1
|
Capone M, Parisse G, Narzi D, Guidoni L. Unravelling Mn 4Ca cluster vibrations in the S 1, S 2 and S 3 states of the Kok-Joliot cycle of photosystem II. Phys Chem Chem Phys 2024; 26:20598-20609. [PMID: 39037338 PMCID: PMC11290063 DOI: 10.1039/d4cp01307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Vibrational spectroscopy serves as a powerful tool for characterizing intermediate states within the Kok-Joliot cycle. In this study, we employ a QM/MM molecular dynamics framework to calculate the room temperature infrared absorption spectra of the S1, S2, and S3 states via the Fourier transform of the dipole time auto-correlation function. To better analyze the computational data and assign spectral peaks, we introduce an approach based on dipole-dipole correlation function of cluster moieties of the reaction center. Our analysis reveals variation in the infrared signature of the Mn4Ca cluster along the Kok-Joliot cycle, attributed to its increasing symmetry and rigidity resulting from the rising oxidation state of the Mn ions. Furthermore, we successfully assign the debated contributions in the frequency range around 600 cm-1. This computational methodology provides valuable insights for deciphering experimental infrared spectra and understanding the water oxidation process in both biological and artificial systems.
Collapse
Affiliation(s)
- Matteo Capone
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| | - Gianluca Parisse
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| | - Daniele Narzi
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| | - Leonardo Guidoni
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| |
Collapse
|
2
|
Capone M, Romanelli M, Castaldo D, Parolin G, Bello A, Gil G, Vanzan M. A Vision for the Future of Multiscale Modeling. ACS PHYSICAL CHEMISTRY AU 2024; 4:202-225. [PMID: 38800726 PMCID: PMC11117712 DOI: 10.1021/acsphyschemau.3c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 05/29/2024]
Abstract
The rise of modern computer science enabled physical chemistry to make enormous progresses in understanding and harnessing natural and artificial phenomena. Nevertheless, despite the advances achieved over past decades, computational resources are still insufficient to thoroughly simulate extended systems from first principles. Indeed, countless biological, catalytic and photophysical processes require ab initio treatments to be properly described, but the breadth of length and time scales involved makes it practically unfeasible. A way to address these issues is to couple theories and algorithms working at different scales by dividing the system into domains treated at different levels of approximation, ranging from quantum mechanics to classical molecular dynamics, even including continuum electrodynamics. This approach is known as multiscale modeling and its use over the past 60 years has led to remarkable results. Considering the rapid advances in theory, algorithm design, and computing power, we believe multiscale modeling will massively grow into a dominant research methodology in the forthcoming years. Hereby we describe the main approaches developed within its realm, highlighting their achievements and current drawbacks, eventually proposing a plausible direction for future developments considering also the emergence of new computational techniques such as machine learning and quantum computing. We then discuss how advanced multiscale modeling methods could be exploited to address critical scientific challenges, focusing on the simulation of complex light-harvesting processes, such as natural photosynthesis. While doing so, we suggest a cutting-edge computational paradigm consisting in performing simultaneous multiscale calculations on a system allowing the various domains, treated with appropriate accuracy, to move and extend while they properly interact with each other. Although this vision is very ambitious, we believe the quick development of computer science will lead to both massive improvements and widespread use of these techniques, resulting in enormous progresses in physical chemistry and, eventually, in our society.
Collapse
Affiliation(s)
- Matteo Capone
- Department
of Physical and Chemical Sciences, University
of L’Aquila, L’Aquila 67010, Italy
| | - Marco Romanelli
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Davide Castaldo
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Giovanni Parolin
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Alessandro Bello
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
- Department
of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Gabriel Gil
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
- Instituto
de Cibernética, Matemática y Física (ICIMAF), La Habana 10400, Cuba
| | - Mirko Vanzan
- Department
of Chemical Sciences, University of Padova, Padova 35131, Italy
- Department
of Physics, University of Milano, Milano 20133, Italy
| |
Collapse
|
3
|
Yamaguchi K, Miyagawa K, Shoji M, Kawakami T, Isobe H, Yamanaka S, Nakajima T. Theoretical elucidation of the structure, bonding, and reactivity of the CaMn 4O x clusters in the whole Kok cycle for water oxidation embedded in the oxygen evolving center of photosystem II. New molecular and quantum insights into the mechanism of the O-O bond formation. PHOTOSYNTHESIS RESEARCH 2023:10.1007/s11120-023-01053-7. [PMID: 37945776 DOI: 10.1007/s11120-023-01053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 11/12/2023]
Abstract
This paper reviews our historical developments of broken-symmetry (BS) and beyond BS methods that are applicable for theoretical investigations of metalloenzymes such as OEC in PSII. The BS hybrid DFT (HDFT) calculations starting from high-resolution (HR) XRD structure in the most stable S1 state have been performed to elucidate structure and bonding of whole possible intermediates of the CaMn4Ox cluster (1) in the Si (i = 0 ~ 4) states of the Kok cycle. The large-scale HDFT/MM computations starting from HR XRD have been performed to elucidate biomolecular system structures which are crucial for examination of possible water inlet and proton release pathways for water oxidation in OEC of PSII. DLPNO CCSD(T0) computations have been performed for elucidation of scope and reliability of relative energies among the intermediates by HDFT. These computations combined with EXAFS, XRD, XFEL, and EPR experimental results have elucidated the structure, bonding, and reactivity of the key intermediates, which are indispensable for understanding and explanation of the mechanism of water oxidation in OEC of PSII. Interplay between theory and experiments have elucidated important roles of four degrees of freedom, spin, charge, orbital, and nuclear motion for understanding and explanation of the chemical reactivity of 1 embedded in protein matrix, indicating the participations of the Ca(H2O)n ion and tyrosine(Yz)-O radical as a one-electron acceptor for the O-O bond formation. The Ca-assisted Yz-coupled O-O bond formation mechanisms for water oxidation are consistent with recent XES and very recent time-resolved SFX XFEL and FTIR results.
Collapse
Affiliation(s)
- Kizashi Yamaguchi
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
- RIKEN Center for Computational Science, Kobe, Hyogo, 650-0047, Japan.
- SANKEN, Osaka University, Ibaraki, Osaka, 567-0047, Japan.
| | - Koichi Miyagawa
- Center of Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Mitsuo Shoji
- Center of Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Takashi Kawakami
- RIKEN Center for Computational Science, Kobe, Hyogo, 650-0047, Japan
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroshi Isobe
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Shusuke Yamanaka
- Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Takahito Nakajima
- RIKEN Center for Computational Science, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
4
|
Gates C, Williams JM, Ananyev G, Dismukes GC. How chloride functions to enable proton conduction in photosynthetic water oxidation: Time-resolved kinetics of intermediates (S-states) in vivo and bromide substitution. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148998. [PMID: 37499962 DOI: 10.1016/j.bbabio.2023.148998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Chloride (Cl-) is essential for O2 evolution during photosynthetic water oxidation. Two chlorides near the water-oxidizing complex (WOC) in Photosystem II (PSII) structures from Thermosynechococcus elongatus (and T. vulcanus) have been postulated to transfer protons generated from water oxidation. We monitored four criteria: primary charge separation flash yield (P* → P+QA-), rates of water oxidation steps (S-states), rate of proton evolution, and flash O2 yield oscillations by measuring chlorophyll variable fluorescence (P* quenching), pH-sensitive dye changes, and oximetry. Br-substitution slows and destabilizes cellular growth, resulting from lower light-saturated O2 evolution rate (-20 %) and proton release (-36 % ΔpH gradient). The latter implies less ATP production. In Br- cultures, protonogenic S-state transitions (S2 → S3 → S0') slow with increasing light intensity and during O2/water exchange (S0' → S0 → S1), while the non-protonogenic S1 → S2 transition is kinetically unaffected. As flash rate increases in Cl- cultures, both rate and extent of acidification of the lumen increase, while charge recombination is suppressed relative to Br-. The Cl- advantage in rapid proton escape from the WOC to lumen is attributed to correlated ion-pair movement of H3O+Cl- in dry water channels vs. separated Br- and H+ ion movement through different regions (>200-fold difference in Bronsted acidities). By contrast, at low flash rates a previously unreported reversal occurs that favors Br- cultures for both proton evolution and less PSII charge recombination. In Br- cultures, slower proton transfer rate is attributed to stronger ion-pairing of Br- with AA residues lining the water channels. Both anions charge-neutralize protons and shepherd them to the lumen using dry aqueous channels.
Collapse
Affiliation(s)
- Colin Gates
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Computational Biology and Molecular Biophysics, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Biochemistry, Loyola University Chicago, IL 60660, USA
| | - Jonah M Williams
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - Gennady Ananyev
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - G Charles Dismukes
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, NJ 08854, USA.
| |
Collapse
|
5
|
Kosaki S, Mino H. Molecular Structure Related to an S = 5/2 High-Spin S 2 State Manganese Cluster of Photosystem II Investigated by Q-Band Pulse EPR Spectroscopy. J Phys Chem B 2023. [PMID: 37463845 DOI: 10.1021/acs.jpcb.3c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The high-spin S2 state of the photosynthetic oxygen-evolving cluster Mn4CaO5, corresponding to the g = 4.1 signal for X-band electron paramagnetic resonance (EPR), was investigated using Q-band pulsed EPR, which detected a main peak at g = 3.10 and satellite peaks at 5.25, 4.55, and 2.80. We evaluated the spin state as the zero-field splitting of D = 0.465 cm-1 and E/D = 0.245 with S = 5/2. The temperature dependence of the T1 relaxation time revealed that the excited-state energy was 28.7 cm-1 higher than that of the S = 5/2 ground state. By comparing present quantum mechanical (QM) calculation models, a closed-cubane structure with the protonation state of two oxygens, W1 (= OH-) and W2 (= H2O), was the most probable structure for the S = 5/2 state. The three-pulse electron spin-echo envelope modulation (ESEEM) detected the nuclear signal, which was assigned to nitrogen as His332 ligated to the Mn1 ion. The obtained hyperfine constant for the nitrogen signal was significantly reduced from that in the S = 1/2 low-spin state. These results indicate that the S = 5/2 spin state arises from the closed-cubane structure.
