• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4612466)   Today's Articles (4054)   Subscriber (49383)
For: Zhu T, He X, Zhang JZH. Fragment density functional theory calculation of NMR chemical shifts for proteins with implicit solvation. Phys Chem Chem Phys 2012;14:7837-45. [PMID: 22314755 DOI: 10.1039/c2cp23746f] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Number Cited by Other Article(s)
1
Wang Y, Teng C, Begin E, Bussiere M, Bao JL. PW-SMD: A Plane-Wave Implicit Solvation Model Based on Electron Density for Surface Chemistry and Crystalline Systems in Aqueous Solution. J Chem Theory Comput 2024. [PMID: 39024317 DOI: 10.1021/acs.jctc.4c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
2
Dash R, Jabbari E. A Structure Independent Molecular Fragment Interfuse Model for Mesoscale Dissipative Particle Dynamics Simulation of Peptides. ACS OMEGA 2024;9:18001-18022. [PMID: 38680324 PMCID: PMC11044228 DOI: 10.1021/acsomega.3c09534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
3
Yi X, Zhang L, Friesner RA, McDermott A. Predicted and Experimental NMR Chemical Shifts at Variable Temperatures: The Effect of Protein Conformational Dynamics. J Phys Chem Lett 2024;15:2270-2278. [PMID: 38381862 DOI: 10.1021/acs.jpclett.3c02589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
4
Zhang J, Kriebel CN, Wan Z, Shi M, Glaubitz C, He X. Automated Fragmentation Quantum Mechanical Calculation of 15N and 13C Chemical Shifts in a Membrane Protein. J Chem Theory Comput 2023;19:7405-7422. [PMID: 37788419 DOI: 10.1021/acs.jctc.3c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
5
Yi X, Zhang L, Friesner RA, McDermott A. Predicted and Experimental NMR Chemical Shifts at Variable Temperatures: The Effect of Protein Conformational Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525502. [PMID: 36747635 PMCID: PMC9900828 DOI: 10.1101/2023.01.25.525502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
6
Bakker MJ, Mládek A, Semrád H, Zapletal V, Pavlíková Přecechtělová J. Improving IDP theoretical chemical shift accuracy and efficiency through a combined MD/ADMA/DFT and machine learning approach. Phys Chem Chem Phys 2022;24:27678-27692. [PMID: 36373847 DOI: 10.1039/d2cp01638a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
7
Dynamic Coupling of Tyrosine 185 with the Bacteriorhodopsin Photocycle, as Revealed by Chemical Shifts, Assisted AF-QM/MM Calculations and Molecular Dynamic Simulations. Int J Mol Sci 2021;22:ijms222413587. [PMID: 34948384 PMCID: PMC8709120 DOI: 10.3390/ijms222413587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022]  Open
8
Fragment-Based Ab Initio Molecular Dynamics Simulation for Combustion. Molecules 2021;26:molecules26113120. [PMID: 34071128 PMCID: PMC8197069 DOI: 10.3390/molecules26113120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]  Open
9
Shi M, Jin X, Wan Z, He X. Automated fragmentation quantum mechanical calculation of 13C and 1H chemical shifts in molecular crystals. J Chem Phys 2021;154:064502. [PMID: 33588539 DOI: 10.1063/5.0039115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
10
Case DA. Using quantum chemistry to estimate chemical shifts in biomolecules. Biophys Chem 2020;267:106476. [PMID: 33035752 PMCID: PMC7686263 DOI: 10.1016/j.bpc.2020.106476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 01/17/2023]
11
Unzueta PA, Beran GJO. Polarizable continuum models provide an effective electrostatic embedding model for fragment-based chemical shift prediction in challenging systems. J Comput Chem 2020;41:2251-2265. [PMID: 32748418 DOI: 10.1002/jcc.26388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/04/2020] [Accepted: 07/04/2020] [Indexed: 12/25/2022]
12
