1
|
Abdelhady AW, Mittan-Moreau DW, Crane PL, McLeod MJ, Cheong SH, Thorne RE. Ice formation and its elimination in cryopreservation of oocytes. Sci Rep 2024; 14:18809. [PMID: 39138273 PMCID: PMC11322307 DOI: 10.1038/s41598-024-69528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Damage from ice and potential toxicity of ice-inhibiting cryoprotective agents (CPAs) are key issues in assisted reproduction of humans, domestic and research animals, and endangered species using cryopreserved oocytes and embryos. The nature of ice formed in bovine oocytes (similar in size to oocytes of humans and most other mammals) after rapid cooling and during rapid warming was examined using synchrotron-based time-resolved x-ray diffraction. Using cooling rates, warming rates and CPA concentrations of current practice, oocytes show no ice after cooling but always develop large ice fractions-consistent with crystallization of most free water-during warming, so most ice-related damage must occur during warming. The detailed behavior of ice at warming depended on the nature of ice formed during cooling. Increasing cooling rates allows oocytes soaked as in current practice to remain essentially ice free during both cooling and warming. Much larger convective warming rates are demonstrated and will allow routine ice-free cryopreservation with smaller CPA concentrations. These results clarify the roles of cooling, warming, and CPA concentration in generating ice in oocytes and establish the structure and grain size of ice formed. Ice formation can be eliminated as a factor affecting post-warming oocyte viability and development in many species, improving outcomes and allowing other deleterious effects of the cryopreservation cycle to be independently studied.
Collapse
Affiliation(s)
- Abdallah W Abdelhady
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - David W Mittan-Moreau
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Patrick L Crane
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | | | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Robert E Thorne
- Physics Department, Cornell University, Ithaca, NY, 14853, USA.
- MiTeGen, LLC, Ithaca, NY, 14850, USA.
| |
Collapse
|
2
|
Sun G, Tanaka H. Surface-induced water crystallisation driven by precursors formed in negative pressure regions. Nat Commun 2024; 15:6083. [PMID: 39060256 PMCID: PMC11282091 DOI: 10.1038/s41467-024-50188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Ice nucleation is a crucial process in nature and industries; however, the role of the free surface of water in this process remains unclear. To address this, we investigate the microscopic freezing process using brute-force molecular dynamics simulations. We discover that the free surface assists ice nucleation through an unexpected mechanism. The surface-induced negative pressure enhances the formation of local structures with a ring topology characteristic of Ice 0-like symmetry, promoting ice nucleation despite the symmetry differing from ordinary ice crystals. Unlike substrate-induced nucleation via water-solid interactions that occurs directly on the surface, this negative-pressure-induced mechanism promotes ice nucleation slightly inward the surface. Our findings provide a molecular-level understanding of the mechanism and pathway behind free-surface-induced ice formation, resolving the longstanding debate. The implications of our discoveries are of substantial importance in areas such as cloud formation, food technology, and other fields where ice nucleation plays a pivotal role.
Collapse
Affiliation(s)
- Gang Sun
- Social Cooperation Research Department "Frost Protection Science", Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing, China
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
3
|
Abdelhady AW, Mittan-Moreau DW, Crane PL, McLeod MJ, Cheong SH, Thorne RE. Ice formation and its elimination in cryopreservation of bovine oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567270. [PMID: 38014098 PMCID: PMC10680738 DOI: 10.1101/2023.11.15.567270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Damage from ice and potential toxicity of ice-inhibiting cryoprotective agents (CPAs) are key issues in assisted reproduction using cryopreserved oocytes and embryos. We use synchrotron-based time-resolved x-ray diffraction and tools from protein cryocrystallography to characterize ice formation within bovine oocytes after cooling at rates between ∼1000 °C/min and ∼600,000°C /min and during warming at rates between 20,000 and 150,000 °C /min. Maximum crystalline ice diffraction intensity, maximum ice volume, and maximum ice grain size are always observed during warming. All decrease with increasing CPA concentration, consistent with the decreasing free water fraction. With the cooling rates, warming rates and CPA concentrations of current practice, oocytes may show no ice after cooling but always develop substantial ice fractions on warming, and modestly reducing CPA concentrations causes substantial ice to form during cooling. With much larger cooling and warming rates achieved using cryocrystallography tools, oocytes soaked as in current practice remain essentially ice free during both cooling and warming, and when soaked in half-strength CPA solution oocytes remain ice free after cooling and develop small grain ice during warming. These results clarify the roles of cooling, warming, and CPA concentration in generating ice in oocytes, establish the character of ice formed, and suggest that substantial further improvements in warming rates are feasible. Ice formation can be eliminated as a factor affecting post-thaw oocyte viability and development, allowing other deleterious effects of the cryopreservation cycle to be studied, and osmotic stress and CPA toxicity reduced. Significance Statement Cryopreservation of oocytes and embryos is critical in assisted reproduction of humans and domestic animals and in preservation of endangered species. Success rates are limited by damage from crystalline ice, toxicity of cryoprotective agents (CPAs), and damage from osmotic stress. Time-resolved x-ray diffraction of bovine oocytes shows that ice forms much more readily during warming than during cooling, that maximum ice fractions always occur during warming, and that the tools and large CPA concentrations of current protocols can at best only prevent ice formation during cooling. Using tools from cryocrystallography that give dramatically larger cooling and warming rates, ice formation can be completely eliminated and required CPA concentrations substantially reduced, expanding the scope for species-specific optimization of post-thaw reproductive outcomes.
Collapse
|
4
|
Ma Y, Dong P, He Y, Zhao Z, Zhang X, Yang J, Yan J, Li W. Freezing of water and melting of ice: theoretical modeling at the nanoscale. NANOSCALE 2023; 15:18004-18014. [PMID: 37909355 DOI: 10.1039/d3nr02421k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Freezing of water and melting of ice at the nanoscale play critical roles in science and technology fields, including aviation systems, infrastructures, and other broad spectrum of technologies. To cope with the icing challenge, nanoscale anti-icing surface technology has been developed. The freezing and melting temperatures can be tailored by manipulating the size (the radius of water or ice); however, it lacks systemic research. In this work, the size effect on the melting temperature of ice nanocrystals was first established, which considered the variation of bond energy and equivalent heat energy from the perspective of the force-heat equivalence energy density principle. Based on the heterogeneous nucleation mode and by further considering the size and temperature effects on the interface energy involved solid-liquid energy and liquid-vapor energy as well as the above developed melting temperature model, another model is established to accurately predict the freezing temperature of water nanodroplets. The parameters required by the two models established in this paper have a clear physical meaning and establish the quantitative relationships among freezing temperature, melting temperature, surface stress, interface energy, and other thermodynamic parameters. The agreement between model prediction and experimental simulation data confirms the validity and universality of the established models. The higher prediction accuracy of this work compared to the other theoretical models, due to the more detailed consideration and the reference point, captures the errors introduced by the experiment or simulation. This study contributes to a deeper understanding of the underlying mechanism of freezing of water and melting of ice nanocrystals and provides theoretical guidance for the design of cryopreservation systems and anti-icing systems for aviation.
Collapse
Affiliation(s)
- Yanli Ma
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044, China
| | - Pan Dong
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
| | - Yi He
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
| | - Ziyuan Zhao
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
| | - Xuyao Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
| | - Jiabin Yang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
| | - Jiabo Yan
- High School Affiliated to Southwest University, Chongqing, 400799, China
| | - Weiguo Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
5
|
Klíma M, Celný D, Janek J, Kolafa J. Properties of water and argon clusters developed in supersonic expansions. J Chem Phys 2023; 159:124302. [PMID: 38127374 DOI: 10.1063/5.0166912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/28/2023] [Indexed: 12/23/2023] Open
Abstract
Using adiabatic molecular dynamics coupled with the fluid dynamics equations, we model nucleation in an expanding beam of water vapor and argon on a microsecond scale. The size distribution of clusters, their temperature, and pickup cross sections in dependence on velocity are investigated and compared to the geometric cross sections and the experiment. The clusters are warmer than the expanding gas because of the time scale of relaxation processes. We also suggest that their translational and rotational kinetic energies are modified due to evaporative cooling. The pickup cross sections determined for the final clusters using molecules of the same kind increase with decreasing velocity, still obeying the (a+bN1/3)2 law.
Collapse
Affiliation(s)
- Martin Klíma
- Department of Physical Chemistry, University of Chemistry and Technology in Prague, 166 28 Prague 6, Czech Republic
| | - David Celný
- Department of Physical Chemistry, University of Chemistry and Technology in Prague, 166 28 Prague 6, Czech Republic
| | - Jiří Janek
- Department of Physical Chemistry, University of Chemistry and Technology in Prague, 166 28 Prague 6, Czech Republic
| | - Jiří Kolafa
- Department of Physical Chemistry, University of Chemistry and Technology in Prague, 166 28 Prague 6, Czech Republic
| |
Collapse
|
6
|
Kringle L, Kay BD, Kimmel GA. Dynamic Heterogeneity and Kovacs' Memory Effects in Supercooled Water. J Phys Chem B 2023; 127:3919-3930. [PMID: 37097190 DOI: 10.1021/acs.jpcb.3c01465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Understanding the properties of supercooled water is important for developing a comprehensive theory for liquid water and amorphous ices. Because of rapid crystallization for deeply supercooled water, experiments on it are typically carried out under conditions in which the temperature and/or pressure are rapidly changing. As a result, information on the structural relaxation kinetics of supercooled water as it approaches (metastable) equilibrium is useful for interpreting results obtained in this experimentally challenging region of phase space. We used infrared spectroscopy and the fast time resolution obtained by transiently heating nanoscale water films to investigate relaxation kinetics (aging) in supercooled water. When the structural relaxation of the water films was followed using a temperature jump protocol analogous to the classic experiments of Kovacs, similar memory effects were observed. In particular, after suitable aging at one temperature, water's structure displayed an extremum versus the number of heat pulses upon changing to a second temperature before eventually relaxing to a steady-state structure characteristic of that temperature. A random double well model based on the idea of dynamic heterogeneity in supercooled water accounts for the observations.