Collapse
Affiliation(s)
- Shinya Kosaki
- Division of Materials Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, 464-8602 Nagoya, Aichi, Japan
| | - Hiroyuki Mino
- Division of Materials Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, 464-8602 Nagoya, Aichi, Japan
| |
Collapse
|
6
|
Greife P, Schönborn M, Capone M, Assunção R, Narzi D, Guidoni L, Dau H. The electron-proton bottleneck of photosynthetic oxygen evolution. Nature 2023; 617:623-628. [PMID: 37138082 PMCID: PMC10191853 DOI: 10.1038/s41586-023-06008-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/23/2023] [Indexed: 05/05/2023]
Abstract
Photosynthesis fuels life on Earth by storing solar energy in chemical form. Today's oxygen-rich atmosphere has resulted from the splitting of water at the protein-bound manganese cluster of photosystem II during photosynthesis. Formation of molecular oxygen starts from a state with four accumulated electron holes, the S4 state-which was postulated half a century ago1 and remains largely uncharacterized. Here we resolve this key stage of photosynthetic O2 formation and its crucial mechanistic role. We tracked 230,000 excitation cycles of dark-adapted photosystems with microsecond infrared spectroscopy. Combining these results with computational chemistry reveals that a crucial proton vacancy is initally created through gated sidechain deprotonation. Subsequently, a reactive oxygen radical is formed in a single-electron, multi-proton transfer event. This is the slowest step in photosynthetic O2 formation, with a moderate energetic barrier and marked entropic slowdown. We identify the S4 state as the oxygen-radical state; its formation is followed by fast O-O bonding and O2 release. In conjunction with previous breakthroughs in experimental and computational investigations, a compelling atomistic picture of photosynthetic O2 formation emerges. Our results provide insights into a biological process that is likely to have occurred unchanged for the past three billion years, which we expect to support the knowledge-based design of artificial water-splitting systems.
Collapse
Affiliation(s)
- Paul Greife
- Department of Physics, Freie Universität, Berlin, Germany
| | | | - Matteo Capone
- Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, L'Aquila, Italy
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Daniele Narzi
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Leonardo Guidoni
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Holger Dau
- Department of Physics, Freie Universität, Berlin, Germany.
| |
Collapse
|
7
|
Guo Y, Messinger J, Kloo L, Sun L. Alternative Mechanism for O 2 Formation in Natural Photosynthesis via Nucleophilic Oxo-Oxo Coupling. J Am Chem Soc 2023; 145:4129-4141. [PMID: 36763485 DOI: 10.1021/jacs.2c12174] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
O2 formation in photosystem II (PSII) is a vital event on Earth, but the exact mechanism remains unclear. The presently prevailing theoretical model is "radical coupling" (RC) involving a Mn(IV)-oxyl unit in an "open-cubane" Mn4CaO6 cluster, which is supported experimentally by the S3 state of cyanobacterial PSII featuring an additional Mn-bound oxygenic ligand. However, it was recently proposed that the major structural form of the S3 state of higher plants lacks this extra ligand, and that the resulting S4 state would feature instead a penta-coordinate dangler Mn(V)=oxo, covalently linked to a "closed-cubane" Mn3CaO4 cluster. For this proposal, we explore here a large number of possible pathways of O-O bond formation and demonstrate that the "nucleophilic oxo-oxo coupling" (NOOC) between Mn(V)=oxo and μ3-oxo is the only eligible mechanism in such a system. The reaction is facilitated by a specific conformation of the cluster and concomitant water binding, which is delayed compared to the RC mechanism. An energetically feasible process is described starting from the valid S4 state through the sequential formation of peroxide and superoxide, followed by O2 release and a second water insertion. The newly found mechanism is consistent with available experimental thermodynamic and kinetic data and thus a viable alternative pathway for O2 formation in natural photosynthesis, in particular for higher plants.
Collapse
Affiliation(s)
- Yu Guo
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Johannes Messinger
- Department of Chemistry, Umeå University, Linnaeus väg 6 (KBC huset), Umeå SE-90187, Sweden
- Molecular Biomimetics, Department of Chemistry─Ångström Laboratory, Uppsala University, Uppsala SE-75120, Sweden
| | - Lars Kloo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm SE-10044, Sweden
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
8
|
Nakajima Y, Ugai-Amo N, Tone N, Nakagawa A, Iwai M, Ikeuchi M, Sugiura M, Suga M, Shen JR. Crystal structures of photosystem II from a cyanobacterium expressing psbA 2 in comparison to psbA 3 reveal differences in the D1 subunit. J Biol Chem 2022; 298:102668. [PMID: 36334624 PMCID: PMC9709244 DOI: 10.1016/j.jbc.2022.102668] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022] Open
Abstract
Three psbA genes (psbA1, psbA2, and psbA3) encoding the D1 subunit of photosystem II (PSII) are present in the thermophilic cyanobacterium Thermosynechococcus elongatus and are expressed differently in response to changes in the growth environment. To clarify the functional differences of the D1 protein expressed from these psbA genes, PSII dimers from two strains, each expressing only one psbA gene (psbA2 or psbA3), were crystallized, and we analyzed their structures at resolutions comparable to previously studied PsbA1-PSII. Our results showed that the hydrogen bond between pheophytin/D1 (PheoD1) and D1-130 became stronger in PsbA2- and PsbA3-PSII due to change of Gln to Glu, which partially explains the increase in the redox potential of PheoD1 observed in PsbA3. In PsbA2, one hydrogen bond was lost in PheoD1 due to the change of D1-Y147F, which may explain the decrease in stability of PheoD1 in PsbA2. Two water molecules in the Cl-1 channel were lost in PsbA2 due to the change of D1-P173M, leading to the narrowing of the channel, which may explain the lower efficiency of the S-state transition beyond S2 in PsbA2-PSII. In PsbA3-PSII, a hydrogen bond between D1-Ser270 and a sulfoquinovosyl-diacylglycerol molecule near QB disappeared due to the change of D1-Ser270 in PsbA1 and PsbA2 to D1-Ala270. This may result in an easier exchange of bound QB with free plastoquinone, hence an enhancement of oxygen evolution in PsbA3-PSII due to its high QB exchange efficiency. These results provide a structural basis for further functional examination of the three PsbA variants.
Collapse
Affiliation(s)
- Yoshiki Nakajima
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
| | - Natsumi Ugai-Amo
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Naoki Tone
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Akiko Nakagawa
- Proteo-Science Research Center, Ehime University, Matsuyama, Japan
| | - Masako Iwai
- Graduate School and College of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Masahiko Ikeuchi
- Graduate School and College of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Miwa Sugiura
- Proteo-Science Research Center, Ehime University, Matsuyama, Japan
| | - Michihiro Suga
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan,Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan,For correspondence: Michihiro Suga; Jian-Ren Shen
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan,Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan,For correspondence: Michihiro Suga; Jian-Ren Shen
| |
Collapse
|
9
|
Kessinger M, Soudackov AV, Schneider J, Bangle RE, Hammes-Schiffer S, Meyer GJ. Reorganization Energies for Interfacial Proton-Coupled Electron Transfer to a Water Oxidation Catalyst. J Am Chem Soc 2022; 144:20514-20524. [DOI: 10.1021/jacs.2c09672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Matthew Kessinger
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| | | | - Jenny Schneider
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| | - Rachel E. Bangle
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| | | | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599, United States
| |
Collapse
|
10
|
Guo Y, Messinger J, Kloo L, Sun L. Reversible Structural Isomerization of Nature's Water Oxidation Catalyst Prior to O-O Bond Formation. J Am Chem Soc 2022; 144:11736-11747. [PMID: 35748306 PMCID: PMC9264352 DOI: 10.1021/jacs.2c03528] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Photosynthetic water
oxidation is catalyzed by a manganese–calcium
oxide cluster, which experiences five “S-states” during
a light-driven reaction cycle. The unique “distorted chair”-like
geometry of the Mn4CaO5(6) cluster shows structural
flexibility that has been frequently proposed to involve “open”
and “closed”-cubane forms from the S1 to
S3 states. The isomers are interconvertible in the S1 and S2 states, while in the S3 state,
the open-cubane structure is observed to dominate inThermosynechococcus elongatus (cyanobacteria) samples.
In this work, using density functional theory calculations, we go
beyond the S3+Yz state to the S3nYz• → S4+Yz step, and report for the first time
that the reversible isomerism, which is suppressed in the S3+Yz state, is fully recovered
in the ensuing S3nYz• state due to the proton release
from a manganese-bound water ligand. The altered coordination strength
of the manganese–ligand facilitates formation of the closed-cubane
form, in a dynamic equilibrium with the open-cubane form. This tautomerism
immediately preceding dioxygen formation may constitute the rate limiting
step for O2 formation, and exert a significant influence
on the water oxidation mechanism in photosystem II.
