visible light (400-760 nm), are proton responsive and have advanced luminescent properties. Merging azulene with photoswitches opens prospects for fulfilling these requirements. Herein, we highlight recent results on the application of this hydrocarbon motif in various photochromic systems, such as stilbenes, diarylethenes, and azobenzenes.
Collapse
Affiliation(s)
- Andrey G Lvov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1, Favorsky St., Irkutsk, 664033, Russian Federation. and Irkutsk National Research Technical University 83, Lermontov St., Irkutsk, 664074, Russian Federation
| | | |
Collapse
|
3
|
Chantzis A, Cerezo J, Perrier A, Santoro F, Jacquemin D. Optical Properties of Diarylethenes with TD-DFT: 0-0 Energies, Fluorescence, Stokes Shifts, and Vibronic Shapes. J Chem Theory Comput 2015; 10:3944-57. [PMID: 26588538 DOI: 10.1021/ct500371u] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This contribution is an investigation of both the structures and optical properties of a set of 14 diverse, recently synthesized diarylethenes using Time-Dependent Density Functional Theory (TD-DFT) at the ωB97X-D/6-31G(d) level of theory. The linear response (LR) and state-specific (SS) versions of the Polarizable Continuum Model (PCM) have been adopted to account for the bulk solvation effects and their relative performances were critically accessed. It is shown, for the first time in the case of nontrivial diarylethenes, that TD-DFT provides good agreement between the experimental absorption-fluorescence crossing points (AFCPs) and their theoretical counterparts when a robust model accounting for both geometrical relaxation and vibrational corrections is used instead of the vertical approximation. On the other hand, the theoretical estimates for the Stokes shifts based on the vertical transition energies were found to be in disagreement with respect to experiment, prompting us to simulate the absorption/emission vibronic band shapes. It is proved that difficulties associated with the breakdown of the harmonic approximation in Cartesian coordinates exist for the investigated system, and we show how they can be at least partially overcome by means of a vertical approach including Duschinsky effects. Our results provide a valuable basis to rationalize the experimental vibronic structure of both emission and absorption bands and are expected to be a significant asset to the understanding of the optical properties of diarylethene derivatives.
Collapse
Affiliation(s)
- Agisilaos Chantzis
- Laboratoire CEISAM - UMR CNR 6230, Université de Nantes , 2 Rue de la Houssiniére, BP 92208, 44322 Nantes Cedex 3, France
| | - Javier Cerezo
- Departamento de Química Física, Universidad de Murcia , 30110 Murcia, Spain
| | - Aurélie Perrier
- ITODYS, UMR 7086, Université Paris Diderot, Sorbonne Paris Cité , 15 Rue Jean Antoine de Baif, 75205 Paris Cedex 13, France
| | - Fabrizio Santoro
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR), UOS di Pisa , Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Denis Jacquemin
- Laboratoire CEISAM - UMR CNR 6230, Université de Nantes , 2 Rue de la Houssiniére, BP 92208, 44322 Nantes Cedex 3, France.,Institut Universitaire de France, 103, bd Saint-Michel, F-75005 Paris Cedex 05, France
| |
Collapse
|
4
|
Laurent AD, Adamo C, Jacquemin D. Dye chemistry with time-dependent density functional theory. Phys Chem Chem Phys 2015; 16:14334-56. [PMID: 24548975 DOI: 10.1039/c3cp55336a] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this perspective, we present an overview of the determination of excited-state properties of "real-life" dyes, and notably of their optical absorption and emission spectra, performed during the last decade with time-dependent density functional theory (TD-DFT). We discuss the results obtained with both vertical and adiabatic (vibronic) approximations, choosing relevant examples for several series of dyes. These examples include reproducing absorption wavelengths of numerous families of coloured molecules, understanding the specific band shape of amino-anthraquinones, optimising the properties of dyes used in solar cells, mimicking the fluorescence wavelengths of fluorescent brighteners and BODIPY dyes, studying optically active biomolecules and photo-induced proton transfer, as well as improving the properties of photochromes.
Collapse
Affiliation(s)
- Adèle D Laurent
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS no. 6230, BP 92208, Université de Nantes, 2, Rue de la Houssinière, 44322 Nantes, Cedex 3, France.
| | | | | |
Collapse
|
5
|
Vinţeler E, Stan NF, Luchian R, Căinap C, Ramalho JPP, Chiş V. Conformational landscape and low lying excited states of imatinib. J Mol Model 2015; 21:84. [DOI: 10.1007/s00894-015-2639-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/22/2015] [Indexed: 11/28/2022]
|
6
|
Abstract
We review molecular compounds encompassing several photochromic units with a focus on their functionalities.
Collapse
Affiliation(s)
- Arnaud Fihey
- Laboratoire CEISAM
- UMR CNRS 6230
- Université de Nantes
- 44322 Nantes Cedex 3
- France
| | - Aurélie Perrier
- Université Paris Diderot
- Sorbonne Paris Cité
- ITODYS
- UMR CNRS 7086
- 75205 Paris Cedex 13
| | - Wesley R. Browne
- Center for Systems Chemistry
- Stratingh Institute for Chemistry
- Faculty of Mathematics and Natural Sciences
- University of Groningen
- 9747AG Groningen
| | - Denis Jacquemin
- Laboratoire CEISAM
- UMR CNRS 6230
- Université de Nantes
- 44322 Nantes Cedex 3
- France
| |
Collapse
|
7
|
Photochromic bipyridyl metal complexes: Photoregulation of the nonlinear optical and/or luminescent properties. CR CHIM 2013. [DOI: 10.1016/j.crci.2013.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|