Collapse
Affiliation(s)
- Loni Kringle
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Bruce D Kay
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Greg A Kimmel
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
7
|
Grabowska J, Blazquez S, Sanz E, Noya EG, Zeron IM, Algaba J, Miguez JM, Blas FJ, Vega C. Homogeneous nucleation rate of methane hydrate formation under experimental conditions from seeding simulations. J Chem Phys 2023; 158:114505. [PMID: 36948790 DOI: 10.1063/5.0132681] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
In this work, we shall estimate via computer simulations the homogeneous nucleation rate for the methane hydrate at 400 bars for a supercooling of about 35 K. The TIP4P/ICE model and a Lennard-Jones center were used for water and methane, respectively. To estimate the nucleation rate, the seeding technique was employed. Clusters of the methane hydrate of different sizes were inserted into the aqueous phase of a two-phase gas-liquid equilibrium system at 260 K and 400 bars. Using these systems, we determined the size at which the cluster of the hydrate is critical (i.e., it has 50% probability of either growing or melting). Since nucleation rates estimated from the seeding technique are sensitive to the choice of the order parameter used to determine the size of the cluster of the solid, we considered several possibilities. We performed brute force simulations of an aqueous solution of methane in water in which the concentration of methane was several times higher than the equilibrium concentration (i.e., the solution was supersaturated). From brute force runs, we infer the value of the nucleation rate for this system rigorously. Subsequently, seeding runs were carried out for this system, and it was found that only two of the considered order parameters were able to reproduce the value of the nucleation rate obtained from brute force simulations. By using these two order parameters, we estimated the nucleation rate under experimental conditions (400 bars and 260 K) to be of the order of log10 (J/(m3 s)) = -7(5).
Collapse
Affiliation(s)
- J Grabowska
- Dpto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - S Blazquez
- Dpto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - E Sanz
- Dpto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - E G Noya
- Instituto de Química Física Rocasolano, CSIC, C/ Serrano 119, 28006 Madrid, Spain
| | - I M Zeron
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - J Algaba
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - J M Miguez
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - F J Blas
- Laboratorio de Simulación Molecular y Química Computacional, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Ciencias Integradas, Universidad de Huelva, 21006 Huelva, Spain
| | - C Vega
- Dpto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
8
|
Gorfer A, Dellago C, Sega M. High-density liquid (HDL) adsorption at the supercooled water/vapor interface and its possible relation to the second surface tension inflection point. J Chem Phys 2023; 158:054503. [PMID: 36754827 DOI: 10.1063/5.0132985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We investigate the properties of water along the liquid/vapor coexistence line in the supercooled regime down to the no-man's land. Extensive molecular dynamics simulations of the TIP4P/2005 liquid/vapor interface in the range 198-348 K allow us to locate the second surface tension inflection point with a high accuracy at 283 ± 5 K, close to the temperature of maximum density. This temperature also coincides with the appearance of a density anomaly at the interface known as the apophysis. We relate the emergence of the apophysis to the observation of high-density liquid (HDL) water adsorption in the proximity of the liquid/vapor interface.
Collapse
Affiliation(s)
- Alexander Gorfer
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, Wien A-1090, Austria
| | - Christoph Dellago
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, Wien A-1090, Austria
| | - Marcello Sega
- Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| |
Collapse
|
9
|
Lin M, Cao H, Li J. Control strategies of ice nucleation, growth, and recrystallization for cryopreservation. Acta Biomater 2023; 155:35-56. [PMID: 36323355 DOI: 10.1016/j.actbio.2022.10.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 02/02/2023]
Abstract
The cryopreservation of biomaterials is fundamental to modern biotechnology and biomedicine, but the biggest challenge is the formation of ice, resulting in fatal cryoinjury to biomaterials. To date, abundant ice control strategies have been utilized to inhibit ice formation and thus improve cryopreservation efficiency. This review focuses on the mechanisms of existing control strategies regulating ice formation and the corresponding applications to biomaterial cryopreservation, which are of guiding significance for the development of ice control strategies. Herein, basics related to biomaterial cryopreservation are introduced first. Then, the theoretical bases of ice nucleation, growth, and recrystallization are presented, from which the key factors affecting each process are analyzed, respectively. Ice nucleation is mainly affected by melting temperature, interfacial tension, shape factor, and kinetic prefactor, and ice growth is mainly affected by solution viscosity and cooling/warming rate, while ice recrystallization is inhibited by adsorption or diffusion mechanisms. Furthermore, the corresponding research methods and specific control strategies for each process are summarized. The review ends with an outlook of the current challenges and future perspectives in cryopreservation. STATEMENT OF SIGNIFICANCE: Ice formation is the major limitation of cryopreservation, which causes fatal cryoinjury to cryopreserved biomaterials. This review focuses on the three processes related to ice formation, called nucleation, growth, and recrystallization. The theoretical models, key influencing factors, research methods and corresponding ice control strategies of each process are summarized and discussed, respectively. The systematic introduction on mechanisms and control strategies of ice formation is instructive for the cryopreservation development.
Collapse
Affiliation(s)
- Min Lin
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for CO(2) Utilization and Reduction Technology, Tsinghua University, Beijing 100084, China
| | - Haishan Cao
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for CO(2) Utilization and Reduction Technology, Tsinghua University, Beijing 100084, China.
| | - Junming Li
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for CO(2) Utilization and Reduction Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Sun T, Wilemski G, Hale BN, Wyslouzil BE. The effects of methanol clustering on methanol–water nucleation. J Chem Phys 2022; 157:184301. [DOI: 10.1063/5.0120876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The formation of subcritical methanol clusters in the vapor phase is known to complicate the analysis of nucleation measurements. Here, we investigate how this process affects the onset of binary nucleation as dilute water–methanol mixtures in nitrogen carrier gas expand in a supersonic nozzle. These are the first reported data for water–methanol nucleation in an expansion device. We start by extending an older monomer–dimer–tetramer equilibrium model to include larger clusters, relying on Helmholtz free energy differences derived from Monte Carlo simulations. The model is validated against the pressure/temperature measurements of Laksmono et al. [Phys. Chem. Chem. Phys. 13, 5855 (2011)] for dilute methanol–nitrogen mixtures expanding in a supersonic flow prior to the appearance of liquid droplets. These data are well fit when the maximum cluster size imax is 6–12. The extended equilibrium model is then used to analyze the current data. On the addition of small amounts of water, heat release prior to particle formation is essentially unchanged from that for pure methanol, but liquid formation proceeds at much higher temperatures. Once water comprises more than ∼24 mol % of the condensable vapor, droplet formation begins at temperatures too high for heat release from subcritical cluster formation to perturb the flow. Comparing the experimental results to binary nucleation theory is challenged by the need to extrapolate data to the subcooled region and by the inapplicability of explicit cluster models that require a minimum of 12 molecules in the critical cluster.
Collapse
Affiliation(s)
- Tong Sun
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gerald Wilemski
- Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Barbara N. Hale
- Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Barbara E. Wyslouzil
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
11
|
Abstract
Molecular simulations have provided valuable insight into the microscopic mechanisms underlying homogeneous ice nucleation. While empirical models have been used extensively to study this phenomenon, simulations based on first-principles calculations have so far proven prohibitively expensive. Here, we circumvent this difficulty by using an efficient machine-learning model trained on density-functional theory energies and forces. We compute nucleation rates at atmospheric pressure, over a broad range of supercoolings, using the seeding technique and systems of up to hundreds of thousands of atoms simulated with ab initio accuracy. The key quantity provided by the seeding technique is the size of the critical cluster (i.e., a size such that the cluster has equal probabilities of growing or melting at the given supersaturation), which is used together with the equations of classical nucleation theory to compute nucleation rates. We find that nucleation rates for our model at moderate supercoolings are in good agreement with experimental measurements within the error of our calculation. We also study the impact of properties such as the thermodynamic driving force, interfacial free energy, and stacking disorder on the calculated rates.
Collapse
|
12
|
Sboui N, Agougui H, Jabli M, Boughzala K. Synthesis, physico-chemical, and structural properties of silicate apatites: Effect of synthetic methods on apatite structure and dye removal. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Sanchez-Burgos I, Tejedor AR, Vega C, Conde MM, Sanz E, Ramirez J, Espinosa JR. Homogeneous ice nucleation rates for mW and TIP4P/ICE models through Lattice Mold calculations. J Chem Phys 2022; 157:094503. [DOI: 10.1063/5.0101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Water freezing is the most common liquid-to-crystal phase transition on Earth, however, despite its critical implications on climate change and cryopreservation among other disciplines, its characterization through experimental and computational techniques remains elusive. In this work, we make use of computer simulations to measure the nucleation rate (J) of water at normal pressure under different supercooling conditions, ranging from 215 to 240K. We employ two different water models, mW, a coarse-grained potential for water, and TIP4P/ICE, an atomistic non-polarizable water model that provides one of the most accurate representations of the different ice phases. To evaluate J, we apply the Lattice Mold technique, a computational method based on the use of molds to induce the nucleus formation from the metastable liquid under conditions at which observing spontaneous nucleation would be unfeasible. With this method, we obtain estimates of the nucleation rate for ice Ih, Ic and a stacking mixture of ice Ih/Ic; reaching consensus with most of the previously reported rates, although differing with some others. Furthermore, we confirm that the predicted nucleation rates by the TIP4P/ICE model are in better agreement with experimental data than those obtained through the mW potential. Taken together, our study provides a reliable methodology to measure nucleation rates in a simple and computationally efficient manner which contributes to benchmarking the freezing behaviour of two popular water models.