Collapse
Affiliation(s)
- Yu Guo
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Johannes Messinger
- Department of Chemistry, Umeå University, Linnaeus väg 6 (KBC huset), SE-90187 Umeå, Sweden.,Molecular Biomimetics, Department of Chemistry─Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Lars Kloo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
11
|
Allgöwer F, Gamiz-Hernandez AP, Rutherford AW, Kaila VRI. Molecular Principles of Redox-Coupled Protonation Dynamics in Photosystem II. J Am Chem Soc 2022; 144:7171-7180. [PMID: 35421304 PMCID: PMC9052759 DOI: 10.1021/jacs.1c13041] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Photosystem II (PSII) catalyzes light-driven water oxidization, releasing O2 into the atmosphere and transferring the electrons for the synthesis of biomass. However, despite decades of structural and functional studies, the water oxidation mechanism of PSII has remained puzzling and a major challenge for modern chemical research. Here, we show that PSII catalyzes redox-triggered proton transfer between its oxygen-evolving Mn4O5Ca cluster and a nearby cluster of conserved buried ion-pairs, which are connected to the bulk solvent via a proton pathway. By using multi-scale quantum and classical simulations, we find that oxidation of a redox-active Tyrz (Tyr161) lowers the reaction barrier for the water-mediated proton transfer from a Ca2+-bound water molecule (W3) to Asp61 via conformational changes in a nearby ion-pair (Asp61/Lys317). Deprotonation of this W3 substrate water triggers its migration toward Mn1 to a position identified in recent X-ray free-electron laser (XFEL) experiments [Ibrahim et al. Proc. Natl. Acad. Sci. USA 2020, 117, 12,624-12,635]. Further oxidation of the Mn4O5Ca cluster lowers the proton transfer barrier through the water ligand sphere of the Mn4O5Ca cluster to Asp61 via a similar ion-pair dissociation process, while the resulting Mn-bound oxo/oxyl species leads to O2 formation by a radical coupling mechanism. The proposed redox-coupled protonation mechanism shows a striking resemblance to functional motifs in other enzymes involved in biological energy conversion, with an interplay between hydration changes, ion-pair dynamics, and electric fields that modulate the catalytic barriers.
Collapse
Affiliation(s)
- Friederike Allgöwer
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - A William Rutherford
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
12
|
Hussein R, Ibrahim M, Bhowmick A, Simon PS, Chatterjee R, Lassalle L, Doyle M, Bogacz I, Kim IS, Cheah MH, Gul S, de Lichtenberg C, Chernev P, Pham CC, Young ID, Carbajo S, Fuller FD, Alonso-Mori R, Batyuk A, Sutherlin KD, Brewster AS, Bolotovsky R, Mendez D, Holton JM, Moriarty NW, Adams PD, Bergmann U, Sauter NK, Dobbek H, Messinger J, Zouni A, Kern J, Yachandra VK, Yano J. Structural dynamics in the water and proton channels of photosystem II during the S 2 to S 3 transition. Nat Commun 2021; 12:6531. [PMID: 34764256 PMCID: PMC8585918 DOI: 10.1038/s41467-021-26781-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
Light-driven oxidation of water to molecular oxygen is catalyzed by the oxygen-evolving complex (OEC) in Photosystem II (PS II). This multi-electron, multi-proton catalysis requires the transport of two water molecules to and four protons from the OEC. A high-resolution 1.89 Å structure obtained by averaging all the S states and refining the data of various time points during the S2 to S3 transition has provided better visualization of the potential pathways for substrate water insertion and proton release. Our results indicate that the O1 channel is the likely water intake pathway, and the Cl1 channel is the likely proton release pathway based on the structural rearrangements of water molecules and amino acid side chains along these channels. In particular in the Cl1 channel, we suggest that residue D1-E65 serves as a gate for proton transport by minimizing the back reaction. The results show that the water oxidation reaction at the OEC is well coordinated with the amino acid side chains and the H-bonding network over the entire length of the channels, which is essential in shuttling substrate waters and protons.
Collapse
Affiliation(s)
- Rana Hussein
- grid.7468.d0000 0001 2248 7639Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Mohamed Ibrahim
- grid.7468.d0000 0001 2248 7639Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Asmit Bhowmick
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Philipp S. Simon
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Ruchira Chatterjee
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Louise Lassalle
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Margaret Doyle
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Isabel Bogacz
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - In-Sik Kim
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Mun Hon Cheah
- grid.8993.b0000 0004 1936 9457Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
| | - Sheraz Gul
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Casper de Lichtenberg
- grid.8993.b0000 0004 1936 9457Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden ,grid.12650.300000 0001 1034 3451Department of Chemistry, Umeå University, SE 90187 Umeå, Sweden
| | - Petko Chernev
- grid.8993.b0000 0004 1936 9457Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 75120 Uppsala, Sweden
| | - Cindy C. Pham
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Iris D. Young
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Sergio Carbajo
- grid.512023.70000 0004 6047 9447Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Franklin D. Fuller
- grid.512023.70000 0004 6047 9447Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Roberto Alonso-Mori
- grid.512023.70000 0004 6047 9447Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Alex Batyuk
- grid.512023.70000 0004 6047 9447Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Kyle D. Sutherlin
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Aaron S. Brewster
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Robert Bolotovsky
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Derek Mendez
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - James M. Holton
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Nigel W. Moriarty
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Paul D. Adams
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Bioengineering, University of California, Berkeley, CA 94720 USA
| | - Uwe Bergmann
- grid.14003.360000 0001 2167 3675Department of Physics, University of Wisconsin–Madison, Madison, WI 53706 USA
| | - Nicholas K. Sauter
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Holger Dobbek
- grid.7468.d0000 0001 2248 7639Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Johannes Messinger
- Department of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, SE 75120, Uppsala, Sweden. .,Department of Chemistry, Umeå University, SE 90187, Umeå, Sweden.
| | - Athina Zouni
- Institut für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Vittal K. Yachandra
- grid.184769.50000 0001 2231 4551Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
13
|
Capone M, Narzi D, Guidoni L. Mechanism of Oxygen Evolution and Mn 4CaO 5 Cluster Restoration in the Natural Water-Oxidizing Catalyst. Biochemistry 2021; 60:2341-2348. [PMID: 34283569 DOI: 10.1021/acs.biochem.1c00226] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water oxidation occurring in the first steps of natural oxygenic photosynthesis is catalyzed by the pigment/protein complex Photosystem II. This process takes place on the Mn4Ca cluster located in the core of Photosystem II and proceeds along the five steps (S0-S4) of the so-called Kok-Joliot cycle until the release of molecular oxygen. The catalytic cycle can therefore be started afresh through insertion of a new water molecule. Here, combining quantum mechanics/molecular mechanics simulations and minimum energy path calculations, we characterized on different spin surfaces the events occurring in the last sector of the catalytic cycle from structural, electronic, and thermodynamic points of view. We found that the process of oxygen evolution and water insertion can be described well by a two-step mechanism, with oxygen release being the rate-limiting step of the process. Moreover, our results allow us to identify the upcoming water molecule required to regenerate the initial structure of the Mn4Ca cluster in the S0 state. The insertion of the water molecule was found to be coupled with the transfer of a proton to a neighboring hydroxide ion, thus resulting in the reconstitution of the most widely accepted model of the S0 state.
Collapse
Affiliation(s)
- Matteo Capone
- Dipartimento di Scienze Fisiche e Chimiche, Universitá degli studi dell'Aquila, Via Vetoio (Coppito), 67100 L'Aquila, Italy
| | - Daniele Narzi
- Dipartimento di Scienze Fisiche e Chimiche, Universitá degli studi dell'Aquila, Via Vetoio (Coppito), 67100 L'Aquila, Italy
| | - Leonardo Guidoni
- Dipartimento di Scienze Fisiche e Chimiche, Universitá degli studi dell'Aquila, Via Vetoio (Coppito), 67100 L'Aquila, Italy
| |
Collapse
|
14
|
Kaur D, Zhang Y, Reiss KM, Mandal M, Brudvig GW, Batista VS, Gunner MR. Proton exit pathways surrounding the oxygen evolving complex of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148446. [PMID: 33964279 DOI: 10.1016/j.bbabio.2021.148446] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/17/2022]
Abstract
Photosystem II allows water to be the primary electron source for the photosynthetic electron transfer chain. Water is oxidized to dioxygen at the Oxygen Evolving Complex (OEC), a Mn4CaO5 inorganic core embedded on the lumenal side of PSII. Water-filled channels surrounding the OEC must bring in substrate water molecules, remove the product protons to the lumen, and may transport the product oxygen. Three water-filled channels, denoted large, narrow, and broad, extend from the OEC towards the aqueous surface more than 15 Å away. However, the role of each pathway in the transport in and out of the OEC is yet to be established. Here, we combine Molecular Dynamics (MD), Multi Conformation Continuum Electrostatics (MCCE) and Network Analysis to compare and contrast the three potential proton transfer paths. Hydrogen bond network analysis shows that near the OEC the waters are highly interconnected with similar free energy for hydronium at all locations. The paths diverge as they move towards the lumen. The water chain in the broad channel is better connected than in the narrow and large channels, where disruptions in the network are observed approximately 10 Å from the OEC. In addition, the barrier for hydronium translocation is lower in the broad channel. Thus, a proton released from any location on the OEC can access all paths, but the likely exit to the lumen passes through PsbO via the broad channel.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY 10016, United States; Department of Physics, City College of New York, NY 10031, United States
| | - Yingying Zhang
- Department of Physics, City College of New York, NY 10031, United States; Department of Physics, The Graduate Center of the City University of New York, New York, NY 10016, United States
| | - Krystle M Reiss
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Manoj Mandal
- Department of Physics, City College of New York, NY 10031, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - M R Gunner
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY 10016, United States; Department of Physics, City College of New York, NY 10031, United States; Department of Physics, The Graduate Center of the City University of New York, New York, NY 10016, United States.
