1
|
Babaei A, Pouremamali A, Rafiee N, Sohrabi H, Mokhtarzadeh A, de la Guardia M. Genosensors as an alternative diagnostic sensing approaches for specific detection of various certain viruses: a review of common techniques and outcomes. Trends Analyt Chem 2022; 155:116686. [PMID: 35611316 PMCID: PMC9119280 DOI: 10.1016/j.trac.2022.116686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/08/2022] [Accepted: 05/15/2022] [Indexed: 12/19/2022]
Abstract
Viral infections are responsible for the deaths of millions of people throughout the world. Since outbreak of highly contagious and mutant viruses such as contemporary sars-cov-2 pandemic, has challenged the conventional diagnostic methods, the entity of a thoroughly sensitive, specific, rapid and inexpensive detecting technique with minimum level of false-positivity or -negativity, is desperately needed more than any time in the past decades. Biosensors as minimized devices could detect viruses in simple formats. So far, various nucleic acid, immune- and protein-based biosensors were designed and tested for recognizing the genome, antigen, or protein level of viruses, respectively; however, nucleic acid-based sensing techniques, which is the foundation of constructing genosensors, are preferred not only because of their ultra-sensitivity and applicability in the early stages of infections but also for their ability to differentiate various strains of the same virus. To date, the review articles related to genosensors are just confined to particular pathogenic diseases; In this regard, the present review covers comprehensive information of the research progress of the electrochemical, optical, and surface plasmon resonance (SPR) genosensors that applied for human viruses' diseases detection and also provides a well description of viruses' clinical importance, the conventional diagnosis approaches of viruses and their disadvantages. This review would address the limitations in the current developments as well as the future challenges involved in the successful construction of sensing approaches with the functionalized nanomaterials and also allow exploring into core-research works regarding this area.
Collapse
Affiliation(s)
- Abouzar Babaei
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Pouremamali
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nastaran Rafiee
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
2
|
Mukhtar M, Sargazi S, Barani M, Madry H, Rahdar A, Cucchiarini M. Application of Nanotechnology for Sensitive Detection of Low-Abundance Single-Nucleotide Variations in Genomic DNA: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1384. [PMID: 34073904 PMCID: PMC8225127 DOI: 10.3390/nano11061384] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/02/2023]
Abstract
Single-nucleotide polymorphisms (SNPs) are the simplest and most common type of DNA variations in the human genome. This class of attractive genetic markers, along with point mutations, have been associated with the risk of developing a wide range of diseases, including cancer, cardiovascular diseases, autoimmune diseases, and neurodegenerative diseases. Several existing methods to detect SNPs and mutations in body fluids have faced limitations. Therefore, there is a need to focus on developing noninvasive future polymerase chain reaction (PCR)-free tools to detect low-abundant SNPs in such specimens. The detection of small concentrations of SNPs in the presence of a large background of wild-type genes is the biggest hurdle. Hence, the screening and detection of SNPs need efficient and straightforward strategies. Suitable amplification methods are being explored to avoid high-throughput settings and laborious efforts. Therefore, currently, DNA sensing methods are being explored for the ultrasensitive detection of SNPs based on the concept of nanotechnology. Owing to their small size and improved surface area, nanomaterials hold the extensive capacity to be used as biosensors in the genotyping and highly sensitive recognition of single-base mismatch in the presence of incomparable wild-type DNA fragments. Different nanomaterials have been combined with imaging and sensing techniques and amplification methods to facilitate the less time-consuming and easy detection of SNPs in different diseases. This review aims to highlight some of the most recent findings on the aspects of nanotechnology-based SNP sensing methods used for the specific and ultrasensitive detection of low-concentration SNPs and rare mutations.
Collapse
Affiliation(s)
- Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| |
Collapse
|
3
|
|
4
|
A signal-on magnetic electrochemical immunosensor for ultra-sensitive detection of saxitoxin using palladium-doped graphitic carbon nitride-based non-competitive strategy. Biosens Bioelectron 2019; 128:45-51. [DOI: 10.1016/j.bios.2018.12.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 11/19/2022]
|
5
|
Dou B, Li J, Jiang B, Yuan R, Xiang Y. Electrochemical screening of single nucleotide polymorphisms with significantly enhanced discrimination factor by an amplified ratiometric sensor. Anal Chim Acta 2018; 1038:166-172. [PMID: 30278899 DOI: 10.1016/j.aca.2018.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/14/2018] [Accepted: 07/10/2018] [Indexed: 01/12/2023]
Abstract
The detection of single nucleotide polymorphisms (SNPs) is of great clinical significance to the diagnosis of various genetic diseases and cancers. In this work, the development of an ultrasensitive ratiometric electrochemical sensor for screening SNP with a significantly enhanced discrimination factor is reported. The ferrocene (Fc) and methylene blue (MB) dual-tagged triple helix complex (THC) probes are self-assembled on the gold electrode to construct the sensing interface. The addition of the mutant p53 gene causes the disassembly of the THC probes with the release of the Fc-tagged sequence and the folding of the MB-labeled sequence into a hairpin structure, causing the change in the current response ratio of MB to Fc for monitoring the mutant p53 gene. Such ratio is dramatically enhanced by the toehold-mediated displacement reaction-assisted target recycling amplification with the presence of an assistance hairpin sequence. With the significant signal amplification and the advantageous specificity of the THC probes, sub-femtomolar detection limit and a highly enhanced SNP discrimination factor for the mutant p53 gene can be obtained. Besides, the proof-of-demonstration application of the sensor for diluted real samples has been verified, offering such sensor new opportunities for monitoring various genetic related diseases.