Collapse
Affiliation(s)
| | | | - Carlos Vega
- Departamento de Quimica Fisica, Universidad Complutense de Madrid Facultad de Ciencias Químicas, Spain
| | - Maria M. Conde
- Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Industriales, Spain
| | | | - Jorge Ramirez
- Chemical Engineering, Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Industriales, Spain
| | | |
Collapse
|
14
|
Weinhold F. High-Density “Windowpane” Coordination Patterns of Water Clusters and Their NBO/NRT Characterization. Molecules 2022; 27:molecules27134218. [PMID: 35807463 PMCID: PMC9268199 DOI: 10.3390/molecules27134218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
Cluster mixture models for liquid water at higher pressures suggest the need for water clusters of higher coordination and density than those commonly based on tetrahedral H-bonding motifs. We show here how proton-ordered water clusters of increased coordination and density can assemble from a starting cyclic tetramer or twisted bicyclic (Möbius-like) heptamer to form extended Aufbau sequences of stable two-, three-, and four-coordinate “windowpane” motifs. Such windowpane clusters exhibit sharply reduced (~90°) bond angles that differ appreciably from the tetrahedral angles of idealized crystalline ice Ih. Computed free energy and natural resonance theory (NRT) bond orders provide quantitative descriptors for the relative stabilities of clusters and strengths of individual coordinative linkages. The unity and consistency of NRT description is demonstrated to extend from familiar supra-integer bonds of the molecular regime to the near-zero bond orders of the weakest linkages in the present H-bond clusters. Our results serve to confirm that H-bonding exemplifies resonance–covalent (fractional) bonding in the sub-integer range and to further discount the dichotomous conceptions of “electrostatics” for intermolecular bonding vs. “covalency” for intramolecular bonding that still pervade much of freshman-level pedagogy and force-field methodology.
Collapse
Affiliation(s)
- Frank Weinhold
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
15
|
Kwan V, Maiti SR, Saika-Voivod I, Consta S. Salt Enrichment and Dynamics in the Interface of Supercooled Aqueous Droplets. J Am Chem Soc 2022; 144:11148-11158. [PMID: 35715222 DOI: 10.1021/jacs.2c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interconversion reaction of NaCl between the contact-ion pair (CIP) and the solvent-separated ion pair (SSIP) as well as the free-ion state in cold droplets has not yet been investigated. We report direct computational evidence that the lower is the temperature, the closer to the surface the ion interconversion reaction takes place. In supercooled droplets the enrichment of the subsurface in salt becomes more evident. The stability of the SSIP relative to the CIP increases as the ion-pairing is transferred toward the droplet's outer layers. In the free-ion state, where the ions diffuse independently in the solution, the number density of Cl- shows a broad maximum in the interior in addition to the well-known maximum in the surface. In the study of the reaction dynamics, we find a weak coupling between the interionic NaCl distance reaction coordinate and the solvent degrees of freedom, which contrasts with the diffusive crossing of the free energy barrier found in bulk solution modeling. The H2O self-diffusion coefficient is found to be at least an order of magnitude larger than that in the bulk solution. We propose to exploit the enhanced surface ion concentration at low temperature to eliminate salts from droplets in native mass spectrometry ionization methods.
Collapse
Affiliation(s)
- Victor Kwan
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Shoubhik R Maiti
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.,Department of Chemistry, The University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Ivan Saika-Voivod
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's A1B 3X7, Canada
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
16
|
Ladd-Parada M, Amann-Winkel K, Kim KH, Späh A, Perakis F, Pathak H, Yang C, Mariedahl D, Eklund T, Lane TJ, You S, Jeong S, Weston M, Lee JH, Eom I, Kim M, Park J, Chun SH, Nilsson A. Following the Crystallization of Amorphous Ice after Ultrafast Laser Heating. J Phys Chem B 2022; 126:2299-2307. [PMID: 35275642 PMCID: PMC8958512 DOI: 10.1021/acs.jpcb.1c10906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Using time-resolved
wide-angle X-ray scattering, we investigated
the early stages (10 μs–1 ms) of crystallization of supercooled
water, obtained by the ultrafast heating of high- and low-density
amorphous ice (HDA and LDA) up to a temperature T = 205 K ± 10 K. We have determined that the crystallizing phase
is stacking disordered ice (Isd), with
a maximum cubicity of χ = 0.6, in agreement with predictions
from molecular dynamics simulations at similar temperatures. However,
we note that a growing small portion of hexagonal ice (Ih) was also observed, suggesting that within our timeframe, Isd starts annealing into Ih. The onset of crystallization, in both amorphous ice, occurs
at a similar temperature, but the observed final crystalline fraction
in the LDA sample is considerably lower than that in the HDA sample.
We attribute this discrepancy to the thickness difference between
the two samples.
Collapse
Affiliation(s)
- Marjorie Ladd-Parada
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Kyung Hwan Kim
- Department of Chemistry, POSTECH, Pohang 37673, Republic of Korea
| | - Alexander Späh
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Harshad Pathak
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Cheolhee Yang
- Department of Chemistry, POSTECH, Pohang 37673, Republic of Korea
| | - Daniel Mariedahl
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Tobias Eklund
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Thomas J Lane
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Seonju You
- Department of Chemistry, POSTECH, Pohang 37673, Republic of Korea
| | - Sangmin Jeong
- Department of Chemistry, POSTECH, Pohang 37673, Republic of Korea
| | - Matthew Weston
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jaeku Park
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sae Hwan Chun
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, Stockholm SE-10691, Sweden
| |
Collapse
|
17
|
Yang Y, Palacio-Betancur V, Wang X, de Pablo JJ, Abbott NL. Strongly Chiral Liquid Crystals in Nanoemulsions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105835. [PMID: 35023609 DOI: 10.1002/smll.202105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Liquid crystal (LC) emulsions represent a class of confined soft matter that exhibit exotic internal organizations and size-dependent properties, including responses to chemical and physical stimuli. Past studies have explored micrometer-scale LC emulsion droplets but little is known about LC ordering within submicrometer-sized droplets. This paper reports experiments and simulations that unmask the consequences of confinement in nanoemulsions on strongly chiral LCs that form bulk cholesteric and blue phases (BPs). A method based on light scattering is developed to characterize phase transitions of LCs within the nanodroplets. For droplets with a radius to the pitch ratio (Rv /p0 ) as small as 2/3, the BP-to-cholesteric transition is substantially suppressed, leading to a threefold increase of the BP temperature interval relative to bulk behavior. Complementary simulations align with experimental findings and reveal the dominant role of chiral elastic energy. For Rv /p0 ≈ 1/3, a single LC phase forms below the clearing point, with simulations revealing the new configuration to contain a τ-1/2 disclination that extends across the nanodroplet. These findings are discussed in the context of mechanisms by which polymer networks stabilize BPs and, more broadly, for the design of nanoconfined soft matter.
Collapse
Affiliation(s)
- Yu Yang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | | | - Xin Wang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Nicholas L Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
18
|
Celný D, Klíma M, Kolafa J. Molecular Dynamics of Heterogeneous Systems on GPUs and Their Application to Nucleation in Gas Expanding to a Vacuum. J Chem Theory Comput 2021; 17:7397-7405. [PMID: 34797064 DOI: 10.1021/acs.jctc.1c00736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Expansion of water vapor through a small orifice to a vacuum produces liquid or frozen clusters which in the experiment serve as model particles for atmospheric aerosols. Yet, there are controversies about the shape of these clusters, suggesting that the nucleation process is not fully understood. Such questions can be answered by molecular dynamics simulations; however, they require microsecond-scale runs with thousands of molecules and accurate energy conservation. The available highly parallel codes typically utilize domain decomposition and are inefficient for heterogeneous systems as clusters in a dilute gas. In this work, we present an implementation of molecular dynamics on graphics processing units based on the Verlet list and apply it to several systems for which experimental data are available. We reproduce sufficiently sized clusters but not the experimentally observed clusters of irregular shape.
Collapse
Affiliation(s)
- David Celný
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic.,Department of Physical Chemistry, University of Chemistry and Technology in Prague, Technická 5, 166 28 Praha 6, Czech Republic.,Department of Thermodynamics, Institute of Thermomechanics of the CAS, v. v. i. Dolejškova 1402/5 182 00 Prague 8 Czech Republic
| | - Martin Klíma
- Department of Physical Chemistry, University of Chemistry and Technology in Prague, Technická 5, 166 28 Praha 6, Czech Republic
| | - Jiří Kolafa
- Department of Physical Chemistry, University of Chemistry and Technology in Prague, Technická 5, 166 28 Praha 6, Czech Republic
| |
Collapse
|
19
|
Hakimian A, Mohebinia M, Nazari M, Davoodabadi A, Nazifi S, Huang Z, Bao J, Ghasemi H. Freezing of few nanometers water droplets. Nat Commun 2021; 12:6973. [PMID: 34848730 PMCID: PMC8632967 DOI: 10.1038/s41467-021-27346-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/15/2021] [Indexed: 11/08/2022] Open
Abstract
Water-ice transformation of few nm nanodroplets plays a critical role in nature including climate change, microphysics of clouds, survival mechanism of animals in cold environments, and a broad spectrum of technologies. In most of these scenarios, water-ice transformation occurs in a heterogenous mode where nanodroplets are in contact with another medium. Despite computational efforts, experimental probing of this transformation at few nm scales remains unresolved. Here, we report direct probing of water-ice transformation down to 2 nm scale and the length-scale dependence of transformation temperature through two independent metrologies. The transformation temperature shows a sharp length dependence in nanodroplets smaller than 10 nm and for 2 nm droplet, this temperature falls below the homogenous bulk nucleation limit. Contrary to nucleation on curved rigid solid surfaces, ice formation on soft interfaces (omnipresent in nature) can deform the interface leading to suppression of ice nucleation. For soft interfaces, ice nucleation temperature depends on surface modulus. Considering the interfacial deformation, the findings are in good agreement with predictions of classical nucleation theory. This understanding contributes to a greater knowledge of natural phenomena and rational design of anti-icing systems for aviation, wind energy and infrastructures and even cryopreservation systems.