| |
Collapse
|
15
|
Mäusle SM, Abzaliyeva A, Greife P, Simon PS, Perez R, Zilliges Y, Dau H. Activation energies for two steps in the S 2→ S 3 transition of photosynthetic water oxidation from time-resolved single-frequency infrared spectroscopy. J Chem Phys 2020; 153:215101. [PMID: 33291916 DOI: 10.1063/5.0027995] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The mechanism of water oxidation by the Photosystem II (PSII) protein-cofactor complex is of high interest, but specifically, the crucial coupling of protonation dynamics to electron transfer (ET) and dioxygen chemistry remains insufficiently understood. We drove spinach-PSII membranes by nanosecond-laser flashes synchronously through the water-oxidation cycle and traced the PSII processes by time-resolved single-frequency infrared (IR) spectroscopy in the spectral range of symmetric carboxylate vibrations of protein side chains. After the collection of IR-transients from 100 ns to 1 s, we analyzed the proton-removal step in the S2 ⇒ S3 transition, which precedes the ET that oxidizes the Mn4CaOx-cluster. Around 1400 cm-1, pronounced changes in the IR-transients reflect this pre-ET process (∼40 µs at 20 °C) and the ET step (∼300 µs at 20 °C). For transients collected at various temperatures, unconstrained multi-exponential simulations did not provide a coherent set of time constants, but constraining the ET time constants to previously determined values solved the parameter correlation problem and resulted in an exceptionally high activation energy of 540 ± 30 meV for the pre-ET step. We assign the pre-ET step to deprotonation of a group that is re-protonated by accepting a proton from the substrate-water, which binds concurrently with the ET step. The analyzed IR-transients disfavor carboxylic-acid deprotonation in the pre-ET step. Temperature-dependent amplitudes suggest thermal equilibria that determine how strongly the proton-removal step is reflected in the IR-transients. Unexpectedly, the proton-removal step is only weakly reflected in the 1400 cm-1 transients of PSII core complexes of a thermophilic cyanobacterium (T. elongatus).
Collapse
Affiliation(s)
- Sarah M Mäusle
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Aiganym Abzaliyeva
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Paul Greife
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Philipp S Simon
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Rebeca Perez
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Yvonne Zilliges
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Holger Dau
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
16
|
Yamaguchi K, Yamanaka S, Isobe H, Shoji M, Miyagawa K, Kawakami T. Theory of chemical bonds in metalloenzymes XXIII fundamental principles for the photo-induced water oxidation in oxygen evolving complex of photosystem II. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1725168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- K. Yamaguchi
- The Institute for Scientific and Industrial Research, Osaka University, Osaka, Japan
- Graduate School of Science, Osaka University, Toyonaka, Japan
- RIKEN Center for Computational Science, Kobe, Japan
- Institute for Nanoscience Design, Osaka University, Toyonaka, Japan
- Division of Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Japan
| | - S. Yamanaka
- Graduate School of Science, Osaka University, Toyonaka, Japan
- Division of Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Japan
| | - H. Isobe
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - M. Shoji
- Center of Computational Sciences, Tsukuba University, Tsukuba, Japan
| | - K. Miyagawa
- The Institute for Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - T. Kawakami
- Graduate School of Science, Osaka University, Toyonaka, Japan
- RIKEN Center for Computational Science, Kobe, Japan
| |
Collapse
|
17
|
Saito K, Nakagawa M, Ishikita H. pK a of the ligand water molecules in the oxygen-evolving Mn 4CaO 5 cluster in photosystem II. Commun Chem 2020; 3:89. [PMID: 36703312 PMCID: PMC9814768 DOI: 10.1038/s42004-020-00336-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/30/2020] [Indexed: 01/29/2023] Open
Abstract
Release of the protons from the substrate water molecules is prerequisite for O2 evolution in photosystem II (PSII). Proton-releasing water molecules with low pKa values at the catalytic moiety can be the substrate water molecules. In some studies, one of the ligand water molecules, W2, is regarded as OH-. However, the PSII crystal structure shows neither proton acceptor nor proton-transfer pathway for W2, which is not consistent with the assumption of W2 = OH-. Here we report the pKa values of the four ligand water molecules, W1 and W2 at Mn4 and W3 and W4 at Ca2+, of the Mn4CaO5 cluster. pKa(W1) ≈ pKa(W2) << pKa(W3) ≈ pKa(W4) in the Mn4CaO5 cluster in water. However, pKa(W1) ≈ pKa(D1-Asp61) << pKa(W2) in the PSII protein environment. These results suggest that in PSII, deprotonation of W2 is energetically disfavored as far as W1 exists.
Collapse
Affiliation(s)
- Keisuke Saito
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 Japan ,grid.26999.3d0000 0001 2151 536XResearch Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 Japan
| | - Minesato Nakagawa
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 Japan
| | - Hiroshi Ishikita
- grid.26999.3d0000 0001 2151 536XDepartment of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 Japan ,grid.26999.3d0000 0001 2151 536XResearch Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 Japan
| |
Collapse
|
18
|
Cox N, Pantazis DA, Lubitz W. Current Understanding of the Mechanism of Water Oxidation in Photosystem II and Its Relation to XFEL Data. Annu Rev Biochem 2020; 89:795-820. [DOI: 10.1146/annurev-biochem-011520-104801] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The investigation of water oxidation in photosynthesis has remained a central topic in biochemical research for the last few decades due to the importance of this catalytic process for technological applications. Significant progress has been made following the 2011 report of a high-resolution X-ray crystallographic structure resolving the site of catalysis, a protein-bound Mn4CaOxcomplex, which passes through ≥5 intermediate states in the water-splitting cycle. Spectroscopic techniques complemented by quantum chemical calculations aided in understanding the electronic structure of the cofactor in all (detectable) states of the enzymatic process. Together with isotope labeling, these techniques also revealed the binding of the two substrate water molecules to the cluster. These results are described in the context of recent progress using X-ray crystallography with free-electron lasers on these intermediates. The data are instrumental for developing a model for the biological water oxidation cycle.
Collapse
Affiliation(s)
- Nicholas Cox
- Research School of Chemistry, The Australian National University, Canberra ACT 2601, Australia
| | | | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
19
|
Petrie S, Terrett R, Stranger R, Pace RJ. Rationalizing the Geometries of the Water Oxidising Complex in the Atomic Resolution, Nominal S 3 State Crystal Structures of Photosystem II. Chemphyschem 2020; 21:785-801. [PMID: 32133758 DOI: 10.1002/cphc.201901106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/14/2020] [Indexed: 11/06/2022]
Abstract
Three atomic resolution crystal structures of Photosystem II, in the double flashed, nominal S3 intermediate state of its Mn4 Ca Water Oxidising Complex (WOC), have now been presented, at 2.25, 2.35 and 2.08 Å resolution. Although very similar overall, the S3 structures differ within the WOC catalytic site. The 2.25 Å structure contains only one oxy species (O5) in the WOC cavity, weakly associated with Mn centres, similar to that in the earlier 1.95 Å S1 structure. The 2.35 Å structure shows two such species (O5, O6), with the Mn centres and O5 positioned as in the 2.25 Å structure and O5-O6 separation of ∼1.5 Å. In the latest S3 variant, two oxy species are also seen (O5, Ox), with the Ox group appearing only in S3 , closely ligating one Mn, with O5-Ox separation <2.1 Å. The O5 and O6/Ox groups were proposed to be substrate water derived species. Recently, Petrie et al. (Chem. Phys. Chem., 2017) presented large scale Quantum Chemical modelling of the 2.25 Å structure, quantitatively explaining all significant features within the WOC region. This, as in our earlier studies, assumed a 'low' Mn oxidation paradigm (mean S1 Mn oxidation level of +3.0, Petrie et al., Angew. Chem. Int. Ed., 2015), rather than a 'high' oxidation model (mean S1 oxidation level of +3.5). In 2018 we showed (Chem. Phys. Chem., 2018) this oxidation state assumption predicted two energetically close S3 structural forms, one with the metal centres and O5 (as OH- ) positioned as in the 2.25 Å structure, and the other with the metals similarly placed, but with O5 (as H2 O) located in the O6 position of the 2.35 Å structure. The 2.35 Å two flashed structure was likely a crystal superposition of two such forms. Here we show, by similar computational analysis, that the latest 2.08 Å S3 structure is also a likely superposition of forms, but with O5 (as OH- ) occupying either the O5 or Ox positions in the WOC cavity. This highlights a remarkable structural 'lability' of the WOC centre in the S3 state, which is likely catalytically relevant to its water splitting function.
Collapse
Affiliation(s)
- Simon Petrie
- Research School of Chemistry, College of Physical and Mathematical Sciences, The Australian National University, Acton, ACT 2601, Australia
| | - Richard Terrett
- Research School of Chemistry, College of Physical and Mathematical Sciences, The Australian National University, Acton, ACT 2601, Australia
| | - Robert Stranger
- Research School of Chemistry, College of Physical and Mathematical Sciences, The Australian National University, Acton, ACT 2601, Australia
| | - Ron J Pace
- Research School of Chemistry, College of Physical and Mathematical Sciences, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
20
|
Shimada Y, Kitajima-Ihara T, Nagao R, Noguchi T. Role of the O4 Channel in Photosynthetic Water Oxidation as Revealed by Fourier Transform Infrared Difference and Time-Resolved Infrared Analysis of the D1-S169A Mutant. J Phys Chem B 2020; 124:1470-1480. [DOI: 10.1021/acs.jpcb.9b11946] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yuichiro Shimada
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tomomi Kitajima-Ihara
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Ryo Nagao
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
21
|
Nakamura S, Capone M, Narzi D, Guidoni L. Pivotal role of the redox-active tyrosine in driving the water splitting catalyzed by photosystem II. Phys Chem Chem Phys 2020; 22:273-285. [DOI: 10.1039/c9cp04605d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
TyrZ oxidation state triggers hydrogen bond modification in the water oxidation catalysis.