Collapse
Affiliation(s)
- Baoting Dou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jin Li
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Bingying Jiang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
6
|
Singh A, Choudhary M, Singh M, Verma H, Singh SP, Arora K. DNA Functionalized Direct Electro-deposited Gold nanoaggregates for Efficient Detection of Salmonella typhi. Bioelectrochemistry 2015; 105:7-15. [DOI: 10.1016/j.bioelechem.2015.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 12/16/2022]
|
7
|
Hasanzadeh M, Shadjou N, de la Guardia M. Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.03.016] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Yoo JJ, Kim J, Crooks RM. Direct electrochemical detection of individual collisions between magnetic microbead/silver nanoparticle conjugates and a magnetized ultramicroelectrode. Chem Sci 2015; 6:6665-6671. [PMID: 28757965 PMCID: PMC5506620 DOI: 10.1039/c5sc02259b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/20/2015] [Indexed: 12/18/2022] Open
Abstract
Here, we report on the electrochemical detection of individual collisions between a conjugate consisting of silver nanoparticles (AgNPs) linked to conductive magnetic microbeads (cMμBs) via DNA hybridization and a magnetized electrode. The important result is that the presence of the magnetic field increases the flux of the conjugate to the electrode surface, and this in turn increases the collision frequency and improves the limit of detection (20 aM). In addition, the magnitude of the charge associated with the collisions is greatly enhanced in the presence of the magnetic field. The integration of DNA into the detection protocol potentially provides a means for using electrochemical collisions for applications in biological and chemical sensing.
Collapse
Affiliation(s)
- Jason J Yoo
- Department of Chemistry , The Center for Nano- and Molecular Science and Technology , The University of Texas at Austin , 105 E. 24th St. Stop A5300 , Austin , TX 78712-1224 , USA . ; Tel: +1 512-475-8674
| | - Joohoon Kim
- Department of Chemistry , Research Institute for Basic Sciences , Kyung Hee University , Seoul 130-701 , South Korea
| | - Richard M Crooks
- Department of Chemistry , The Center for Nano- and Molecular Science and Technology , The University of Texas at Austin , 105 E. 24th St. Stop A5300 , Austin , TX 78712-1224 , USA . ; Tel: +1 512-475-8674
| |
Collapse
|
9
|
Yang W, Zhang H, Li M, Wang Z, Zhou J, Wang S, Lu G, Fu F. Early diagnosis of blast fungus, Magnaporthe oryzae, in rice plant by using an ultra-sensitive electrically magnetic-controllable electrochemical biosensor. Anal Chim Acta 2014; 850:85-91. [DOI: 10.1016/j.aca.2014.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/31/2014] [Accepted: 08/14/2014] [Indexed: 02/04/2023]
|
10
|
He Y, Chen D, Li M, Fang L, Yang W, Xu L, Fu F. Rolling circle amplification combined with gold nanoparticles-tag for ultra sensitive and specific quantification of DNA by inductively coupled plasma mass spectrometry. Biosens Bioelectron 2014; 58:209-13. [DOI: 10.1016/j.bios.2014.02.072] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/17/2014] [Accepted: 02/25/2014] [Indexed: 11/16/2022]
|
11
|
Toward Non-Enzymatic Ultrasensitive Identification of Single Nucleotide Polymorphisms by Optical Methods. CHEMOSENSORS 2014. [DOI: 10.3390/chemosensors2030193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Ermini ML, Mariani S, Scarano S, Minunni M. Bioanalytical approaches for the detection of single nucleotide polymorphisms by Surface Plasmon Resonance biosensors. Biosens Bioelectron 2014; 61:28-37. [PMID: 24841091 DOI: 10.1016/j.bios.2014.04.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/23/2014] [Indexed: 11/16/2022]
Abstract
The mapping of specific single nucleotide polymorphisms (SNPs) in patients' genome is a main goal in theranostics, aiming to the development of therapies based on personalized medicine. In this review, Surface Plasmon Resonance (SPR) and Surface Plasmon Resonance imaging (SPRi) biosensors applied to the recognition of SNPs were reviewed, since these technologies are emerging in clinical diagnosis as powerful tools thanks to their analytical features, mainly the real-time and label-free monitoring based on array format for parallel analysis. Since the literature is heterogeneous, a critical classification and a systemic comparison of the analytical performances of published methods were here reviewed on the basis of the analytical strategy and the assay design. In particular, the use of helping agents (i.e. proteins, nanoparticles (NPs), intercalating agents) or artificial DNAs, often coupled to SPR to achieve allele discrimination and/or enhanced sensitivity, were here revised and classified. Finally, the real suitability of SPR biosensors to clinical diagnostics for SNPs detection was addressed by comparing their features and performances with those of other biosensors based on other techniques (e.g. electrochemical biosensors).