Collapse
Affiliation(s)
- Alireza Hakimian
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX, 77204, USA
| | - Mohammadjavad Mohebinia
- Department of Electrical and Computer Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX, 77204, USA
| | - Masoumeh Nazari
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX, 77204, USA
| | - Ali Davoodabadi
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX, 77204, USA
| | - Sina Nazifi
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX, 77204, USA
| | - Zixu Huang
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX, 77204, USA
| | - Jiming Bao
- Department of Electrical and Computer Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX, 77204, USA
| | - Hadi Ghasemi
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX, 77204, USA.
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX, 77204, USA.
| |
Collapse
|
20
|
Gallo P, Bachler J, Bove LE, Böhmer R, Camisasca G, Coronas LE, Corti HR, de Almeida Ribeiro I, de Koning M, Franzese G, Fuentes-Landete V, Gainaru C, Loerting T, de Oca JMM, Poole PH, Rovere M, Sciortino F, Tonauer CM, Appignanesi GA. Advances in the study of supercooled water. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:143. [PMID: 34825973 DOI: 10.1140/epje/s10189-021-00139-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
In this review, we report recent progress in the field of supercooled water. Due to its uniqueness, water presents numerous anomalies with respect to most simple liquids, showing polyamorphism both in the liquid and in the glassy state. We first describe the thermodynamic scenarios hypothesized for the supercooled region and in particular among them the liquid-liquid critical point scenario that has so far received more experimental evidence. We then review the most recent structural indicators, the two-state model picture of water, and the importance of cooperative effects related to the fact that water is a hydrogen-bonded network liquid. We show throughout the review that water's peculiar properties come into play also when water is in solution, confined, and close to biological molecules. Concerning dynamics, upon mild supercooling water behaves as a fragile glass former following the mode coupling theory, and it turns into a strong glass former upon further cooling. Connections between the slow dynamics and the thermodynamics are discussed. The translational relaxation times of density fluctuations show in fact the fragile-to-strong crossover connected to the thermodynamics arising from the existence of two liquids. When considering also rotations, additional crossovers come to play. Mobility-viscosity decoupling is also discussed in supercooled water and aqueous solutions. Finally, the polyamorphism of glassy water is considered through experimental and simulation results both in bulk and in salty aqueous solutions. Grains and grain boundaries are also discussed.
Collapse
Affiliation(s)
- Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy.
| | - Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Livia E Bove
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
- Sorbonne Université, CNRS UMR 7590, IMPMC, 75005, Paris, France
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy
| | - Luis E Coronas
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Universitat de Barcelona, & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, C. Martí i Franquès 1, 08028, Barcelona, Spain
| | - Horacio R Corti
- Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
| | - Ingrid de Almeida Ribeiro
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859, Campinas, São Paulo, Brazil
| | - Maurice de Koning
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859, Campinas, São Paulo, Brazil
- Center for Computing in Engineering & Sciences, Universidade Estadual de Campinas, UNICAMP, 13083-861, Campinas, São Paulo, Brazil
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Universitat de Barcelona, & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, C. Martí i Franquès 1, 08028, Barcelona, Spain
| | - Violeta Fuentes-Landete
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | | | - Peter H Poole
- Department of Physics, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Mauro Rovere
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy
| | - Francesco Sciortino
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Christina M Tonauer
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| |
Collapse
|
21
|
Ohmine I, Saito S. Dynamical Behavior of Water; Fluctuation, Reactions and Phase Transitions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Iwao Ohmine
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Shinji Saito
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
22
|
Sun T, Wyslouzil BE. Freezing of Dilute Aqueous-Alcohol Nanodroplets: The Effect of Molecular Structure. J Phys Chem B 2021; 125:12329-12343. [PMID: 34709826 DOI: 10.1021/acs.jpcb.1c06188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate vapor-liquid nucleation and subsequent freezing of aqueous-alcohol nanodroplets containing 1-pentanol, 1-hexanol, and their 3-isomers. The aerosols are produced in a supersonic nozzle, where condensation and freezing are characterized by static pressure and Fourier transform Infrared (FTIR) spectroscopy measurements. At fixed water concentrations, the presence of alcohol enables particle formation at higher temperatures since both the equilibrium vapor pressure above the critical clusters and the cluster interfacial free energy are decreased relative to the pure water case. The disappearance of a small free OH peak, observed for pure water droplets, when alcohols are added and shifts in the CH peaks as a function of alcohol chain length reveal varying surface partitioning preferences of the alcohols. Changes in the FTIR spectra during freezing, as well as changes in the ice component derived from self-modeling curve resolution analysis, show that 1-hexanol and 1-pentanol perturb freezing less than their branched isomers do. This behavior may reflect the molecular footprints of the alcohols, the available surface area of the droplets, and not only alcohol solubility. The presence of alcohols also lowers the freezing temperature relative to that of pure water, but when there is clear evidence for the formation of ice, the ice nucleation rates change by less than a factor of ∼2-3 for all cases studied.
Collapse
Affiliation(s)
- Tong Sun
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Barbara E Wyslouzil
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
23
|
Engstrom T, Clinger JA, Spoth KA, Clarke OB, Closs DS, Jayne R, Apker BA, Thorne RE. High-resolution single-particle cryo-EM of samples vitrified in boiling nitro-gen. IUCRJ 2021; 8:867-877. [PMID: 34804541 PMCID: PMC8562666 DOI: 10.1107/s2052252521008095] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/05/2021] [Indexed: 05/24/2023]
Abstract
Based on work by Dubochet and others in the 1980s and 1990s, samples for single-particle cryo-electron microscopy (cryo-EM) have been vitrified using ethane, propane or ethane/propane mixtures. These liquid cryogens have a large difference between their melting and boiling temperatures and so can absorb substantial heat without formation of an insulating vapor layer adjacent to a cooling sample. However, ethane and propane are flammable, they must be liquified in liquid nitro-gen immediately before cryo-EM sample preparation, and cryocooled samples must be transferred to liquid nitro-gen for storage, complicating workflows and increasing the chance of sample damage during handling. Experiments over the last 15 years have shown that cooling rates required to vitrify pure water are only ∼250 000 K s-1, at the low end of earlier estimates, and that the dominant factor that has limited cooling rates of small samples in liquid nitro-gen is sample precooling in cold gas present above the liquid cryogen surface, not the Leidenfrost effect. Using an automated cryocooling instrument developed for cryocrystallography that combines high plunge speeds with efficient removal of cold gas, we show that single-particle cryo-EM samples on commercial grids can be routinely vitrified using only boiling nitro-gen and obtain apoferritin datasets and refined structures with 2.65 Å resolution. The use of liquid nitro-gen as the primary coolant may allow manual and automated workflows to be simplified and may reduce sample stresses that contribute to beam-induced motion.
Collapse
Affiliation(s)
| | | | - Katherine A. Spoth
- Cornell Center for Materials Research, Cornell University, Ithaca, NY 14853, USA
| | - Oliver B. Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Anesthesiology, Columbia University, New York, NY 10032, USA
| | | | - Richard Jayne
- MiTeGen, LLC, PO Box 3867, Ithaca, NY 14850-3867, USA
| | | | - Robert E. Thorne
- MiTeGen, LLC, PO Box 3867, Ithaca, NY 14850-3867, USA
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
24
|
Sanchez-Burgos I, Sanz E, Vega C, Espinosa JR. Fcc vs. hcp competition in colloidal hard-sphere nucleation: on their relative stability, interfacial free energy and nucleation rate. Phys Chem Chem Phys 2021; 23:19611-19626. [PMID: 34524277 DOI: 10.1039/d1cp01784e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hard-sphere crystallization has been widely investigated over the last six decades by means of colloidal suspensions and numerical methods. However, some aspects of its nucleation behaviour are still under debate. Here, we provide a detailed computational characterisation of the polymorphic nucleation competition between the face-centered cubic (fcc) and the hexagonal-close packed (hcp) hard-sphere crystal phases. By means of several state-of-the-art simulation techniques, we evaluate the melting pressure, chemical potential difference, interfacial free energy and nucleation rate of these two polymorphs, as well as of a random stacking mixture of both crystals. Our results highlight that, despite the fact that both polymorphs have very similar stability, the interfacial free energy of the hcp phase could be marginally higher than that of the fcc solid, which in consequence, mildly decreases its propensity to nucleate from the liquid compared to the fcc phase. Moreover, we analyse the abundance of each polymorph in grown crystals from different types of inserted nuclei: fcc, hcp and stacking disordered fcc/hcp seeds, as well as from those spontaneously emerged from brute force simulations. We find that post-critical crystals fundamentally grow maintaining the polymorphic structure of the critical nucleus, at least until moderately large sizes, since the only crystallographic orientation that allows stacking close-packed disorder is the fcc (111) plane, or equivalently the hcp (0001) one. Taken together, our results contribute with one more piece to the intricate puzzle of colloidal hard-sphere crystallization.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK.
| | - Eduardo Sanz
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carlos Vega
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK.
| |
Collapse
|
25
|
Xue H, Fu Y, Lu Y, Hao D, Li K, Bai G, Ou-Yang ZC, Wang J, Zhou X. Spontaneous Freezing of Water between 233 and 235 K Is Not Due to Homogeneous Nucleation. J Am Chem Soc 2021; 143:13548-13556. [PMID: 34406749 DOI: 10.1021/jacs.1c04055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spontaneous freezing of microdroplets around 233 K has long been regarded as the occurrence of homogeneous ice nucleation. The corresponding temperature has been directly regarded as the homogeneous ice nucleation temperature, which is an intrinsic character of water. However, many recent investigations indicate that the spontaneous freezing may be still induced by surfaces of the water microdroplets or the residual impurities inside. Therefore, it is highly desired to reveal with solid evidence the exact origin of the spontaneous freezing. Here we show with no ambiguity that the spontaneous freezing between 233 and 235 K is actually triggered by the surface of microdroplets, as the nucleation rate is found to be proportional to the surface area of droplets, via systematically investigating the freezing of water droplets with varying sizes under various cooling rates followed by a new approach in data analysis. The conclusion is further consolidated by published experimental data from other groups when using our data analysis approach. This study is critical for understanding the sources of "no-man's land" and features of homogeneous nucleation, as well as studying the structure and properties of deeply supercooled liquid water.