Collapse
Affiliation(s)
- Shin Nakamura
- Department of Biochemical Sciences “A. Rossi Fanelli”
- University of Rome “Sapienza”
- Rome
- Italy
| | - Matteo Capone
- Department of Information Engineering, Computational Science, and Mathematics
- Università dell’Aquila
- L’Aquila
- Italy
| | - Daniele Narzi
- Institute of Chemical Sciences and Engineering Ecole Polytechnique Federale de Lausanne Av. F.-A. Forel 2
- 1015 Lausanne
- Switzerland
| | - Leonardo Guidoni
- Department of Physical and Chemical Science
- Università dell’Aquila
- L’Aquila
- Italy
| |
Collapse
|
22
|
Lubitz W, Chrysina M, Cox N. Water oxidation in photosystem II. PHOTOSYNTHESIS RESEARCH 2019; 142:105-125. [PMID: 31187340 PMCID: PMC6763417 DOI: 10.1007/s11120-019-00648-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/20/2019] [Indexed: 05/18/2023]
Abstract
Biological water oxidation, performed by a single enzyme, photosystem II, is a central research topic not only in understanding the photosynthetic apparatus but also for the development of water splitting catalysts for technological applications. Great progress has been made in this endeavor following the report of a high-resolution X-ray crystallographic structure in 2011 resolving the cofactor site (Umena et al. in Nature 473:55-60, 2011), a tetra-manganese calcium complex. The electronic properties of the protein-bound water oxidizing Mn4OxCa complex are crucial to understand its catalytic activity. These properties include: its redox state(s) which are tuned by the protein matrix, the distribution of the manganese valence and spin states and the complex interactions that exist between the four manganese ions. In this short review we describe how magnetic resonance techniques, particularly EPR, complemented by quantum chemical calculations, have played an important role in understanding the electronic structure of the cofactor. Together with isotope labeling, these techniques have also been instrumental in deciphering the binding of the two substrate water molecules to the cluster. These results are briefly described in the context of the history of biological water oxidation with special emphasis on recent work using time resolved X-ray diffraction with free electron lasers. It is shown that these data are instrumental for developing a model of the biological water oxidation cycle.
Collapse
Affiliation(s)
- Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim/Ruhr, Germany
| | - Maria Chrysina
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim/Ruhr, Germany
| | - Nicholas Cox
- Research School of Chemistry, The Australian National University, Canberra, Australia
| |
Collapse
|
23
|
Pushkar Y, K Ravari A, Jensen SC, Palenik M. Early Binding of Substrate Oxygen Is Responsible for a Spectroscopically Distinct S 2 State in Photosystem II. J Phys Chem Lett 2019; 10:5284-5291. [PMID: 31419136 DOI: 10.1021/acs.jpclett.9b01255] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The biological generation of oxygen by the oxygen-evolving complex (OEC) in photosystem II (PS II) is one of nature's most important reactions. The OEC is a Mn4Ca cluster that has multiple Mn-O-Mn and Mn-O-Ca bridges and binds four water molecules. Previously, binding of an additional oxygen was detected in the S2 to S3 transition. Here we demonstrate that early binding of the substrate oxygen to the five-coordinate Mn1 center in the S2 state is likely responsible for the S2 high-spin EPR signal. Substrate binding in the Mn1-OH form explains the prevalence of the high-spin S2 state at higher pH and its low-temperature conversion into the S3 state. The given interpretation was confirmed by X-ray absorption spectroscopic measurements, DFT, and broken symmetry DFT calculations of structures and magnetic properties. Structural, electronic, and spectroscopic properties of the high-spin S2 state model are provided and compared with the available S3 state models. New interpretation of the high-spin S2 state opens opportunity for analysis of factors controlling the oxygen substrate binding in PS II.
Collapse
Affiliation(s)
- Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alireza K Ravari
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Scott C Jensen
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mark Palenik
- Code 6189, Chemistry Division, Naval Research Laboratory, Washington, DC 20375, United States
| |
Collapse
|
24
|
Krewald V, Neese F, Pantazis DA. Implications of structural heterogeneity for the electronic structure of the final oxygen-evolving intermediate in photosystem II. J Inorg Biochem 2019; 199:110797. [PMID: 31404888 DOI: 10.1016/j.jinorgbio.2019.110797] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
Abstract
Heterogeneity in intermediate catalytic states of the oxygen-evolving complex (OEC) of Photosystem II is known from a wide range of experimental and theoretical data, but its potential implications for the mechanism of water oxidation remain unexplored. We delineate the consequences of structural heterogeneity for the final step of the catalytic cycle by tracing the evolution of three spectroscopically relevant and structurally distinct components of the last metastable S3 state to the transient O2-evolving S4 state of the OEC. Using quantum chemical calculations, we show that each S3 isomer leads to a different electronic structure formulation for the active S4 state. Crucially, in addition to previously hypothesized Mn(IV)-oxyl species, we establish for the first time, how a genuine Mn(V)-oxo can be obtained in the catalytically active S4 state: this takes the form of a five-coordinate and locally high-spin (SMn = 1) Mn(V) site. This formulation for the S4 state evolves naturally from a preceding S3-state structural intermediate that contains a quasi-trigonal-bipyramidal Mn(IV) ion. The results strongly suggest that water binding in the S3 state is not prerequisite for reaching the oxygen-evolving S4 state of the complex, supporting the notion that both substrates are preloaded at the beginning of the catalytic cycle. This scenario allows true four-electron metal-centered hole accumulation to precede OO bond formation and hence the latter can proceed via a genuine even-electron mechanism. This can occur as intramolecular nucleophilic coupling of two oxo units synchronously with the binding of a water substrate for the next catalytic cycle.
Collapse
Affiliation(s)
- Vera Krewald
- Theoretische Chemie, Fachbereich Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
25
|
Ogata K, Hatakeyama M, Sakamoto Y, Nakamura S. Investigation of a Pathway for Water Delivery in Photosystem II Protein by Molecular Dynamics Simulation. J Phys Chem B 2019; 123:6444-6452. [DOI: 10.1021/acs.jpcb.9b04838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Koji Ogata
- Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Makoto Hatakeyama
- Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuki Sakamoto
- Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Shinichiro Nakamura
- Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
26
|
Capone M, Narzi D, Tychengulova A, Guidoni L. On the comparison between differential vibrational spectroscopy spectra and theoretical data in the carboxyl region of photosystem II. PHYSIOLOGIA PLANTARUM 2019; 166:33-43. [PMID: 30801735 DOI: 10.1111/ppl.12949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Understanding the structural modification experienced by the Mn4 CaO5 oxygen-evolving complex of photosystem II along the Kok-Joliot's cycle has been a challenge for both theory and experiments since many decades. In particular, differential infrared spectroscopy was extensively used to probe the surroundings of the reaction center, to catch spectral changes between different S-states along the catalytic cycle. Because of the complexity of the signals, only a limited quantity of identified peaks have been assigned so far, also because of the difficulty of a direct comparison with theoretical calculations. In the present work, we critically reconsider the comparison between differential vibrational spectroscopy and theoretical calculations performed on the structural models of the photosystem II active site and an inorganic structural mimic. Several factors are currently limiting the reliability of a quantitative comparison, such as intrinsic errors associated to theoretical methods, and most of all, the uncertainty attributed to the lack of knowledge about the localization of the underlying structural changes. Critical points in this comparison are extensively discussed. Comparing several computational data of differential S2 /S1 infrared spectroscopy, we have identified weak and strong points in their interpretation when compared with experimental spectra.
Collapse
Affiliation(s)
- Matteo Capone
- Department of Information Engineering, Computational Science and Mathematics, Università dell'Aquila, 67100, L'Aquila, Italy
| | - Daniele Narzi
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Aliya Tychengulova
- Department of Basic Sciences Applied for Engineering, "Sapienza" Università di Roma, 00185, Rome, Italy
| | - Leonardo Guidoni
- Department of Physical and Chemical Science, Università dell'Aquila, 67100, L'Aquila, Italy
| |
Collapse
|
27
|
Chrysina M, de Mendonça Silva JC, Zahariou G, Pantazis DA, Ioannidis N. Proton Translocation via Tautomerization of Asn298 During the S 2-S 3 State Transition in the Oxygen-Evolving Complex of Photosystem II. J Phys Chem B 2019; 123:3068-3078. [PMID: 30888175 PMCID: PMC6727346 DOI: 10.1021/acs.jpcb.9b02317] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
In biological water oxidation, a
redox-active tyrosine residue
(D1-Tyr161 or YZ) mediates electron transfer between the
Mn4CaO5 cluster of the oxygen-evolving complex
and the charge-separation site of photosystem II (PSII), driving the
cluster through progressively higher oxidation states Si (i = 0–4). In contrast to
lower S-states (S0, S1), in higher S-states
(S2, S3) of the Mn4CaO5 cluster, YZ cannot be oxidized at cryogenic temperatures
due to the accumulation of positive charge in the S1 →
S2 transition. However, oxidation of YZ by illumination
of S2 at 77–190 K followed by rapid freezing and
charge recombination between YZ• and
the plastoquinone radical QA•– allows trapping of an S2 variant, the so-called S2trapped state (S2t), that
is capable of forming YZ• at cryogenic
temperature. To identify the differences between the S2 and S2t states, we used the S2tYZ• intermediate as a probe for
the S2t state and followed the S2tYZ•/QA•– recombination kinetics at 10 K using time-resolved electron paramagnetic
resonance spectroscopy in H2O and D2O. The results
show that while S2tYZ•/QA•– recombination can be described
as pure electron transfer occurring in the Marcus inverted region,
the S2t → S2 reversion depends
on proton rearrangement and exhibits a strong kinetic isotope effect.
This suggests that YZ oxidation in the S2t state is facilitated by favorable proton redistribution in
the vicinity of YZ, most likely within the hydrogen-bonded
YZ–His190–Asn298 triad. Computational models
show that tautomerization of Asn298 to its imidic acid form enables
proton translocation to an adjacent asparagine-rich cavity of water
molecules that functions as a proton reservoir and can further participate
in proton egress to the lumen.