Kraus J, Gupta R, Lu M, Gronenborn AM, Akke M, Polenova T. Accurate Backbone 13 C and 15 N Chemical Shift Tensors in Galectin-3 Determined by MAS NMR and QM/MM: Details of Structure and Environment Matter. Chemphyschem 2020;21:1436-1443. [PMID: 32363727 PMCID: PMC8080305 DOI: 10.1002/cphc.202000249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Indexed: 01/07/2023]
13
Wang LF, Wang Y, Yang ZY, Zhao J, Sun HB, Wu SL. Revealing binding selectivity of inhibitors toward bromodomain-containing proteins 2 and 4 using multiple short molecular dynamics simulations and free energy analyses. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020;31:373-398. [PMID: 32496901 DOI: 10.1080/1062936x.2020.1748107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
14
Zhao D, Shen X, Cheng Z, Li W, Dong H, Li S. Accurate and Efficient Prediction of NMR Parameters of Condensed-Phase Systems with the Generalized Energy-Based Fragmentation Method. J Chem Theory Comput 2020;16:2995-3005. [DOI: 10.1021/acs.jctc.9b01298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
15
Wang Y, Wang LF, Zhang LL, Sun HB, Zhao J. Molecular mechanism of inhibitor bindings to bromodomain-containing protein 9 explored based on molecular dynamics simulations and calculations of binding free energies. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020;31:149-170. [PMID: 31851834 DOI: 10.1080/1062936x.2019.1701075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
16
Wang L, Wang Y, Sun H, Zhao J, Wang Q. Theoretical insight into molecular mechanisms of inhibitor bindings to bromodomain-containing protein 4 using molecular dynamics simulations and calculations of binding free energies. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
17
Herbert JM. Fantasy versus reality in fragment-based quantum chemistry. J Chem Phys 2019;151:170901. [PMID: 31703524 DOI: 10.1063/1.5126216] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]  Open
18
Pavlíková Přecechtělová J, Mládek A, Zapletal V, Hritz J. Quantum Chemical Calculations of NMR Chemical Shifts in Phosphorylated Intrinsically Disordered Proteins. J Chem Theory Comput 2019;15:5642-5658. [DOI: 10.1021/acs.jctc.8b00257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
19
Yuan M, Zhang Y, Qu Z, Xiao Y, Liu W. Sublinear scaling quantum chemical methods for magnetic shieldings in large molecules. J Chem Phys 2019;150:154113. [DOI: 10.1063/1.5083193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
20
Xu M, He X, Zhu T, Zhang JZH. A Fragment Quantum Mechanical Method for Metalloproteins. J Chem Theory Comput 2019;15:1430-1439. [PMID: 30620584 DOI: 10.1021/acs.jctc.8b00966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
21
Dipolar couplings in solid polypeptides probed by 14N NMR spectroscopy. Commun Chem 2018. [DOI: 10.1038/s42004-018-0072-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]  Open
22
Ho KC, Hamelberg D. Combinatorial Coarse-Graining of Molecular Dynamics Simulations for Detecting Relationships between Local Configurations and Overall Conformations. J Chem Theory Comput 2018;14:6026-6034. [DOI: 10.1021/acs.jctc.8b00333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
23
Ding X, Sun C, Cui H, Chen S, Gao Y, Yang Y, Wang J, He X, Iuga D, Tian F, Watts A, Zhao X. Functional roles of tyrosine 185 during the bacteriorhodopsin photocycle as revealed by in situ spectroscopic studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018;1859:1006-1014. [PMID: 29800547 DOI: 10.1016/j.bbabio.2018.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/15/2018] [Accepted: 05/20/2018] [Indexed: 01/22/2023]
24
Jin X, Zhu T, Zhang JZH, He X. Automated Fragmentation QM/MM Calculation of NMR Chemical Shifts for Protein-Ligand Complexes. Front Chem 2018;6:150. [PMID: 29868556 PMCID: PMC5952040 DOI: 10.3389/fchem.2018.00150] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/16/2018] [Indexed: 01/13/2023]  Open
25