Collapse
Affiliation(s)
- Han Xue
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yang Fu
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Youhua Lu
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Dezhao Hao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Kaiyong Li
- School of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, People's Republic of China
| | - Guoying Bai
- Research Institute for Energy Equipment Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Zhong-Can Ou-Yang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jianjun Wang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xin Zhou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| |
Collapse
|
26
|
Gai S, Peng Z, Moghtaderi B, Yu J, Doroodchi E. A theoretical model for predicting homogeneous ice nucleation rate based on molecular kinetic energy distribution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Oka K, Shibue T, Sugimura N, Watabe Y, Tanaka M, Winther-Jensen B, Nishide H. Two States of Water Converge to One State below 215 K. J Phys Chem Lett 2021; 12:5802-5806. [PMID: 34137615 DOI: 10.1021/acs.jpclett.1c01132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anomalies of water have been explained by the two-state water model. In the model, water becomes one state upon supercooling. However, water crystallizes completely below 235 K ("no man's land"). The structural origin of the anomalous of the water is hidden in the "no man's land". To understand the properties of water, the spectroscopic experiment in "Norman's land" is inevitable. Hence, we proposed a new soft-confinement method for standard nuclear magnetic resonance spectroscopy to explore the "no man's land". We found the singularity temperature (215 K) at ambient pressure. Water exists in one state below 215 K. Above 215 K, the two states of water are supercritical states of the liquid-liquid critical point. The current study provides a perspective to determine the liquid-liquid critical point of water existing in a high-pressure condition.
Collapse
Affiliation(s)
- Kouki Oka
- Department of Applied Chemistry and Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku, Tokyo 169-8555, Japan
| | - Toshimichi Shibue
- Materials Characterization Central Laboratory, Waseda University, 3-4-1 Okubo Shinjuku, Tokyo 169-8555, Japan
| | - Natsuhiko Sugimura
- Materials Characterization Central Laboratory, Waseda University, 3-4-1 Okubo Shinjuku, Tokyo 169-8555, Japan
| | - Yuki Watabe
- Materials Characterization Central Laboratory, Waseda University, 3-4-1 Okubo Shinjuku, Tokyo 169-8555, Japan
| | - Midori Tanaka
- Materials Characterization Central Laboratory, Waseda University, 3-4-1 Okubo Shinjuku, Tokyo 169-8555, Japan
| | - Bjorn Winther-Jensen
- Department of Applied Chemistry and Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku, Tokyo 169-8555, Japan
- Fortescue Metals Group Ltd., Level 2, 87 Adelaide Terrace East, Perth, WA 6004, Australia
| | - Hiroyuki Nishide
- Department of Applied Chemistry and Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
28
|
Sun T, Ben-Amotz D, Wyslouzil BE. The freezing behavior of aqueous n-alcohol nanodroplets. Phys Chem Chem Phys 2021; 23:9991-10005. [PMID: 33870962 DOI: 10.1039/d0cp06131j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We generate water-rich aerosols containing 1-propanol and 1-pentanol in a supersonic nozzle to study the effects of these solutes on the freezing behavior of water. Condensation and freezing are characterized by two complementary techniques, pressure trace measurements and Fourier Transform Infrared spectroscopy. When 1-pentanol and 1-propanol are present, condensation occurs at higher temperatures because particle formation from the vapor phase is enhanced by the decrease in interfacial free energy of mixed aqueous-alcohol critical clusters relative to those of pure water. FTIR results suggest that when ∼6 nm radius droplets freeze, the tetrahedral structure of the ice is well preserved up to an overall alcohol mole fraction of 0.031 for 1-propanol and 0.043 for 1-pentanol. In this concentration range, the ice nucleation temperature decreases continuously with increasing 1-propanol concentration, whereas the onset of freezing is not significantly perturbed by 1-pentanol up to a mole fraction of 0.03. Furthermore, once freezing starts the ice nucleation rates in the aqueous-alcohol droplets are very close to those for pure water. In contrast, at the highest mole fractions of either alcohol it is not clear whether droplets freeze to form crystalline ice since the final state of the particles cannot be adequately characterized with the available experimental techniques.
Collapse
Affiliation(s)
- Tong Sun
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
29
|
Moid M, Sastry S, Dasgupta C, Pascal TA, Maiti PK. Dimensionality dependence of the Kauzmann temperature: A case study using bulk and confined water. J Chem Phys 2021; 154:164510. [PMID: 33940812 DOI: 10.1063/5.0047656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Kauzmann temperature (TK) of a supercooled liquid is defined as the temperature at which the liquid entropy becomes equal to that of the crystal. The excess entropy, the difference between liquid and crystal entropies, is routinely used as a measure of the configurational entropy, whose vanishing signals the thermodynamic glass transition. The existence of the thermodynamic glass transition is a widely studied subject, and of particular recent interest is the role of dimensionality in determining the presence of a glass transition at a finite temperature. The glass transition in water has been investigated intensely and is challenging as the experimental glass transition appears to occur at a temperature where the metastable liquid is strongly prone to crystallization and is not stable. To understand the dimensionality dependence of the Kauzmann temperature in water, we study computationally bulk water (three-dimensions), water confined in the slit pore of the graphene sheet (two-dimensions), and water confined in the pore of the carbon nanotube of chirality (11,11) having a diameter of 14.9 Å (one-dimension), which is the lowest diameter where amorphous water does not always crystallize into nanotube ice in the supercooled region. Using molecular dynamics simulations, we compute the entropy of water in bulk and under reduced dimensional nanoscale confinement to investigate the variation of the Kauzmann temperature with dimension. We obtain a value of TK (133 K) for bulk water in good agreement with experiments [136 K (C. A. Angell, Science 319, 582-587 (2008) and K. Amann-Winkel et al., Proc. Natl. Acad. Sci. U. S. A. 110, 17720-17725 (2013)]. However, for confined water, in two-dimensions and one-dimension, we find that there is no finite temperature Kauzmann point (in other words, the Kauzmann temperature is 0 K). Analysis of the fluidicity factor, a measure of anharmonicity in the oscillation of normal modes, reveals that the Kauzmann temperature can also be computed from the difference in the fluidicity factor between amorphous and ice phases.
Collapse
Affiliation(s)
- Mohd Moid
- Department of Physics, Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India
| | - Srikanth Sastry
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Chandan Dasgupta
- Department of Physics, Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India
| | - Tod A Pascal
- Department of Nanoengineering and Chemical Engineering, University of California San Diego, La Jolla, California 92023, USA
| | - Prabal K Maiti
- Department of Physics, Centre for Condensed Matter Theory, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
30
|
Tarn MD, Sikora SNF, Porter GCE, Shim JU, Murray BJ. Homogeneous Freezing of Water Using Microfluidics. MICROMACHINES 2021; 12:223. [PMID: 33672200 PMCID: PMC7926757 DOI: 10.3390/mi12020223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/17/2023]
Abstract
The homogeneous freezing of water is important in the formation of ice in clouds, but there remains a great deal of variability in the representation of the homogeneous freezing of water in the literature. The development of new instrumentation, such as droplet microfluidic platforms, may help to constrain our understanding of the kinetics of homogeneous freezing via the analysis of monodisperse, size-selected water droplets in temporally and spatially controlled environments. Here, we evaluate droplet freezing data obtained using the Lab-on-a-Chip Nucleation by Immersed Particle Instrument (LOC-NIPI), in which droplets are generated and frozen in continuous flow. This high-throughput method was used to analyse over 16,000 water droplets (86 μm diameter) across three experimental runs, generating data with high precision and reproducibility that has largely been unrepresented in the microfluidic literature. Using this data, a new LOC-NIPI parameterisation of the volume nucleation rate coefficient (JV(T)) was determined in the temperature region of -35.1 to -36.9 °C, covering a greater JV(T) compared to most other microfluidic techniques thanks to the number of droplets analysed. Comparison to recent theory suggests inconsistencies in the theoretical representation, further implying that microfluidics could be used to inform on changes to parameterisations. By applying classical nucleation theory (CNT) to our JV(T) data, we have gone a step further than other microfluidic homogeneous freezing examples by calculating the stacking-disordered ice-supercooled water interfacial energy, estimated to be 22.5 ± 0.7 mJ m-2, again finding inconsistencies when compared to theoretical predictions. Further, we briefly review and compile all available microfluidic homogeneous freezing data in the literature, finding that the LOC-NIPI and other microfluidically generated data compare well with commonly used non-microfluidic datasets, but have generally been obtained with greater ease and with higher numbers of monodisperse droplets.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; (S.N.F.S.); (G.C.E.P.)
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK;
| | - Sebastien N. F. Sikora
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; (S.N.F.S.); (G.C.E.P.)
| | - Grace C. E. Porter
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; (S.N.F.S.); (G.C.E.P.)
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK;
| | - Jung-uk Shim
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK;
| | - Benjamin J. Murray
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; (S.N.F.S.); (G.C.E.P.)
| |
Collapse
|
31
|
Fárník M, Fedor J, Kočišek J, Lengyel J, Pluhařová E, Poterya V, Pysanenko A. Pickup and reactions of molecules on clusters relevant for atmospheric and interstellar processes. Phys Chem Chem Phys 2021; 23:3195-3213. [PMID: 33524089 DOI: 10.1039/d0cp06127a] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this perspective, we review experiments with molecules picked up on large clusters in molecular beams with the focus on the processes in atmospheric and interstellar chemistry. First, we concentrate on the pickup itself, and we discuss the pickup cross sections. We measure the uptake of different atmospheric molecules on mixed nitric acid-water clusters and determine the accommodation coefficients relevant for aerosol formation in the Earth's atmosphere. Then the coagulation of the adsorbed molecules on the clusters is investigated. In the second part of this perspective, we review examples of different processes triggered by UV-photons or electrons in the clusters with embedded molecules. We start with the photodissociation of hydrogen halides and Freon CF2Cl2 on ice nanoparticles in connection with the polar stratospheric ozone depletion. Next, we mention reactions following the excitation and ionization of the molecules adsorbed on clusters. The first ionization-triggered reaction observed between two different molecules picked up on the cluster was the proton transfer between methanol and formic acid deposited on large argon clusters. Finally, negative ion reactions after slow electron attachment are illustrated by two examples: mixed nitric acid-water clusters, and hydrogen peroxide deposited on large ArN and (H2O)N clusters. The selected examples are discussed from the perspective of the atmospheric and interstellar chemistry, and several future directions are proposed.
Collapse
Affiliation(s)
- Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, v.v.i., The Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
32
|
Sanchez-Burgos I, Garaizar A, Vega C, Sanz E, Espinosa JR. Parasitic crystallization of colloidal electrolytes: growing a metastable crystal from the nucleus of a stable phase. SOFT MATTER 2021; 17:489-505. [PMID: 33346291 DOI: 10.1039/d0sm01680b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colloidal particles have been extensively used to comprehend the main principles governing liquid-crystal nucleation. Multiple mechanisms and frameworks have been proposed, through either experiments or computational approaches, to rationalise the ubiquitous formation of colloidal crystals. In this work, we elucidate the nucleation scenario behind the crystallization of oppositely charged colloids. By performing molecular dynamics simulations of colloidal electrolytes in combination with the Seeding technique, we evaluate the fundamental factors, such as the nucleation rate, free energy barrier, surface tension and kinetic pre-factor, that determine the liquid-to-solid transition of several crystalline polymorphs. Our results show that at a high packing fraction, there is a cross-over between the nucleation of the CsCl structure and that of a substitutionally disordered fcc phase, despite the CuAu crystal being the most stable phase. We demonstrate that the crucial factor in determining which phase nucleates the fastest is the free energy cost of the cluster formation rather than their kinetic ability to grow from the liquid. While at a low packing fraction, the stable phase, CsCl, is the one that nucleates and subsequently grows, we show how at moderate and high packing fractions, a disordered fcc phase subsequently grows regardless of the nature of the nucleating phase, termed parasitic crystallization. Taken together, our results provide a panoramic perspective of the complex nucleation scenario of oppositely charged colloids at moderate temperature and rationalise the different thermodynamic and kinetic aspects behind it.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK.
| | - Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK.
| | - Carlos Vega
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Eduardo Sanz
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK.
| |
Collapse
|
33
|
Goswami A, Singh JK. Homogeneous nucleation of sheared liquids: advances and insights from simulations and theory. Phys Chem Chem Phys 2021; 23:15402-15419. [PMID: 34279013 DOI: 10.1039/d1cp02617h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the most ubiquitous and technologically important phenomena in nature is the nucleation of homogeneous flowing systems. The microscopic effects of shear on a nucleating system are still imperfectly understood, although in recent years a consistent picture has emerged. The opposing effects of shear can be split into two major contributions for simple atomic and molecular liquids: increase of the energetic cost of nucleation, and enhancement of the kinetics. In this perspective, we describe the latest computational and theoretical techniques which have been developed over the past two decades. We collate and unify the overarching influences of shear, temperature, and supersaturation on the process of homogeneous nucleation. Experimental techniques and capabilities are discussed, against the backdrop of results from simulations and theory. Although we primarily focus on simple systems, we also touch upon the sheared nucleation of more complex systems, including glasses and polymer melts. We speculate on the promising directions and possible advances that could come to fruition in the future.
Collapse
Affiliation(s)
- Amrita Goswami
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| | - Jayant K Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
34
|
Sanchez-Burgos I, de Hijes PM, Rosales-Pelaez P, Vega C, Sanz E. Equivalence between condensation and boiling in a Lennard-Jones fluid. Phys Rev E 2020; 102:062609. [PMID: 33466022 DOI: 10.1103/physreve.102.062609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Condensation and boiling are phase transitions highly relevant to industry, geology, and atmospheric science. These phase transitions are initiated by the nucleation of a drop in a supersaturated vapor and of a bubble in an overstretched liquid, respectively. The surface tension between both phases, liquid and vapor, is a key parameter in the development of such nucleation stage. Whereas the surface tension can be readily measured for a flat interface, there are technical and conceptual limitations to obtain it for the curved interface of the nucleus. On the technical side, it is quite difficult to observe a critical nucleus in experiments. From a conceptual point of view, the interfacial free energy depends on the choice of the dividing surface, being the surface of tension the one relevant for nucleation. We bypass the technical limitation by performing simulations of a Lennard-Jones fluid where we equilibrate critical nuclei (both drops and bubbles). Regarding the conceptual hurdle, we find the relevant cluster size by searching the radius that correctly predicts nucleation rates and nucleation free energy barriers when combined with Classical Nucleation Theory. With such definition of the cluster size we find the same value of the surface tension for drops and bubbles of a given radius. Thus, condensation and boiling can be viewed as two sides of the same coin. Finally, we combine the data coming from drops and bubbles to obtain, via two different routes, estimates of the Tolman length, a parameter that allows describing the curvature dependence of the surface tension in a theoretical framework.
Collapse
Affiliation(s)
- I Sanchez-Burgos
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - P Montero de Hijes
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - P Rosales-Pelaez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - C Vega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - E Sanz
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
35
|
Verhagen T, Klimes J, Pacakova B, Kalbac M, Vejpravova J. Anomalous Freezing of Low-Dimensional Water Confined in Graphene Nanowrinkles. ACS NANO 2020; 14:15587-15594. [PMID: 33119250 DOI: 10.1021/acsnano.0c03161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Various properties of water are affected by confinement as the space-filling of the water molecules is very different from bulk water. In our study, we challenged the creation of a stable system in which water molecules are permanently locked in nanodimensional graphene traps. For that purpose, we developed a technique, nitrocellulose-assisted transfer of graphene grown by chemical vapor deposition, which enables capturing of the water molecules below an atomically thin graphene membrane structured into a net of regular wrinkles with a lateral dimension of about 4 nm. After successfully confining water molecules below a graphene monolayer, we employed cryogenic Raman spectroscopy to monitor the phase changes of the confined water as a function of the temperature. In our experiment system, the graphene monolayer structured into a net of fine wrinkles plays a dual role: (i) it enables water confinement and (ii) serves as an extremely sensitive probe for phase transitions involving water via graphene-based spectroscopic monitoring of the underlying water structure. Experimental findings were supported with classical and path integral molecular dynamics simulations carried out on our experimental system. Results of simulations show that surface premelting of the ice confined within the wrinkles starts at ∼200 K and the melting process is complete at ∼240 K, which is far below the melting temperature of bulk water ice. The processes correspond to changes in the doping and strain in the graphene tracked by Raman spectroscopy. We conclude that water can be confined between graphene structured into nanowrinkles and silica substrate and its phase transitions can be tracked via Raman spectral feature of the encapsulating graphene. Our study also demonstrated that peculiar behavior of liquids under spatial confinement can be inspected via the optical response of atomically thin graphene sensors.
Collapse
Affiliation(s)
- Tim Verhagen
- Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16, Prague 2 Czech Republic
| | - Jiri Klimes
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic
| | - Barbara Pacakova
- JH Institute of Physical Chemistry, Dolejskova 3, 182 23, Prague 8, Czech Republic
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Martin Kalbac
- JH Institute of Physical Chemistry, Dolejskova 3, 182 23, Prague 8, Czech Republic
| | - Jana Vejpravova
- Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16, Prague 2 Czech Republic
| |
Collapse
|
36
|
Nevo I, Jahn S, Kretzschmar N, Levantino M, Feldman Y, Naftali N, Wulff M, Oron D, Leiserowitz L. Evidence for laser-induced homogeneous oriented ice nucleation revealed via pulsed x-ray diffraction. J Chem Phys 2020; 153:024504. [PMID: 32668928 DOI: 10.1063/5.0006100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The induction of homogeneous and oriented ice nucleation has to date not been achieved. Here, we report induced nucleation of ice from millimeter sized supercooled water drops illuminated by ns-optical laser pulses well below the ionization threshold making use of particular laser beam configurations and polarizations. Employing a 100 ps synchrotron x-ray pulse 100 ns after each laser pulse, an unambiguous correlation was observed between the directions and the symmetry of the laser fields and that of the H-bonding arrays of the induced ice crystals. Moreover, an analysis of the x-ray diffraction data indicates that, in the main, the induced nucleation of ice is homogeneous at temperatures well above the observed and predicted values for supercooled water.
Collapse
Affiliation(s)
- Iftach Nevo
- Department of Materials and Interfaces, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Sabrina Jahn
- Department of Materials and Interfaces, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Norman Kretzschmar
- ESRF - The European Synchrotron, 71 Avenues des Martyrs, 38000 Grenoble, France
| | - Matteo Levantino
- ESRF - The European Synchrotron, 71 Avenues des Martyrs, 38000 Grenoble, France
| | - Yishay Feldman
- Department of Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Nir Naftali
- Department of Materials and Interfaces, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michael Wulff
- ESRF - The European Synchrotron, 71 Avenues des Martyrs, 38000 Grenoble, France
| | - Dan Oron
- Department of Physics of Complex Systems, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Leslie Leiserowitz
- Department of Materials and Interfaces, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
37
|
Vinš V, Hykl J, Hrubý J, Blahut A, Celný D, Čenský M, Prokopová O. Possible Anomaly in the Surface Tension of Supercooled Water: New Experiments at Extreme Supercooling down to -31.4 °C. J Phys Chem Lett 2020; 11:4443-4447. [PMID: 32419467 DOI: 10.1021/acs.jpclett.0c01163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The surface tension of water is suspected to show a substantial increase at low temperatures, which is considered to be one of the many anomalies of water. The second inflection point (SIP) anomaly, originally claimed to be at around -8 °C, was experimentally refuted down to -25 °C by Hrubý et al. (J. Phys. Chem. Lett. 2014, 5, 425-428). Recent molecular simulations predict the SIP anomaly near or even below the homogeneous freezing limit of around -38 °C. To contribute to an ongoing discussion about the SIP anomaly, new experiments focused on extreme levels of supercooling were carried out in this study. Unique experimental data down to -31.4 °C were collected using two measuring techniques based on the capillary rise method. A significant deviation from the extrapolated IAPWS formulation R1-76(2014) for surface tension of ordinary water was detected below -20 °C. Contrary to previous data, new experiments provide room for an anomaly in the course of surface tension in the deeply supercooled region.
Collapse
Affiliation(s)
- Václav Vinš
- Institute of Thermomechanics of the Czech Academy of Sciences, Dolejškova 5, Prague 8, 182 00 Czech Republic
| | - Jiří Hykl
- Institute of Thermomechanics of the Czech Academy of Sciences, Dolejškova 5, Prague 8, 182 00 Czech Republic
| | - Jan Hrubý
- Institute of Thermomechanics of the Czech Academy of Sciences, Dolejškova 5, Prague 8, 182 00 Czech Republic
| | - Aleš Blahut
- Institute of Thermomechanics of the Czech Academy of Sciences, Dolejškova 5, Prague 8, 182 00 Czech Republic
| | - David Celný
- Institute of Thermomechanics of the Czech Academy of Sciences, Dolejškova 5, Prague 8, 182 00 Czech Republic
| | - Miroslav Čenský
- Institute of Thermomechanics of the Czech Academy of Sciences, Dolejškova 5, Prague 8, 182 00 Czech Republic
| | - Olga Prokopová
- Institute of Thermomechanics of the Czech Academy of Sciences, Dolejškova 5, Prague 8, 182 00 Czech Republic
| |
Collapse
|
38
|
Abstract
Intriguing properties of photoemission from free, unsupported particles and droplets were predicted nearly 50 years ago, though experiments were a technical challenge. The last few decades have seen a surge of research in the field, due to advances in aerosol technology (generation, characterization, and transfer into vacuum), the development of photoelectron imaging spectrometers, and advances in vacuum ultraviolet and ultrafast light sources. Particles and droplets offer several advantages for photoemission studies. For example, photoemission spectra are dependent on the particle's size, shape, and composition, providing a wealth of information that allows for the retrieval of genuine electronic properties of condensed phase. In this review, with a focus on submicrometer-sized, dielectric particles and droplets, we explain the utility of photoemission from such systems, summarize several applications from the literature, and present some thoughts on future research directions.
Collapse
Affiliation(s)
- Loren Ban
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland;
| | - Bruce L Yoder
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland;
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland;
| |
Collapse
|
39
|
Affiliation(s)
- Shuang Luo
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Jun Wang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, P.R. China
| | - Zhigang Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| |
Collapse
|
40
|
Dingilian KK, Halonen R, Tikkanen V, Reischl B, Vehkamäki H, Wyslouzil BE. Homogeneous nucleation of carbon dioxide in supersonic nozzles I: experiments and classical theories. Phys Chem Chem Phys 2020; 22:19282-19298. [PMID: 32815933 DOI: 10.1039/d0cp02279a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied the homogeneous nucleation of carbon dioxide in the carrier gas argon for concentrations of CO2 ranging from 2 to 39 mole percent using three experimental methods. Position-resolved pressure trace measurements (PTM) determined that the onset of nucleation occurred at temperatures between 75 and 92 K with corresponding CO2 partial pressures of 39 to 793 Pa. Small angle X-ray scattering (SAXS) measurements provided particle size distributions and aerosol number densities. Number densities of approximately 1012 cm-3, and characteristic times ranging from 6 to 13 μs, resulted in measured nucleation rates on the order of 5 × 1017 cm-3 s-1, values that are consistent with other nucleation rate measurements in supersonic nozzles. Finally, we used Fourier transform infrared (FTIR) spectroscopy to identify that the condensed CO2 particles were crystalline cubic solids with either sharp or rounded corners. Molecular dynamics simulations, however, suggest that CO2 forms liquid-like critical clusters before transitioning to the solid phase. Furthermore, the critical clusters are not in thermal equilibrium with the carrier gas. Comparisons with nucleation theories were therefore made assuming liquid-like critical clusters and incorporating non-isothermal correction factors.
Collapse
Affiliation(s)
- Kayane K Dingilian
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Roope Halonen
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland
| | - Valtteri Tikkanen
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland
| | - Bernhard Reischl
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland
| | - Hanna Vehkamäki
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland
| | - Barbara E Wyslouzil
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA. and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
41
|
Abstract
The appearance of ice I in the smallest possible clusters and the nature of its phase coexistence with liquid water could not thus far be unraveled. The experimental and theoretical infrared spectroscopic and free-energy results of this work show the emergence of the characteristic hydrogen-bonding pattern of ice I in clusters containing only around 90 water molecules. The onset of crystallization is accompanied by an increase of surface oscillator intensity with decreasing surface-to-volume ratio, a spectral indicator of nanoscale crystallinity of water. In the size range from 90 to 150 water molecules, we observe mixtures of largely crystalline and purely amorphous clusters. Our analysis suggests that the liquid-ice I transition in clusters loses its sharp 1st-order character at the end of the crystalline-size regime and occurs over a range of temperatures through heterophasic oscillations in time, a process without analog in bulk water.
Collapse
|
42
|
Ogunronbi KE, Wyslouzil BE. Vapor-phase nucleation of n-pentane, n-hexane, and n-heptane: Critical cluster properties. J Chem Phys 2019; 151:154307. [PMID: 31640360 DOI: 10.1063/1.5123284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The first and second nucleation theorems provide a way to determine the molecular content and excess internal energies of critical clusters, which rely solely on experimental nucleation rates measured at constant temperatures and supersaturations, respectively. Here, we report the size n* and excess internal energy Ex(n*) of n-pentane, n-hexane, and n-heptane critical clusters when particles form under the highly supersaturated conditions present in supersonic expansions. In summary, critical clusters contain from ∼2 to ∼11 molecules and exhibit the expected increase in the critical cluster size with increasing temperature and decreasing supersaturation. Surprisingly, the n* values for all three alkanes appear to lie along a single line when plotted as a function of supersaturation. Within the framework of the capillarity approximation, the excess internal energies determined for the n-heptane critical clusters formed under the low temperature (∼150 K) conditions in our supersonic nozzle are reasonably consistent with those determined under higher temperature (∼250 K) conditions in the thermal diffusion cloud chamber by Rudek et al. [J. Chem. Phys. 105, 4707 (1996)].
Collapse
Affiliation(s)
- Kehinde E Ogunronbi
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Barbara E Wyslouzil
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
43
|
Naserifar S, Goddard WA. Anomalies in Supercooled Water at ∼230 K Arise from a 1D Polymer to 2D Network Topological Transformation. J Phys Chem Lett 2019; 10:6267-6273. [PMID: 31560560 DOI: 10.1021/acs.jpclett.9b02443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Puzzling anomalous properties of water are drastically enhanced in the supercooled region. However, the nature of these anomalies is not known. We report here molecular dynamics simulations using the RexPoN force field from 298 to 200 K along the 1 atm density curve. At 298 K, there are 2.1 strong hydrogen bonds (SHBs), leading to a dynamic branched one-dimensional (1D) polymer. Water remains 1D down to 240 K, but at and below 230 K, the number of SHBs becomes 3.0, leading to a two-dimensional (2D) network that persists to 200 K. We propose that this 1D-to-2D topological transition accounts for the anomalous properties of supercooled water. Near 230 K, the power spectra show dramatic increases in the angular vibrational frequency modes, while the diffusivity decreases dramatically, both arising from the 1D-to-2D transformation. This transition is not first order because free energy changes uniformly but fluctuations in the entropy near 230 K suggest a possible second-order transition.
Collapse
Affiliation(s)
- Saber Naserifar
- Materials and Process Simulation Center (139-74) , California Institute of Technology , Pasadena , California 91125 , United States
| | - William A Goddard
- Materials and Process Simulation Center (139-74) , California Institute of Technology , Pasadena , California 91125 , United States
| |
Collapse
|
44
|
Peng D, Jin Y, Fan XD, Yang JM, Zhai C. An effective experimental method and apparatus for unsteady water vapor condensation investigation in high speed expansion flow. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:063101. [PMID: 31255013 DOI: 10.1063/1.5050070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
This paper presents an effective experimental method and system for mechanism study of unsteady water vapor condensation encountered in high speed expansion flow. We proposed an experimental method and designed a simplified expansion system to fulfill the study. Tunable diode laser absorption spectroscopy (TDLAS) and light sheet technique are integrated in the system to monitor the unsteady condensation process in a high speed expansion flow generated by the expansion system. Two near infrared water vapor absorption transitions (1395.0 nm and 1409.27 nm) and one near infrared methane absorption transition (1653.73 nm) are applied in the TDLAS measurement to measure the transient flow parameters during the condensation process. Using the experimental method, time dependent condensation processes are monitored with different expansion time scales. The light sheet results visually reveal the condensation phenomena during the expansion process, while TDLAS results quantitatively follow the condensation process. The experimental results are compared with computational fluid dynamics simulations and a good agreement between them is observed, which indicates that the presented experimental method and system is effective in investigating unsteady water vapor condensation in high speed expansion flow.
Collapse
Affiliation(s)
- D Peng
- Department of Precise Machinery and Precise Instrument, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Y Jin
- Experiment Center of Engineering and Material Science, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - X D Fan
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - J M Yang
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - C Zhai
- Experiment Center of Engineering and Material Science, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| |
Collapse
|
45
|
Kimmel GA, Xu Y, Brumberg A, Petrik NG, Smith RS, Kay BD. Homogeneous ice nucleation rates and crystallization kinetics in transiently-heated, supercooled water films from 188 K to 230 K. J Chem Phys 2019; 150:204509. [PMID: 31153179 DOI: 10.1063/1.5100147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The crystallization kinetics of transiently heated, nanoscale water films were investigated for 188 K < Tpulse < 230 K, where Tpulse is the maximum temperature obtained during a heat pulse. The water films, which had thicknesses ranging from approximately 15-30 nm, were adsorbed on a Pt(111) single crystal and heated with ∼10 ns laser pulses, which produced heating and cooling rates of ∼109-1010 K/s in the adsorbed water films. Because the ice growth rates have been measured independently, the ice nucleation rates could be determined by modeling the observed crystallization kinetics. The experiments show that the nucleation rate goes through a maximum at T = 216 K ± 4 K, and the rate at the maximum is 1029±1 m-3 s-1. The maximum nucleation rate reported here for flat, thin water films is consistent with recent measurements of the nucleation rate in nanometer-sized water drops at comparable temperatures. However, the nucleation rate drops rapidly at lower temperatures, which is different from the nearly temperature-independent rates observed for the nanometer-sized drops. At T ∼ 189 K, the nucleation rate for the current experiments is a factor of ∼104-5 smaller than the rate at the maximum. The nucleation rate also decreases for Tpulse > 220 K, but the transiently heated water films are not very sensitive to the smaller nucleation rates at higher temperatures. The crystallization kinetics are consistent with a "classical" nucleation and growth mechanism indicating that there is an energetic barrier for deeply supercooled water to convert to ice.
Collapse
Affiliation(s)
- Greg A Kimmel
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Yuntao Xu
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Alexandra Brumberg
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Nikolay G Petrik
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - R Scott Smith
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Bruce D Kay
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| |
Collapse
|
46
|
Meneghel J, Kilbride P, Morris JG, Fonseca F. Physical events occurring during the cryopreservation of immortalized human T cells. PLoS One 2019; 14:e0217304. [PMID: 31120989 PMCID: PMC6532914 DOI: 10.1371/journal.pone.0217304] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/08/2019] [Indexed: 11/18/2022] Open
Abstract
Cryopreservation is key for delivery of cellular therapies, however the key physical and biological events during cryopreservation are poorly understood. This study explored the entire cooling range, from membrane phase transitions above 0°C to the extracellular glass transition at -123°C, including an endothermic event occurring at -47°C that we attributed to the glass transition of the intracellular compartment. An immortalised, human suspension cell line (Jurkat) was studied, using the cryoprotectant dimethyl sulfoxide. Fourier transform infrared spectroscopy was used to determine membrane phase transitions and differential scanning calorimetry to analyse glass transition events. Jurkat cells were exposed to controlled cooling followed by rapid, uncontrolled cooling to examine biological implications of the events, with post-thaw viable cell number and functionality assessed up to 72 h post-thaw. The intracellular glass transition observed at -47°C corresponded to a sharp discontinuity in biological recovery following rapid cooling. No other physical events were seen which could be related to post-thaw viability or performance significantly. Controlled cooling to at least -47°C during the cryopreservation of Jurkat cells, in the presence of dimethyl sulfoxide, will ensure an optimal post-thaw viability. Below -47°C, rapid cooling can be used. This provides an enhanced physical and biological understanding of the key events during cryopreservation and should accelerate the development of optimised cryobiological cooling protocols.
Collapse
Affiliation(s)
- Julie Meneghel
- Asymptote, General Electric Healthcare, Histon, Cambridge, United Kingdom
- * E-mail:
| | - Peter Kilbride
- Asymptote, General Electric Healthcare, Histon, Cambridge, United Kingdom
| | - John G. Morris
- Asymptote, General Electric Healthcare, Histon, Cambridge, United Kingdom
| | - Fernanda Fonseca
- UMR GMPA, AgroParisTech, INRA, Université Paris Saclay, Thiverval-Grignon, France
| |
Collapse
|
47
|
Moreau DW, Atakisi H, Thorne RE. Ice formation and solvent nanoconfinement in protein crystals. IUCRJ 2019; 6:346-356. [PMID: 31098016 PMCID: PMC6503922 DOI: 10.1107/s2052252519001878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/31/2019] [Indexed: 05/06/2023]
Abstract
Ice formation within protein crystals is a major obstacle to the cryocrystallographic study of protein structure, and has limited studies of how the structural ensemble of a protein evolves with temperature in the biophysically interesting range from ∼260 K to the protein-solvent glass transition near 200 K. Using protein crystals with solvent cavities as large as ∼70 Å, time-resolved X-ray diffraction was used to study the response of protein and internal solvent during rapid cooling. Solvent nanoconfinement suppresses freezing temperatures and ice-nucleation rates so that ice-free, low-mosaicity diffraction data can be reliably collected down to 200 K without the use of cryoprotectants. Hexagonal ice (Ih) forms in external solvent, but internal crystal solvent forms stacking-disordered ice (Isd) with a near-random stacking of cubic and hexagonal planes. Analysis of powder diffraction from internal ice and single-crystal diffraction from the host protein structure shows that the maximum crystallizable solvent fraction decreases with decreasing crystal solvent-cavity size, and that an ∼6 Å thick layer of solvent adjacent to the protein surface cannot crystallize. These results establish protein crystals as excellent model systems for the study of nanoconfined solvent. By combining fast cooling, intense X-ray beams and fast X-ray detectors, complete structural data sets for high-value targets, including membrane proteins and large complexes, may be collected at ∼220-240 K that have much lower mosaicities and comparable B factors, and that may allow more confident identification of ligand binding than in current cryocrystallographic practice.
Collapse
Affiliation(s)
- David W. Moreau
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | - Hakan Atakisi
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
48
|
Thangswamy M, Dutta D, Maheshwari P, Sen D, Pujari PK. Energetics of ice nucleation in mesoporous titania using positron annihilation spectroscopy. Phys Chem Chem Phys 2019; 21:6033-6041. [PMID: 30810122 DOI: 10.1039/c8cp06121a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The low temperature behavior of water and kinetics of ice nucleation in titania mesopores have been probed by positron annihilation lifetime spectroscopy as a function of pore filling. It is revealed that water undergoes complete freezing at around 220 K when more than 50% of the pore volume is filled and such freezing is hindered at lower hydration levels. A model describing progressive trapping of positronium by ice nuclei in liquid water during the phase transition is employed to estimate the energy associated with the nucleation under confinement. It is observed that the energy for ice nucleation in confinement is less than the activation energy for nucleation in bulk water because of the surface assisted nucleation inside the pore. Interestingly, energy for nucleation is seen to decrease with the lowering of hydration level and ascribed to the curtailed hydrogen bonding network of water at lower pore filling.
Collapse
|
49
|
Lippe M, Szczepaniak U, Hou GL, Chakrabarty S, Ferreiro JJ, Chasovskikh E, Signorell R. Infrared Spectroscopy and Mass Spectrometry of CO2 Clusters during Nucleation and Growth. J Phys Chem A 2019; 123:2426-2437. [DOI: 10.1021/acs.jpca.9b01030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Martina Lippe
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Urszula Szczepaniak
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Gao-Lei Hou
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Satrajit Chakrabarty
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Jorge J. Ferreiro
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Egor Chasovskikh
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Ruth Signorell
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
50
|
Hestand NJ, Strong SE, Shi L, Skinner JL. Mid-IR spectroscopy of supercritical water: From dilute gas to dense fluid. J Chem Phys 2019; 150:054505. [DOI: 10.1063/1.5079232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nicholas J. Hestand
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Steven E. Strong
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Liang Shi
- School of Natural Sciences, University of California, Merced, California 95344, USA
| | - J. L. Skinner
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|