Collapse
Affiliation(s)
- Maria Laura Ermini
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Stefano Mariani
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Simona Scarano
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Maria Minunni
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
13
|
Li B, Li Z, Situ B, Dai Z, Liu Q, Wang Q, Gu D, Zheng L. Sensitive HIV-1 detection in a homogeneous solution based on an electrochemical molecular beacon coupled with a nafion-graphene composite film modified screen-printed carbon electrode. Biosens Bioelectron 2013; 52:330-6. [PMID: 24099877 DOI: 10.1016/j.bios.2013.09.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 12/13/2022]
Abstract
A novel electrochemical sensing assay for sensitive determination of HIV-1 in a homogeneous solution has been developed using an electrochemical molecular beacon combined with a nafion-graphene composite film modified screen-printed carbon electrode (nafion-graphene/SPCE). The electrochemical molecular beacon (CAs-MB), comprising a special recognition sequence for the conserved region of the HIV-1 gag gene and a pair of carminic acid molecules as a marker, can indicate the presence of the HIV-1 target by its on/off electrochemical signal behavior. It is suitable for direct, electrochemical determination of HIV-1, thereby simplifying the detection procedure and improving the signal-to-noise (S/N) ratio. To further improve the sensitivity, the nafion-graphene/SPCE was used to monitor changes in the CAs-MB, which has notable advantages, such as being ultrasensitive, inexpensive, and disposable. Under optimized conditions, the peak currents showed a linear relationship with the logarithm of target oligonucleotide concentrations ranging from 40 nM to 2.56 μM, with a detection limit of 5 nM (S/N=3). This sensing assay also displays a good stability, with a recovery of 88-106.8% and RSD<7% (n=5) in real serum samples. This work may lead to the development of an effective method for early point-of-care diagnosis of HIV-1 infection.
Collapse
Affiliation(s)
- Bo Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang Z, Zhang J, Guo Y, Wu X, Yang W, Xu L, Chen J, Fu F. A novel electrically magnetic-controllable electrochemical biosensor for the ultra sensitive and specific detection of attomolar level oral cancer-related microRNA. Biosens Bioelectron 2013; 45:108-13. [PMID: 23455049 DOI: 10.1016/j.bios.2013.02.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 01/29/2023]
Abstract
Non-invasive early diagnosis of oral cancer is the most effective means to reduce mortality rate from this disease. In this paper, we described a novel magnetic-controllable electrochemical RNA biosensor for the ultra sensitive and specific detection of oral cancer-related microRNA (miRNA) based on a home-made electrically magnetic-controllable gold electrode. The electrically magnetic-controllable gold electrode combined the merits of heated electrode and magnetic electrode, has notable advantage such as that the strength and direction of the magnetic field and the temperature of the electrode's surface can be easily regulated. The advantage of electrically magnetic-controllable gold electrode, as well as the utilization of "junction-probe" strategy and magnetic beads (MBs)-based enzymatic catalysis amplification, make the biosensor has ultra-high sensitivity and discrimination ability even for the detection of similar miRNAs. It can be used to detect as low as 0.22 aM (2.2 × 10(-19)M) of oral cancer-related miRNA with a recovery of 93-108% and a RSD<6 (n=5). The high sensitivity and selectivity, as well as the easiness of fabrication, operational convenience, short analysis time, good stability and re-usability, make the biosensor a promising alternative for the early point-of-care diagnosis of oral cancer. The success of the biosensor also leads to a great potential in the development of biosensor for the early diagnosis of other diseases.
Collapse
Affiliation(s)
- ZongWen Wang
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | | | | | | | | | | | | | | |
Collapse
|