Stoychev GL, Auer AA, Izsák R, Neese F. Self-Consistent Field Calculation of Nuclear Magnetic Resonance Chemical Shielding Constants Using Gauge-Including Atomic Orbitals and Approximate Two-Electron Integrals. J Chem Theory Comput 2018;14:619-637. [DOI: 10.1021/acs.jctc.7b01006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
26
Zhao D, Song R, Li W, Ma J, Dong H, Li S. Accurate Prediction of NMR Chemical Shifts in Macromolecular and Condensed-Phase Systems with the Generalized Energy-Based Fragmentation Method. J Chem Theory Comput 2017;13:5231-5239. [DOI: 10.1021/acs.jctc.7b00380] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
27
Yu Z, Li P, Merz KM. Using Ligand-Induced Protein Chemical Shift Perturbations To Determine Protein–Ligand Structures. Biochemistry 2017;56:2349-2362. [DOI: 10.1021/acs.biochem.7b00170] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
28
Liu J, Qi LW, Zhang JZH, He X. Fragment Quantum Mechanical Method for Large-Sized Ion–Water Clusters. J Chem Theory Comput 2017;13:2021-2034. [DOI: 10.1021/acs.jctc.7b00149] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
29
Jin X, Zhang JZH, He X. Full QM Calculation of RNA Energy Using Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps Method. J Phys Chem A 2017;121:2503-2514. [PMID: 28264557 DOI: 10.1021/acs.jpca.7b00859] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
30
Jose KVJ, Raghavachari K. Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment. J Chem Theory Comput 2017;13:1147-1158. [DOI: 10.1021/acs.jctc.6b00922] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
31
Steinmann C, Bratholm LA, Olsen JMH, Kongsted J. Automated Fragmentation Polarizable Embedding Density Functional Theory (PE-DFT) Calculations of Nuclear Magnetic Resonance (NMR) Shielding Constants of Proteins with Application to Chemical Shift Predictions. J Chem Theory Comput 2017;13:525-536. [PMID: 27992211 DOI: 10.1021/acs.jctc.6b00965] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
32
Bratholm LA, Jensen JH. Protein structure refinement using a quantum mechanics-based chemical shielding predictor. Chem Sci 2016;8:2061-2072. [PMID: 28451325 PMCID: PMC5399634 DOI: 10.1039/c6sc04344e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/15/2016] [Indexed: 11/21/2022]  Open
33
Hartman J, Day GM, Beran GJO. Enhanced NMR Discrimination of Pharmaceutically Relevant Molecular Crystal Forms through Fragment-Based Ab Initio Chemical Shift Predictions. CRYSTAL GROWTH & DESIGN 2016;16:6479-6493. [PMID: 27829821 PMCID: PMC5095663 DOI: 10.1021/acs.cgd.6b01157] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/09/2016] [Indexed: 05/10/2023]
34
Amos R, Kobayashi R. Ab Initio NMR Chemical Shift Calculations Using Fragment Molecular Orbitals and Locally Dense Basis Sets. J Phys Chem A 2016;120:8907-8915. [DOI: 10.1021/acs.jpca.6b09190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
35
Haensele E, Saleh N, Read CM, Banting L, Whitley DC, Clark T. Can Simulations and Modeling Decipher NMR Data for Conformational Equilibria? Arginine–Vasopressin. J Chem Inf Model 2016;56:1798-807. [PMID: 27585313 DOI: 10.1021/acs.jcim.6b00344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
36
Jangra H, Haindl MH, Achrainer F, Hioe J, Gschwind RM, Zipse H. Conformational Preferences in Small Peptide Models: The Relevance ofcis/trans-Conformations. Chemistry 2016;22:13328-35. [DOI: 10.1002/chem.201601828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 11/12/2022]
37
Fedorov DG, Kitaura K. Subsystem Analysis for the Fragment Molecular Orbital Method and Its Application to Protein-Ligand Binding in Solution. J Phys Chem A 2016;120:2218-31. [PMID: 26949816 DOI: 10.1021/acs.jpca.6b00163] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
38