Collapse
Affiliation(s)
- Maria Chrysina
- Institute of Nanoscience & Nanotechnology , NCSR "Demokritos" , Athens 15310 , Greece.,Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Juliana Cecília de Mendonça Silva
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstr. 34-36 , 45470 Mülheim an der Ruhr , Germany.,Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Georgia Zahariou
- Institute of Nanoscience & Nanotechnology , NCSR "Demokritos" , Athens 15310 , Greece
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Nikolaos Ioannidis
- Institute of Nanoscience & Nanotechnology , NCSR "Demokritos" , Athens 15310 , Greece
| |
Collapse
|
28
|
Isobe H, Shoji M, Suzuki T, Shen JR, Yamaguchi K. Spin, Valence, and Structural Isomerism in the S 3 State of the Oxygen-Evolving Complex of Photosystem II as a Manifestation of Multimetallic Cooperativity. J Chem Theory Comput 2019; 15:2375-2391. [PMID: 30855953 DOI: 10.1021/acs.jctc.8b01055] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Photosynthetic water oxidation is catalyzed by a Mn4CaO5-cluster in photosystem II through an S-state cycle. Understanding the roles of heterogeneity in each S-state, as identified recently by the EPR spectroscopy, is very important to gain a complete description of the catalytic mechanism. We performed herein hybrid DFT calculations within the broken-symmetry formalism and associated analyses of Heisenberg spin models to study the electronic and spin structures of various isomeric structural motifs (hydroxo-oxo, oxyl-oxo, peroxo, and superoxo species) in the S3 state. Our extensive study reveals several factors that affect the spin ground state: (1) (formal) Mn oxidation state; (2) metal-ligand covalency; (3) coordination geometry; and (4) structural change of the Mn cluster induced by alternations in Mn···Mn distances. Some combination of these effects could selectively stabilize/destabilize some spin states. We found that the high spin state ( Stotal = 6) of the oxyl-oxo species can be causative for catalytic function, which manifests through mixing of the metal-ligand character in magnetic orbitals at relatively short O5···O6 distances (<2.0 Å) and long MnA···O5 distances (>2.0 Å). These results will serve as a basis to conceptually identify and rationalize the physicochemical synergisms that can be evoked by the unique "distorted chair" topology of the cluster through cooperative Jahn-Teller effects on multimetallic centers.
Collapse
Affiliation(s)
- Hiroshi Isobe
- Research Institute for Interdisciplinary Science , Okayama University , Okayama 700-8530 , Japan
| | - Mitsuo Shoji
- Center for Computational Science , University of Tsukuba , Tsukuba , Ibaraki 305-8577 , Japan
| | - Takayoshi Suzuki
- Research Institute for Interdisciplinary Science , Okayama University , Okayama 700-8530 , Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science , Okayama University , Okayama 700-8530 , Japan
| | - Kizashi Yamaguchi
- Institute for NanoScience Design , Osaka University , Toyonaka , Osaka 560-0043 , Japan
| |
Collapse
|
29
|
Abstract
Photosystem II (PSII) uses water as the terminal electron donor, producing oxygen in the Mn4CaO5 oxygen evolving complex (OEC), while cytochrome c oxidase (CcO) reduces O2 to water in its heme–Cu binuclear center (BNC). Each protein is oriented in the membrane to add to the proton gradient. The OEC, which releases protons, is located near the P-side (positive, at low-pH) of the membrane. In contrast, the BNC is in the middle of CcO, so the protons needed for O2 reduction must be transferred from the N-side (negative, at high pH). In addition, CcO pumps protons from N- to P-side, coupled to the O2 reduction chemistry, to store additional energy. Thus, proton transfers are directly coupled to the OEC and BNC redox chemistry, as well as needed for CcO proton pumping. The simulations that study the changes in proton affinity of the redox active sites and the surrounding protein at different states of the reaction cycle, as well as the changes in hydration that modulate proton transfer paths, are described.
Collapse
|
30
|
Amin M, Kaur D, Yang KR, Wang J, Mohamed Z, Brudvig GW, Gunner MR, Batista V. Thermodynamics of the S2-to-S3 state transition of the oxygen-evolving complex of photosystem II. Phys Chem Chem Phys 2019; 21:20840-20848. [DOI: 10.1039/c9cp02308a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The S2 to S3 transition in the OEC of PSII changes the structure of the Mn cluster. Monte Carlo sampling finds a Ca terminal water moves to form a bridge to Mn4 and the Mn1 ligand E189 can be replaced with a hydroxyl as a proton is lost.
Collapse
Affiliation(s)
- Muhamed Amin
- Center for Free-Electron Laser Science
- Deutsches Elektronen-Synchrotron DESY
- 22607 Hamburg
- Germany
- Department of Sciences
| | - Divya Kaur
- Department of Physics
- City College of New York
- 160 Convent Avenue
- New York
- USA
| | - Ke R. Yang
- Department of Chemistry, Yale University
- New Haven
- USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry
- Yale University
- New Haven
- USA
| | - Zainab Mohamed
- Zewail City of Science and Technology
- Sheikh Zayed
- 12588 Giza
- Egypt
| | | | - M. R. Gunner
- Department of Physics
- City College of New York
- 160 Convent Avenue
- New York
- USA
| | | |
Collapse
|
31
|
Shoji M, Isobe H, Yamanaka S, Umena Y, Kawakami K, Kamiya N, Yamaguchi K. Theoretical Elucidation of Geometrical Structures of the CaMn4O5 Cluster in Oxygen Evolving Complex of Photosystem II Scope and Applicability of Estimation Formulae of Structural Deformations via the Mixed-Valence and Jahn–Teller Effects. ADVANCES IN QUANTUM CHEMISTRY 2019. [DOI: 10.1016/bs.aiq.2018.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Yamaguchi K, Shoji M, Isobe H, Miyagawa K, Nakatani K. Theory of chemical bonds in metalloenzymes XXII: a concerted bond-switching mechanism for the oxygen–oxygen bond formation coupled with one electron transfer for water oxidation in the oxygen-evolving complex of photosystem II. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1552799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- K. Yamaguchi
- Institute for Nanoscience Design, Osaka University, Toyonaka, Osaka, Japan
- The Institute for Scientific and Industrial Research, Osaka University, Osaka, Japan
- Handairigaku Techno-Research, Toyonaka, Osaka, Japan
| | - M. Shoji
- Center of Computational Sciences, Tsukuba University, Tsukuba, Ibaraki, Japan
| | - H. Isobe
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - K. Miyagawa
- The Institute for Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - K. Nakatani
- The Institute for Scientific and Industrial Research, Osaka University, Osaka, Japan
| |
Collapse
|
33
|
Shamsipur M, Pashabadi A. Latest advances in PSII features and mechanism of water oxidation. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Oswald VF, Weitz AC, Biswas S, Ziller JW, Hendrich MP, Borovik AS. Manganese-Hydroxido Complexes Supported by a Urea/Phosphinic Amide Tripodal Ligand. Inorg Chem 2018; 57:13341-13350. [PMID: 30299920 DOI: 10.1021/acs.inorgchem.8b01886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogen bonds (H-bonds) within the secondary coordination sphere are often invoked as essential noncovalent interactions that lead to productive chemistry in metalloproteins. Incorporating these types of effects within synthetic systems has proven a challenge in molecular design that often requires the use of rigid organic scaffolds to support H-bond donors or acceptors. We describe the preparation and characterization of a new hybrid tripodal ligand ([H2pout]3-) that contains two monodeprotonated urea groups and one phosphinic amide. The urea groups serve as H-bond donors, while the phosphinic amide group serves as a single H-bond acceptor. The [H2pout]3- ligand was utilized to stabilize a series of Mn-hydroxido complexes in which the oxidation state of the metal center ranges from 2+ to 4+. The molecular structure of the MnIII-OH complex demonstrates that three intramolecular H-bonds involving the hydroxido ligand are formed. Additional evidence for the formation of intramolecular H-bonds was provided by vibrational spectroscopy in which the energy of the O-H vibration supports its assignment as an H-bond donor. The stepwise oxidation of [MnIIH2pout(OH)]2- to its higher oxidized analogs was further substantiated by electrochemical measurements and results from electronic absorbance and electron paramagnetic resonance spectroscopies. Our findings illustrate the utility of controlling both the primary and secondary coordination spheres to achieve structurally similar Mn-OH complexes with varying oxidation states.
Collapse
Affiliation(s)
- Victoria F Oswald
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Andrew C Weitz
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Saborni Biswas
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Joseph W Ziller
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Michael P Hendrich
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - A S Borovik
- Department of Chemistry , University of California-Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| |
Collapse
|
35
|
Petrie S, Stranger R, Pace RJ. Explaining the Different Geometries of the Water Oxidising Complex in the Nominal S 3 State Crystal Structures of Photosystem II at 2.25 Å and 2.35 Å. Chemphyschem 2018; 19:3296-3309. [PMID: 30290080 DOI: 10.1002/cphc.201800686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Indexed: 11/10/2022]
Abstract
Recently two atomic resolution crystal structures of Photosystem II, in the double flashed, nominal S3 intermediate state of its Mn4 Ca water oxidising complex (WOC), have been presented (Young et al., Nature 2016, 540, 453; Suga et al., Nature 2017, 543, 131). These structures are at 2.25 Å and 2.35 Å resolution, respectively. Although highly similar in most respects, the structures differ in a key region within the WOC catalytic site. In the 2.25 Å structure, one oxy species (O5) is observed within the WOC cavity, weakly associated with the Mn centres, similar to that seen earlier in the 1.95 Å XRD structure of the S1 intermediate (Suga et al., Nature, 2015, 517, 99). In the 2.35 Å structure, two such species are seen (O5, O6), with the Mn centres and O5 positioned as in the 2.25 Å structure and an O5-O6 separation of ∼1.5 Å, consistent with peroxo formation. This suggests O5 and O6 are substrate water derived species in this double flashed form. Recently we have presented (Petrie, et al., Chem. Phys. Chem., 2017) a large scale (220 atom) quantum chemical model of the Young et al. 2.25 Å structure, which quantitatively explains all significant features within the WOC region of that structure, particularly the positions of the metal centres and O5 group. Critical to this was our assumption of a 'low' Mn oxidation paradigm (mean S1 Mn oxidation level of +3.0, Petrie et al., Angew. Chem. Int. Ed., 2015), rather than a 'high' oxidation model (mean S1 oxidation level of +3.5), widely assumed in the literature. Here we show that our same oxidation state model predicts two classes of energetically close S3 structural forms, analogous to the S1 state, one with the metal centres and O5 positioned as in the 2.25 Å structure, and the other with the metals similarly placed, but with O5 located in the O6 position of the 2.35 Å structure. We show that the Suga et al. 2.35 Å structure is likely a superposition of two such forms, one from each class, which is consistent with reported atomic occupancies for that structure and the relative total energies we calculate for the two structural forms.
Collapse
Affiliation(s)
- Simon Petrie
- Research School of Chemistry, College of Physical and Mathematical Sciences, The Australian National University, Acton ACT, Australia, 2601
| | - Robert Stranger
- Research School of Chemistry, College of Physical and Mathematical Sciences, The Australian National University, Acton ACT, Australia, 2601
| | - Ron J Pace
- Research School of Chemistry, College of Physical and Mathematical Sciences, The Australian National University, Acton ACT, Australia, 2601
| |
Collapse
|
36
|
Affiliation(s)
- Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
37
|
Kärkäs MD, Li YY, Siegbahn PEM, Liao RZ, Åkermark B. Metal–Ligand Cooperation in Single-Site Ruthenium Water Oxidation Catalysts: A Combined Experimental and Quantum Chemical Approach. Inorg Chem 2018; 57:10881-10895. [DOI: 10.1021/acs.inorgchem.8b01527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Markus D. Kärkäs
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Ying-Ying Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Per E. M. Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Björn Åkermark
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
38
|
Reed CJ, Agapie T. Thermodynamics of Proton and Electron Transfer in Tetranuclear Clusters with Mn-OH 2/OH Motifs Relevant to H 2O Activation by the Oxygen Evolving Complex in Photosystem II. J Am Chem Soc 2018; 140:10900-10908. [PMID: 30064207 DOI: 10.1021/jacs.8b06426] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We report the synthesis of site-differentiated heterometallic clusters with three Fe centers and a single Mn site that binds water and hydroxide in multiple cluster oxidation states. Deprotonation of FeIII/II3MnII-OH2 clusters leads to internal reorganization resulting in formal oxidation at Mn to generate FeIII/II3MnIII-OH. 57Fe Mössbauer spectroscopy reveals that oxidation state changes (three for FeIII/II3Mn-OH2 and four for FeIII/II3Mn-OH clusters) occur exclusively at the Fe centers; the Mn center is formally MnII when water is bound and MnIII when hydroxide is bound. Experimentally determined p Ka (17.4) of the [FeIII2FeIIMnII-OH2] cluster and the reduction potentials of the [Fe3Mn-OH2] and [Fe3Mn-OH] clusters were used to analyze the O-H bond dissociation enthalpies (BDEO-H) for multiple cluster oxidation states. BDEO-H increases from 69 to 78 and 85 kcal/mol for the [FeIIIFeII2MnII-OH2], [FeIII2FeIIMnII-OH2], and [FeIII3MnII-OH2] clusters, respectively. Further insight of the proton and electron transfer thermodynamics of the [Fe3Mn-OH x] system was obtained by constructing a potential-p Ka diagram; the shift in reduction potentials of the [Fe3Mn-OH x] clusters in the presence of different bases supports the BDEO-H values reported for the [Fe3Mn-OH2] clusters. A lower limit of the p Ka for the hydroxide ligand of the [Fe3Mn-OH] clusters was estimated for two oxidation states. These data suggest BDEO-H values for the [FeIII2FeIIMnIII-OH] and [FeIII3MnIII-OH] clusters are greater than 93 and 103 kcal/mol, which hints to the high reactivity expected of the resulting [Fe3Mn═O] in this and related multinuclear systems.
Collapse
Affiliation(s)
- Christopher J Reed
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
39
|
Narzi D, Capone M, Bovi D, Guidoni L. Evolution from S3
to S4
States of the Oxygen-Evolving Complex in Photosystem II Monitored by Quantum Mechanics/Molecular Mechanics (QM/MM) Dynamics. Chemistry 2018; 24:10820-10828. [DOI: 10.1002/chem.201801709] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Daniele Narzi
- Institute of Chemical Sciences and Engineering; Ecole Polytechnique Federale de Lausanne; Av. F.-A. Forel 2 1015 Lausanne Switzerland
| | - Matteo Capone
- Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica; Universita degli studi dell'Aquila; Via Vetoio (Coppito) 67100 L'Aquila Italy
| | - Daniele Bovi
- Dipartimento di Scienze Fisiche e Chimiche; Universita degli studi dell'Aquila; Via Vetoio (Coppito) 67100 L'Aquila Italy
| | - Leonardo Guidoni
- Dipartimento di Scienze Fisiche e Chimiche; Universita degli studi dell'Aquila; Via Vetoio (Coppito) 67100 L'Aquila Italy
| |
Collapse
|
40
|
Kato Y, Akita F, Nakajima Y, Suga M, Umena Y, Shen JR, Noguchi T. Fourier Transform Infrared Analysis of the S-State Cycle of Water Oxidation in the Microcrystals of Photosystem II. J Phys Chem Lett 2018; 9:2121-2126. [PMID: 29620370 DOI: 10.1021/acs.jpclett.8b00638] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photosynthetic water oxidation is performed in photosystem II (PSII) through a light-driven cycle of intermediates called S states (S0-S4) at the water oxidizing center. Time-resolved serial femtosecond crystallography (SFX) has recently been applied to the microcrystals of PSII to obtain the structural information on these intermediates. However, it remains unanswered whether the reactions efficiently proceed throughout the S-state cycle retaining the native structures of the intermediates in PSII crystals. We investigated the water oxidation reactions in the PSII microcrystals using flash-induced Fourier transform infrared (FTIR) difference spectroscopy. In comparison with the FTIR spectra in solution, it was shown that all of the metastable intermediates in the microcrystals retained their native structures, and the efficiencies of the S-state transitions remained relatively high, although those of the S2 → S3 and S3 → S0 transitions were slightly lowered possibly due to some restriction of water movement in the crystals.
Collapse
Affiliation(s)
- Yuki Kato
- Division of Material Science, Graduate School of Science , Nagoya University , Furo-cho , Chikusa-ku, Nagoya 464-8602 , Japan
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
- Japan Science and Technology Agency, PRESTO , 4-1-8 Honcho , Kawaguchi, Saitama 332-0012 , Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Michihiro Suga
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Yasufumi Umena
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima-naka , Kita-ku, Okayama 700-8530 , Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science , Nagoya University , Furo-cho , Chikusa-ku, Nagoya 464-8602 , Japan
| |
Collapse
|
41
|
Yamaguchi K, Shoji M, Isobe H, Yamanaka S, Kawakami T, Yamada S, Katouda M, Nakajima T. Theory of chemical bonds in metalloenzymes XXI. Possible mechanisms of water oxidation in oxygen evolving complex of photosystem II. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1428375] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kizashi Yamaguchi
- Institute for Nanoscience Design, Osaka University, Osaka, Japan
- Handairigaku Techno-Research, Osaka Univeristy, Osaka, Japan
- Riken Advanced Institute for Computational Science (AICS), Hyogo, Japan
| | - Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan
| | - Hiroshi Isobe
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | - Takashi Kawakami
- Graduate School of Science, Osaka University, Osaka, Japan
- Riken Advanced Institute for Computational Science (AICS), Hyogo, Japan
| | - Satoru Yamada
- Riken Advanced Institute for Computational Science (AICS), Hyogo, Japan
| | - Michio Katouda
- Riken Advanced Institute for Computational Science (AICS), Hyogo, Japan
| | - Takahito Nakajima
- Riken Advanced Institute for Computational Science (AICS), Hyogo, Japan
| |
Collapse
|
42
|
Baituti B. Computational studies of the Mn 4/Ca cluster in photosystem II. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1142/s0219633618500074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Computational chemistry with the data from more detailed X-ray diffraction (XRD) oxygen evolving complex (OEC) structure has been used extensively of late in exploring the mechanisms of water oxidation in the OEC. The study reported in this paper involves density functional theory (DFT) calculations to investigate whether the data are in agreement with the four manganese ions in the OEC, being organized as a ‘3[Formula: see text]1’ (trimer plus one) model [Gatt et al. Angewandte Chemie International Edition, 51, 12025–12028, 2012; Petrie et al. Chemistry - A European Journal, 21, 6780–6792, 2015; Terrett et al. Chemical Communications, 50, 3187–3190, 2014] or ‘dimer of dimers’ model. [Terrett et al. Journal of Inorganic Biochemistry, 162, 178–189, 2016]. The data analysis method used involves quantum chemical DFT calculations on relevant models of the OEC cluster. DFT calculations were performed using both the so-called ‘open’ and ‘closed’ forms [Terrett et al. Journal of Inorganic Biochemistry, 162, 178–189, 2016] of the S2 OEC structure models with total spin ([Formula: see text]) 1/2, 7/2, 9/2 and 15/2 within the MnIII MnIV MnIII MnIII ‘low’ oxidation paradigm to examine exchange coupling within the OEC cluster. The results show that the [Formula: see text]-coupling in the ‘closed’ form: [Formula: see text][Formula: see text]cm[Formula: see text], [Formula: see text][Formula: see text]cm[Formula: see text], [Formula: see text][Formula: see text]cm[Formula: see text] and [Formula: see text]–[Formula: see text][Formula: see text]cm[Formula: see text]. In the ‘closed’ form, [Formula: see text] and [Formula: see text] represent the two largest exchange interactions within the manganese cluster, whereas [Formula: see text] and [Formula: see text] are small and almost net cancel. The magnetic coupling between the four Mn ions is close to ‘dimer of dimers’, with both dimers anti-ferromagnetically coupled internally and with weak inter-dimer net coupling.
Collapse
Affiliation(s)
- Bernard Baituti
- Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| |
Collapse
|
43
|
Siegbahn PEM. The S2 to S3 transition for water oxidation in PSII (photosystem II), revisited. Phys Chem Chem Phys 2018; 20:22926-22931. [DOI: 10.1039/c8cp03720e] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The formation of O2 from water requires four transitions, each one after the absorption of one light flash.
Collapse
Affiliation(s)
- Per E. M. Siegbahn
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- Stockholm
- Sweden
| |
Collapse
|
44
|
Beal NJ, Corry TA, O’Malley PJ. Comparison between Experimental and Broken Symmetry Density Functional Theory (BS-DFT) Calculated Electron Paramagnetic Resonance (EPR) Parameters of the S2 State of the Oxygen-Evolving Complex of Photosystem II in Its Native (Calcium) and Strontium-Substituted Form. J Phys Chem B 2017; 121:11273-11283. [DOI: 10.1021/acs.jpcb.7b09498] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Nathan J. Beal
- School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Thomas A. Corry
- School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Patrick J. O’Malley
- School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
45
|
Nagao R, Ueoka-Nakanishi H, Noguchi T. D1-Asn-298 in photosystem II is involved in a hydrogen-bond network near the redox-active tyrosine Y Z for proton exit during water oxidation. J Biol Chem 2017; 292:20046-20057. [PMID: 29046348 DOI: 10.1074/jbc.m117.815183] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/04/2017] [Indexed: 01/19/2023] Open
Abstract
In photosynthetic water oxidation, two water molecules are converted into one oxygen molecule and four protons at the Mn4CaO5 cluster in photosystem II (PSII) via the S-state cycle. Efficient proton exit from the catalytic site to the lumen is essential for this process. However, the exit pathways of individual protons through the PSII proteins remain to be identified. In this study, we examined the involvement of a hydrogen-bond network near the redox-active tyrosine YZ in proton transfer during the S-state cycle. We focused on spectroscopic analyses of a site-directed variant of D1-Asn-298, a residue involved in a hydrogen-bond network near YZ We found that the D1-N298A mutant of Synechocystis sp. PCC 6803 exhibits an O2 evolution activity of ∼10% of the wild-type. D1-N298A and the wild-type D1 had very similar features of thermoluminescence glow curves and of an FTIR difference spectrum upon YZ oxidation, suggesting that the hydrogen-bonded structure of YZ and electron transfer from the Mn4CaO5 cluster to YZ were little affected by substitution. In the D1-N298A mutant, however, the flash-number dependence of delayed luminescence showed a monotonic increase without oscillation, and FTIR difference spectra of the S-state cycle indicated partial and significant inhibition of the S2 → S3 and S3 → S0 transitions, respectively. These results suggest that the D1-N298A substitution inhibits the proton transfer processes in the S2 → S3 and S3 → S0 transitions. This in turn indicates that the hydrogen-bond network near YZ can be functional as a proton transfer pathway during photosynthetic water oxidation.
Collapse
Affiliation(s)
- Ryo Nagao
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Hanayo Ueoka-Nakanishi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
46
|
Narzi D, Coccia E, Manzoli M, Guidoni L. Impact of molecular flexibility on the site energy shift of chlorophylls in Photosystem II. Biophys Chem 2017; 229:93-98. [DOI: 10.1016/j.bpc.2017.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 01/31/2023]
|
47
|
Petrie S, Stranger R, Pace RJ. Rationalizing the 2.25 Å Resolution Crystal Structure of the Water Oxidising Complex of Photosystem II in the S3State. Chemphyschem 2017; 18:2924-2931. [DOI: 10.1002/cphc.201700640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Simon Petrie
- Research School of Chemistry, College of Physical and Mathematical Sciences; The Australian National University; Acton ACT 2601 Australia
| | - Rob Stranger
- Research School of Chemistry, College of Physical and Mathematical Sciences; The Australian National University; Acton ACT 2601 Australia
| | - Ron J. Pace
- Research School of Chemistry, College of Physical and Mathematical Sciences; The Australian National University; Acton ACT 2601 Australia
| |
Collapse
|
48
|
Barry BA, Brahmachari U, Guo Z. Tracking Reactive Water and Hydrogen-Bonding Networks in Photosynthetic Oxygen Evolution. Acc Chem Res 2017; 50:1937-1945. [PMID: 28763201 DOI: 10.1021/acs.accounts.7b00189] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In oxygenic photosynthesis, photosystem II (PSII) converts water to molecular oxygen through four photodriven oxidation events at a Mn4CaO5 cluster. A tyrosine, YZ (Y161 in the D1 polypeptide), transfers oxidizing equivalents from an oxidized, primary chlorophyll donor to the metal center. Calcium or its analogue, strontium, is required for activity. The Mn4CaO5 cluster and YZ are predicted to be hydrogen bonded in a water-containing network, which involves amide carbonyl groups, amino acid side chains, and water. This hydrogen-bonded network includes amino acid residues in intrinsic and extrinsic subunits. One of the extrinsic subunits, PsbO, is intrinsically disordered. This extensive (35 Å) network may be essential in facilitating proton release from substrate water. While it is known that some proteins employ internal water molecules to catalyze reactions, there are relatively few methods that can be used to study the role of water. In this Account, we review spectroscopic evidence from our group supporting the conclusion that the PSII hydrogen-bonding network is dynamic and that water in the network plays a direct role in catalysis. Two approaches, transient electron paramagnetic resonance (EPR) and reaction-induced FT-IR (RIFT-IR) spectroscopies, were used. The EPR experiments focused on the decay kinetics of YZ• via recombination at 190 K and the solvent isotope, pH, and calcium dependence of these kinetics. The RIFT-IR experiments focused on shifts in amide carbonyl frequencies, induced by photo-oxidation of the metal cluster, and on the isotope-based assignment of bands to internal, small protonated water clusters at 190, 263, and 283 K. To conduct these experiments, PSII was prepared in selected steps along the catalytic pathway, the Sn state cycle (n = 0-4). This cycle ultimately generates oxygen. In the EPR studies, S-state dependent changes were observed in the YZ• lifetime and in its solvent isotope effect. The YZ• lifetime depended on the presence of calcium at pH 7.5, but not at pH 6.0, suggesting a two-donor model for PCET. At pH 6.0 or 7.5, barium and ammonia both slowed the rate of YZ• recombination, consistent with disruption of the hydrogen-bonding network. In the RIFT-IR studies of the S state transitions, infrared bands associated with the transient protonation and deprotonation of internal waters were identified by D2O and H218O labeling. The infrared bands of these protonated water clusters, Wn+ (or nH2O(H3O)+, n = 5-6), exhibited flash dependence and were produced during the S1 to S2 and S3 to S0 transitions. Calcium dependence was observed at pH 7.5, but not at pH 6.0. S-state induced shifts were observed in amide C═O frequencies during the S1 to S2 transition and attributed to alterations in hydrogen bonding, based on ammonia sensitivity. In addition, isotope editing of the extrinsic subunit, PsbO, established that amide vibrational bands of this lumenal subunit respond to the S state transitions and that PsbO is a structural template for the reaction center. Taken together, these spectroscopic results support the hypothesis that proton transfer networks, extending from YZ to PsbO, play a functional and dynamic role in photosynthetic oxygen evolution.
Collapse
Affiliation(s)
- Bridgette A. Barry
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Udita Brahmachari
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhanjun Guo
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
49
|
Yamaguchi K, Shoji M, Isobe H, Yamanaka S, Umena Y, Kawakami K, Kamiya N. On the guiding principles for understanding of geometrical structures of the CaMn4O5 cluster in oxygen-evolving complex of photosystem II. Proposal of estimation formula of structural deformations via the Jahn–Teller effects. Mol Phys 2017. [DOI: 10.1080/00268976.2016.1278476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- K. Yamaguchi
- Institute for Nanoscience Design, Osaka University, Toyonaka, Japan
- Handairigaku Techno-Research , Toyonaka, Japan
| | - M. Shoji
- Center of Computational Sciences, Tsukuba University , Tsukuba, Japan
| | - H. Isobe
- Graduate School of Natural Science and Technology, Okayama University , Okayama, Japan
| | - S. Yamanaka
- Graduate School of Science, Osaka University , Osaka, Japan
| | - Y. Umena
- The OUC Advanced Research Institute for Natural Science and Technology (OCARNA), Osaka City University , Osaka, Japan
| | - K. Kawakami
- The OUC Advanced Research Institute for Natural Science and Technology (OCARNA), Osaka City University , Osaka, Japan
| | - N. Kamiya
- The OUC Advanced Research Institute for Natural Science and Technology (OCARNA), Osaka City University , Osaka, Japan
| |
Collapse
|
50
|
Najafpour MM, Heidari S, Balaghi SE, Hołyńska M, Sadr MH, Soltani B, Khatamian M, Larkum AW, Allakhverdiev SI. Proposed mechanisms for water oxidation by Photosystem II and nanosized manganese oxides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:156-174. [DOI: 10.1016/j.bbabio.2016.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 12/18/2022]
|