Beran GJO. Modeling Polymorphic Molecular Crystals with Electronic Structure Theory. Chem Rev 2016;116:5567-613. [PMID: 27008426 DOI: 10.1021/acs.chemrev.5b00648] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
39
Vícha J, Babinský M, Demo G, Otrusinová O, Jansen S, Pekárová B, Žídek L, Munzarová ML. The influence of Mg2+ coordination on 13C and 15N chemical shifts in CKI1RD protein domain from experiment and molecular dynamics/density functional theory calculations. Proteins 2016;84:686-99. [PMID: 26879585 DOI: 10.1002/prot.25019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/29/2016] [Accepted: 02/10/2016] [Indexed: 11/09/2022]
40
Sikdar S, Ghosh M, De Raychaudhury M, Chakrabarti J. Quantum chemical studies on nucleophilic sites in calcium ion bound zwitterionic calmodulin loops. RSC Adv 2016. [DOI: 10.1039/c6ra10846f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
41
Jin X, Zhu T, Zhang JZH, He X. A systematic study on RNA NMR chemical shift calculation based on the automated fragmentation QM/MM approach. RSC Adv 2016. [DOI: 10.1039/c6ra22518g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]  Open
42
Reid DM, Kobayashi R, Collins MA. Systematic Study of Locally Dense Basis Sets for NMR Shielding Constants. J Chem Theory Comput 2015;10:146-52. [PMID: 26579898 DOI: 10.1021/ct4007579] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
43
Hartman JD, Beran GJO. Fragment-Based Electronic Structure Approach for Computing Nuclear Magnetic Resonance Chemical Shifts in Molecular Crystals. J Chem Theory Comput 2015;10:4862-72. [PMID: 26584373 DOI: 10.1021/ct500749h] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
44
Hartman JD, Monaco S, Schatschneider B, Beran GJO. Fragment-based (13)C nuclear magnetic resonance chemical shift predictions in molecular crystals: An alternative to planewave methods. J Chem Phys 2015;143:102809. [PMID: 26374002 DOI: 10.1063/1.4922649] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
45
Chen J, Wang J, Zhang Q, Chen K, Zhu W. Probing Origin of Binding Difference of inhibitors to MDM2 and MDMX by Polarizable Molecular Dynamics Simulation and QM/MM-GBSA Calculation. Sci Rep 2015;5:17421. [PMID: 26616018 PMCID: PMC4663504 DOI: 10.1038/srep17421] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022]  Open
46
Shi S, Zhang S, Zhang Q. Probing Difference in Binding Modes of Inhibitors to MDMX by Molecular Dynamics Simulations and Different Free Energy Methods. PLoS One 2015;10:e0141409. [PMID: 26513747 PMCID: PMC4625964 DOI: 10.1371/journal.pone.0141409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 10/08/2015] [Indexed: 01/20/2023]  Open
47
Larsen AS, Bratholm LA, Christensen AS, Channir M, Jensen JH. ProCS15: a DFT-based chemical shift predictor for backbone and Cβ atoms in proteins. PeerJ 2015;3:e1344. [PMID: 26623185 PMCID: PMC4662583 DOI: 10.7717/peerj.1344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/01/2015] [Indexed: 12/16/2022]  Open
48
Swails J, Zhu T, He X, Case DA. AFNMR: automated fragmentation quantum mechanical calculation of NMR chemical shifts for biomolecules. JOURNAL OF BIOMOLECULAR NMR 2015;63:125-39. [PMID: 26232926 PMCID: PMC6556433 DOI: 10.1007/s10858-015-9970-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/20/2015] [Indexed: 05/08/2023]
49
Cheng W, Liang Z, Wang W, Yi C, Li H, Zhang S, Zhang Q. Insight into binding modes of p53 and inhibitors to MDM2 based on molecular dynamic simulations and principal component analysis. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1087598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
50
Chen J, Wang X, Zhu T, Zhang Q, Zhang JZH. A Comparative Insight into Amprenavir Resistance of Mutations V32I, G48V, I50V, I54V, and I84V in HIV-1 Protease Based on Thermodynamic Integration and MM-PBSA Methods. J Chem Inf Model 2015;55:1903-13. [DOI: 10.1021/acs.jcim.5b00173] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA