1
|
Bonto M, Eftekhari AA, Nick HM. Electrokinetic behavior of artificial and natural calcites: A review of experimental measurements and surface complexation models. Adv Colloid Interface Sci 2022; 301:102600. [PMID: 35065336 DOI: 10.1016/j.cis.2022.102600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 11/28/2022]
Abstract
The surface charge of calcite in aqueous environments is essential to many industrial and environmental applications. Electrokinetic measurements are usually used to assess the calcite charging behavior and characterize its electrical double layer (EDL). Numerous surface complexation models (SCMs) have been proposed to interpret the effect of different surface interactions on the zeta potential. Because of their versatility, SCMs have also become important tools in reactive transport modeling. The research on enhanced oil recovery within the last decade has led to an increased number of publications reporting both zeta potential measurements and SCMs for calcite. Nonetheless, the measurements are often inconsistent and the reasons for choosing one model over another are unclear. In this work, we review the models proposed for calcite and address their main differences. We first collect a large number of published zeta potential measurements and then we fit a Diffuse Layer, Basic Stern, and Charge-Distribution Multi-Site Complexation models to a selected reliable dataset. For each model, we maintain a similar number of adjustable parameters. After optimizing the parameters of the models, we systematically compare their prediction capabilities against data obtained in monovalent and divalent electrolyte systems containing calcium, magnesium, sulfate, or carbonate. We show that, often, the discrepancies between the models and the experimental data can be explained by different levels of disequilibrium. Nonetheless, assumptions used in the development of the models may significantly reduce their extrapolability to variable chemical conditions. The poor agreement between the models tuned to electrokinetic data with surface charge measurements and dynamic retention from single-phase flowthrough tests show that zeta potential may not be the best type of data to characterize ion binding at the calcite surface. Including the effect of mineral impurities and temperature on the calcite surface speciation and electrokinetic behavior prevail as main challenges for reactive transport modeling.
Collapse
Affiliation(s)
- María Bonto
- Danish Hydrocarbon Research and Technology Centre, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
| | - Ali A Eftekhari
- Danish Hydrocarbon Research and Technology Centre, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Hamidreza M Nick
- Danish Hydrocarbon Research and Technology Centre, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
2
|
Janke W, Speck T. Multiscale modeling of structure formation of C 60 on insulating CaF 2 substrates. J Chem Phys 2021; 154:234701. [PMID: 34241269 DOI: 10.1063/5.0051188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Morphologies of adsorbed molecular films are of interest in a wide range of applications. To study the epitaxial growth of these systems in computer simulations requires access to long time and length scales, and one typically resorts to kinetic Monte Carlo (KMC) simulations. However, KMC simulations require as input transition rates and their dependence on external parameters (such as temperature). Experimental data allow only limited and indirect access to these rates, and models are often oversimplified. Here, we follow a bottom-up approach and aim at systematically constructing all relevant rates for an example system that has shown interesting properties in experiments, buckminsterfullerene on a calcium fluoride substrate. We develop classical force fields (both atomistic and coarse-grained) and perform molecular dynamics simulations of the elementary transitions in order to derive explicit expressions for the transition rates with a minimal number of free parameters.
Collapse
Affiliation(s)
- William Janke
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
3
|
Hinaut A, Scherb S, Freund S, Liu Z, Glatzel T, Meyer E. Influence of electrospray deposition on C 60 molecular assemblies. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:552-558. [PMID: 34221801 PMCID: PMC8218541 DOI: 10.3762/bjnano.12.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Maintaining clean conditions for samples during all steps of preparation and investigation is important for scanning probe studies at the atomic or molecular level. For large or fragile organic molecules, where sublimation cannot be used, high-vacuum electrospray deposition is a good alternative. However, because this method requires the introduction into vacuum of the molecules from solution, clean conditions are more difficult to be maintained. Additionally, because the presence of solvent on the surface cannot be fully eliminated, one has to take care of its possible influence. Here, we compare the high-vacuum electrospray deposition method to thermal evaporation for the preparation of C60 on different surfaces and compare, for sub-monolayer coverages, the influence of the deposition method on the formation of molecular assemblies. Whereas the island location is the main difference for metal surfaces, we observe for alkali halide and metal oxide substrates that the high-vacuum electrospray method can yield single isolated molecules accompanied by surface modifications.
Collapse
Affiliation(s)
- Antoine Hinaut
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Sebastian Scherb
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Sara Freund
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Zhao Liu
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Thilo Glatzel
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Ernst Meyer
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| |
Collapse
|
4
|
Houtsma RSK, de la Rie J, Stöhr M. Atomically precise graphene nanoribbons: interplay of structural and electronic properties. Chem Soc Rev 2021; 50:6541-6568. [PMID: 34100034 PMCID: PMC8185524 DOI: 10.1039/d0cs01541e] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 12/21/2022]
Abstract
Graphene nanoribbons hold great promise for future applications in nanoelectronic devices, as they may combine the excellent electronic properties of graphene with the opening of an electronic band gap - not present in graphene but required for transistor applications. With a two-step on-surface synthesis process, graphene nanoribbons can be fabricated with atomic precision, allowing precise control over width and edge structure. Meanwhile, a decade of research has resulted in a plethora of graphene nanoribbons having various structural and electronic properties. This article reviews not only the on-surface synthesis of atomically precise graphene nanoribbons but also how their electronic properties are ultimately linked to their structure. Current knowledge and considerations with respect to precursor design, which eventually determines the final (electronic) structure, are summarized. Special attention is dedicated to the electronic properties of graphene nanoribbons, also in dependence on their width and edge structure. It is exactly this possibility of precisely changing their properties by fine-tuning the precursor design - offering tunability over a wide range - which has generated this vast research interest, also in view of future applications. Thus, selected device prototypes are presented as well.
Collapse
Affiliation(s)
- R. S. Koen Houtsma
- Zernike Institute for Advanced Materials, University of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Joris de la Rie
- Zernike Institute for Advanced Materials, University of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Meike Stöhr
- Zernike Institute for Advanced Materials, University of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
5
|
Arturo T. Towards dewetting monoclonal antibodies for therapeutical purposes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 150:153-159. [PMID: 31525385 DOI: 10.1016/j.pbiomolbio.2019.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/22/2019] [Accepted: 09/07/2019] [Indexed: 12/30/2022]
Abstract
Dewetting transition - a concept borrowed from fluid mechanics - is a physiological process that takes place inside the hydrophobic pores of ion channels. This transient phenomenon causes a metastable state that forbids water molecules to cross microscopic receptor cavities. This leads to a decreased conductance, a closure of the pore and, subsequently, severe impairment of cellular performance. We suggest that artificially-provoked dewetting transition in ion channel hydrophobic pores might stand for a molecular candidate to erase detrimental organisms, such as viruses, bacteria, and cancer cells. We describe a novel type of high-affinity monoclonal antibody, that: a) targets specific trans-membrane receptor structures of harmful or redundant cells; b) is equipped with lipophilic and/or hydrophobic fragments that prevent physiological water flow inside ion channels. Therefore, we achieve an artificial dewetting transition inside receptor cavities, that causes discontinuity within transmembrane ionic flows, channel blockage, and subsequent damage of morbid cells. As an example, we describe dewetting monoclonal antibodies that target the M2 channel of the Influenza A virus: they might prevent water from entering pores thus leading to virion impairment.
Collapse
Affiliation(s)
- Tozzi Arturo
- Center for Nonlinear Science, Department of Physics, University of North Texas, 1155 Union Circle, #311427, Denton, TX, 76203-5017, USA.
| |
Collapse
|
6
|
Seydel E, Hoffmann-Vogel R, Marz M. Epitaxial growth of C 60 on highly oriented pyrolytic graphite surfaces studied at low temperatures. NANOTECHNOLOGY 2019; 30:025703. [PMID: 30382026 DOI: 10.1088/1361-6528/aae7ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphite surfaces interact weakly with molecules compared to other conducting surfaces, bringing the molecule-molecule interaction to the foreground. C60 on highly oriented pyrolytic graphite is a model system for studying the molecular self-assembly on surfaces. Our scanning tunneling microscopy measurements at liquid nitrogen temperatures confirm the previously observed island growth mode. Our results indicate that there is an epitaxial relationship of the molecular islands and the substrate with three possible orientations of the islands. For one of these orientations, we determine this epitaxial relationship by analyzing in detail an image taken across a C60 island step edge. In this image we have obtained high-resolution on both the molecular island and the substrate. The result of this analysis is confirmed by two-dimensional Fourier analysis.
Collapse
Affiliation(s)
- E Seydel
- Physikalisches Institut, Karlsruhe Institute for Technology (KIT), D-76131 Karlsruhe, Germany
| | | | | |
Collapse
|
7
|
|
8
|
Goronzy DP, Ebrahimi M, Rosei F, Fang Y, De Feyter S, Tait SL, Wang C, Beton PH, Wee ATS, Weiss PS, Perepichka DF. Supramolecular Assemblies on Surfaces: Nanopatterning, Functionality, and Reactivity. ACS NANO 2018; 12:7445-7481. [PMID: 30010321 DOI: 10.1021/acsnano.8b03513] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Understanding how molecules interact to form large-scale hierarchical structures on surfaces holds promise for building designer nanoscale constructs with defined chemical and physical properties. Here, we describe early advances in this field and highlight upcoming opportunities and challenges. Both direct intermolecular interactions and those that are mediated by coordinated metal centers or substrates are discussed. These interactions can be additive, but they can also interfere with each other, leading to new assemblies in which electrical potentials vary at distances much larger than those of typical chemical interactions. Earlier spectroscopic and surface measurements have provided partial information on such interfacial effects. In the interim, scanning probe microscopies have assumed defining roles in the field of molecular organization on surfaces, delivering deeper understanding of interactions, structures, and local potentials. Self-assembly is a key strategy to form extended structures on surfaces, advancing nanolithography into the chemical dimension and providing simultaneous control at multiple scales. In parallel, the emergence of graphene and the resulting impetus to explore 2D materials have broadened the field, as surface-confined reactions of molecular building blocks provide access to such materials as 2D polymers and graphene nanoribbons. In this Review, we describe recent advances and point out promising directions that will lead to even greater and more robust capabilities to exploit designer surfaces.
Collapse
Affiliation(s)
- Dominic P Goronzy
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Maryam Ebrahimi
- INRS Centre for Energy, Materials and Telecommunications , 1650 Boul. Lionel Boulet , Varennes , Quebec J3X 1S2 , Canada
| | - Federico Rosei
- INRS Centre for Energy, Materials and Telecommunications , 1650 Boul. Lionel Boulet , Varennes , Quebec J3X 1S2 , Canada
- Institute for Fundamental and Frontier Science , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
| | - Yuan Fang
- Department of Chemistry , McGill University , Montreal H3A 0B8 , Canada
| | - Steven De Feyter
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , Leuven 3001 , Belgium
| | - Steven L Tait
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Chen Wang
- National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Peter H Beton
- School of Physics & Astronomy , University of Nottingham , Nottingham NG7 2RD , United Kingdom
| | - Andrew T S Wee
- Department of Physics , National University of Singapore , 117542 Singapore
| | - Paul S Weiss
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Dmitrii F Perepichka
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry , McGill University , Montreal H3A 0B8 , Canada
| |
Collapse
|
9
|
Richter A, Floris A, Bechstein R, Kantorovich L, Kühnle A. On-surface synthesis on a bulk insulator surface. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:133001. [PMID: 29460853 DOI: 10.1088/1361-648x/aab0b9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
On-surface synthesis has rapidly emerged as a most promising approach to prepare functional molecular structures directly on a support surface. Compared to solution synthesis, performing chemical reactions on a surface offers several exciting new options: due to the absence of a solvent, reactions can be envisioned that are otherwise not feasible due to the insolubility of the reaction product. Perhaps even more important, the confinement to a two-dimensional surface might enable reaction pathways that are not accessible otherwise. Consequently, on-surface synthesis has attracted great attention in the last decade, with an impressive number of classical reactions transferred to a surface as well as new reactions demonstrated that have no classical analogue. So far, the majority of the work has been carried out on conducting surfaces. However, when aiming for electronic decoupling of the resulting structures, e.g. for the use in future molecular electronic devices, non-conducting surfaces are highly desired. Here, we review the current status of on-surface reactions demonstrated on the (10.4) surface of the bulk insulator calcite. Besides thermally induced C-C coupling of halogen-substituted aryls, photochemically induced [2 + 2] cycloaddition has been proven possible on this surface. Moreover, experimental evidence exists for coupling of terminal alkynes as well as diacetylene polymerization. While imaging of the resulting structures with dynamic atomic force microscopy provides a direct means of reaction verification, the detailed reaction pathway often remains unclear. Especially in cases where the presence of metal atoms is known to catalyze the corresponding solution chemistry reaction (e.g. in the case of the Ullmann reaction), disclosing the precise reaction pathway is of importance to understand and generalize on-surface reactivity on a bulk insulator surface. To this end, density-functional theory calculations have proven to provide atomic-scale insights that have greatly contributed to unravelling the details of on-surface synthesis on a bulk insulator surface.
Collapse
Affiliation(s)
- Antje Richter
- Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
10
|
Hoffmann-Vogel R. Imaging prototypical aromatic molecules on insulating surfaces: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:016501. [PMID: 28958993 DOI: 10.1088/1361-6633/aa8fda] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Insulating substrates allow for in-plane contacted molecular electronics devices where the molecule is in contact with the insulator. For the development of such devices it is important to understand the interaction of molecules with insulating surfaces. As substrates, ionic crystals such as KBr, KCl, NaCl and CaF2 are discussed. The surface energies of these substrates are small and as a consequence intrinsic properties of the molecules, such as molecule-molecule interaction, become more important relative to interactions with the substrates. As prototypical molecules, three variants of graphene-related molecules are used, pentacene, [Formula: see text] and PTCDA. Pentacene is a good candidate for molecular electronics applications due to its high charge carrier mobility. It shows mainly an upright standing growth mode and the morphology of the islands is strongly influenced by dewetting. A new second flat-lying phase of the molecule has been observed. Studying the local work function using the Kelvin method reveals details such as line defects in the center of islands. The local work function differences between the upright-standing and flat-lying phase can only be explained by charge transfer that is unusual on ionic crystalline surfaces. [Formula: see text] nucleation and growth is explained by loosely bound molecules at kink sites as nucleation sites. The stability of [Formula: see text] islands as a function of magic numbers is investigated. Peculiar island shapes are obtained from unusual dewetting processes already at work during growth, where molecules 'climb' to the second molecular layer. PTCDA is a prototypical semiconducting molecule with strong quadrupole moment. It grows in the form of elongated islands where the top and the facets can be molecularly resolved. In this way the precise molecular arrangement in the islands is revealed.
Collapse
Affiliation(s)
- R Hoffmann-Vogel
- Physikalisches Institut, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany. Institut für Angewandte Physik, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| |
Collapse
|
11
|
Korolkov VV, Svatek SA, Allen S, Roberts CJ, Tendler SJB, Taniguchi T, Watanabe K, Champness NR, Beton PH. Bimolecular porous supramolecular networks deposited from solution on layered materials: graphite, boron nitride and molybdenum disulphide. Chem Commun (Camb) 2015; 50:8882-5. [PMID: 24969532 DOI: 10.1039/c4cc03720k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-dimensional porous network formed from perylene tetracarboxylic diimide (PTCDI) and melamine may be deposited from solution on the surfaces of highly oriented pyrolytic graphite (HOPG), hexagonal boron nitride (hBN) and molybdenum disulphide (MoS2). Images acquired using high resolution atomic force microscopy (AFM) operating under ambient conditions have revealed that the network forms extended ordered monolayers (>1 μm(2)) on HOPG and hBN whereas on MoS2 much smaller islands are observed.
Collapse
Affiliation(s)
- Vladimir V Korolkov
- School of Physics & Astronomy, The University of Nottingham, Nottingham NG7 2RD, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Storz C, Badoux M, Hauke CM, Šolomek T, Kühnle A, Bally T, Kilbinger AFM. One-Pot Synthesis and AFM Imaging of a Triangular Aramide Macrocycle. J Am Chem Soc 2014; 136:12832-5. [DOI: 10.1021/ja506646s] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christof Storz
- Department
of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Michael Badoux
- Department
of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Christopher M. Hauke
- Institut
für Physikalische Chemie, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany
- Graduate School of Excellence Materials Science in Mainz, Staudinger Weg 9, D-55128 Mainz, Germany
| | - Tomáš Šolomek
- Department
of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
- RECETOX
and Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Angelika Kühnle
- Institut
für Physikalische Chemie, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Thomas Bally
- Department
of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Andreas F. M. Kilbinger
- Department
of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| |
Collapse
|
14
|
Lindner R, Rahe P, Kittelmann M, Gourdon A, Bechstein R, Kühnle A. Templatgesteuerte Photoreaktion von C60auf Calcit. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Lindner R, Rahe P, Kittelmann M, Gourdon A, Bechstein R, Kühnle A. Substrate templating guides the photoinduced reaction of C60 on calcite. Angew Chem Int Ed Engl 2014; 53:7952-5. [PMID: 24692299 DOI: 10.1002/anie.201309128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/29/2014] [Indexed: 11/06/2022]
Abstract
A substrate-guided photochemical reaction of C60 fullerenes on calcite, a bulk insulator, investigated by non-contact atomic force microscopy is presented. The success of the covalent linkage is evident from a shortening of the intermolecular distances, which is clearly expressed by the disappearance of the moiré pattern. Furthermore, UV/Vis spectroscopy and mass spectrometry measurements carried out on thick films demonstrate the ability of our setup for initiating the photoinduced reaction. The irradiation of C60 results in well-oriented covalently linked domains. The orientation of these domains is dictated by the lattice dimensions of the underlying calcite substrate. Using the lattice mismatch to deliberately steer the direction of the chemical reaction is expected to constitute a general design principle for on-surface synthesis. This work thus provides a strategy for controlled fabrication of oriented, covalent networks on bulk insulators.
Collapse
Affiliation(s)
- Robert Lindner
- Institut für Physikalische Chemie, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55128 Mainz (Germany); Graduate School of Excellence "Materials Science in Mainz", Staudinger Weg 9, 55128 Mainz (Germany)
| | | | | | | | | | | |
Collapse
|
16
|
Neff JL, Kittelmann M, Bechstein R, Kühnle A. Decisive influence of substitution positions in molecular self-assembly. Phys Chem Chem Phys 2014; 16:15437-43. [DOI: 10.1039/c4cp02077d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Depending on the OH substitution positions distinctly different self-assembled structures can be achieved.
Collapse
Affiliation(s)
- Julia L. Neff
- Institut für Physikalische Chemie
- Fachbereich Chemie
- Johannes Gutenberg-Universität Mainz
- 55099 Mainz, Germany
| | - Markus Kittelmann
- Institut für Physikalische Chemie
- Fachbereich Chemie
- Johannes Gutenberg-Universität Mainz
- 55099 Mainz, Germany
| | - Ralf Bechstein
- Institut für Physikalische Chemie
- Fachbereich Chemie
- Johannes Gutenberg-Universität Mainz
- 55099 Mainz, Germany
| | - Angelika Kühnle
- Institut für Physikalische Chemie
- Fachbereich Chemie
- Johannes Gutenberg-Universität Mainz
- 55099 Mainz, Germany
| |
Collapse
|
17
|
Rahe P, Kittelmann M, Neff JL, Nimmrich M, Reichling M, Maass P, Kühnle A. Tuning molecular self-assembly on bulk insulator surfaces by anchoring of the organic building blocks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:3948-3956. [PMID: 23907708 DOI: 10.1002/adma.201300604] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/25/2013] [Indexed: 06/02/2023]
Abstract
Molecular self-assembly constitutes a versatile strategy for creating functional structures on surfaces. Tuning the subtle balance between intermolecular and molecule-surface interactions allows structure formation to be tailored at the single-molecule level. While metal surfaces usually exhibit interaction strengths in an energy range that favors molecular self-assembly, dielectric surfaces having low surface energies often lack sufficient interactions with adsorbed molecules. As a consequence, application-relevant, bulk insulating materials pose significant challenges when considering them as supporting substrates for molecular self-assembly. Here, the current status of molecular self-assembly on surfaces of wide-bandgap dielectric crystals, investigated under ultrahigh vacuum conditions at room temperature, is reviewed. To address the major issues currently limiting the applicability of molecular self-assembly principles in the case of dielectric surfaces, a systematic discussion of general strategies is provided for anchoring organic molecules to bulk insulating materials.
Collapse
Affiliation(s)
- Philipp Rahe
- Department of Physics and Astronomy, 115 South 1400 East, The University of Utah, Salt Lake City, UT 84112-0830, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Hauke CM, Bechstein R, Kittelmann M, Storz C, Kilbinger AFM, Rahe P, Kühnle A. Controlling molecular self-assembly on an insulating surface by rationally designing an efficient anchor functionality that maintains structural flexibility. ACS NANO 2013; 7:5491-5498. [PMID: 23659365 DOI: 10.1021/nn401589u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Molecular self-assembly on surfaces is dictated by the delicate balance between intermolecular and molecule-surface interactions. For many insulating surfaces, however, the molecule-surface interactions are weak and rather unspecific. Enhancing these interactions, on the other hand, often puts a severe limit on the achievable structural variety. To grasp the full potential of molecular self-assembly on these application-relevant substrates, therefore, requires strategies for anchoring the molecular building blocks toward the surface in a way that maintains flexibility in terms of intermolecular interaction and relative molecule orientation. Here, we report the design of a site-specific anchor functionality that provides strong anchoring toward the surface, resulting in a well-defined adsorption position. At the same time, the anchor does not significantly interfere with the intermolecular interaction, ensuring structural flexibility. We demonstrate the success of this approach with three molecules from the class of shape-persistent oligo(p-benzamide)s adsorbed onto the calcite(10.4) surface. These molecules have the same aromatic backbone with iodine substituents, providing the same basic adsorption mechanism to the surface calcium cations. The backbone is equipped with different functional groups. These have a negligible influence on the molecular adsorption on the surface but significantly change the intermolecular interaction. We show that distinctly different molecular structures are obtained that wet the surface due to the strong linker while maintaining variability in the relative molecular orientation. With this study, we thus provide a versatile strategy for increasing the structural richness in molecular self-assembly on insulating substrates.
Collapse
Affiliation(s)
- Christopher M Hauke
- Institute of Physical Chemistry, Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Kittelmann M, Nimmrich M, Lindner R, Gourdon A, Kühnle A. Sequential and site-specific on-surface synthesis on a bulk insulator. ACS NANO 2013; 7:5614-5620. [PMID: 23682961 DOI: 10.1021/nn402018w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The bottom-up construction of functional devices from molecular building blocks offers great potential in tailoring materials properties and functionality with utmost control. An important step toward exploiting bottom-up construction for real-life applications is the creation of covalently bonded structures that provide sufficient stability as well as superior charge transport properties over reversibly linked self-assembled structures. On-surface synthesis has emerged as a promising strategy for fabricating stable, covalently bound molecular structure on surfaces. So far, a majority of the structures created by this method have been obtained from a rather simple one-step processing approach. But the on-surface preparation of complex structures will require the possibility to carry out various reaction steps in a sequential manner as done in solution chemistry. Only one example exists in literature in which a hierarchical strategy is followed to enhance structural complexity and reliability on a metallic surface. Future molecular electronic application will, however, require transferring these strategies to nonconducting surfaces. Bulk insulating substrates are known to pose significant challenges to on-surface synthesis due to the absence of a metal catalyst and their low surface energy, frequently resulting in molecule desorption rather than reaction activation. By carefully selecting a suitable precursor molecule, we succeeded in performing a two-step linking reaction on a bulk insulating surface. Besides a firm anchoring toward the substrate surface, the reaction sites and sequential order are encoded in the molecular structure, providing so far unmatched reaction control in on-surface synthesis on a bulk insulating substrate.
Collapse
Affiliation(s)
- Markus Kittelmann
- Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | | | | | | | | |
Collapse
|
20
|
Binder K, Butt HJ, Floudas G, Frey H, Hsu HP, Landfester K, Kolb U, Kühnle A, Maskos M, Müllen K, Paul W, Schmidt M, Spiess HW, Virnau P. Structure Formation of Polymeric Building Blocks: Complex Polymer Architectures. FROM SINGLE MOLECULES TO NANOSCOPICALLY STRUCTURED MATERIALS 2013. [DOI: 10.1007/12_2013_230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
21
|
Rahe P, Nimmrich M, Kühnle A. Substrate templating upon self-assembly of hydrogen-bonded molecular networks on an insulating surface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:2969-2977. [PMID: 22777846 DOI: 10.1002/smll.201200681] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/22/2012] [Indexed: 06/01/2023]
Abstract
Molecular self-assembly on insulating surfaces, despite being highly relvant to many applications, generally suffers from the weak molecule-surface interactions present on dielectric surfaces, especially when benchmarked against metallic substrates. Therefore, to fully exploit the potential of molecular self-assembly, increasing the influence of the substrate constitutes an essential prerequisite. Upon deposition of terephthalic acid and trimesic acid onto the natural cleavage plane of calcite, extended hydrogen-bonded networks are formed, which wet the substrate. The observed structural complexity matches the variety realized on metal surfaces. A detailed analysis of the molecular structures observed on calcite reveals a significant influence of the underlying substrate, clearly indicating a substantial templating effect of the surface on the resulting molecular networks. This work demonstrates that choosing suitable molecule/substrate systems allows for tuning the balance between intermolecular and molecule-surface interactions even in the case of typically weakly interacting insulating surfaces. This study, thus, provides a strategy for deliberately exploiting substrate templating to increase the structural variety in molecular self-assembly on a bulk insulator at room temperature.
Collapse
Affiliation(s)
- Philipp Rahe
- Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany.
| | | | | |
Collapse
|
22
|
Kittelmann M, Rahe P, Kühnle A. Molecular self-assembly on an insulating surface: interplay between substrate templating and intermolecular interactions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:354007. [PMID: 22899097 DOI: 10.1088/0953-8984/24/35/354007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report on molecular self-assembly of biphenyl-4,4'-dicarboxylic acid (BPDCA) on CaCO3(1014) under ultra-high vacuum conditions. Two-dimensional, ordered islands are obtained upon deposition at room temperature, coexisting with a streaky structure that is ascribed to individual, mobile molecules forming a two-dimensional gas-like phase. High-resolution non-contact atomic force microscopy (NC-AFM) images of the molecular islands reveal an ordered inner structure that is dominated by rows of molecules aligned side by side running along the [4261] crystallographic direction. A detailed analysis of these rows exhibits inter-row distances that are multiples of the calcite unit cell dimension along the [0110] direction, clearly demonstrating the templating effect of the substrate. Our results indicate that an excellent size match of the molecular structure with respect to the underlying substrate results in an increased binding of the BPDCA molecules to the surface. In between the rows, a different molecular structure is coexisting with the molecules aligning head to tail. This structure is explained by intermolecular hydrogen bond formation very similar to the BPDCA bulk structure. The coexistence of the bulk-like structure with the row structure suggests a close balance of intermolecular and molecule-surface interactions to be responsible for the observed structure formation.
Collapse
Affiliation(s)
- Markus Kittelmann
- Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | | | |
Collapse
|
23
|
Kittelmann M, Rahe P, Gourdon A, Kühnle A. Direct visualization of molecule deprotonation on an insulating surface. ACS NANO 2012; 6:7406-11. [PMID: 22838491 DOI: 10.1021/nn3025942] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Elucidating molecular-scale details of basic reaction steps on surfaces is decisive for a fundamental understanding of molecular reactivity within many fields, including catalysis and on-surface synthesis. Here, the deprotonation of 2,5-dihydroxybenzoic acid (DHBA) deposited onto calcite (101;4) held at room temperature is followed in situ by noncontact atomic force microscopy. After deposition, the molecules form two coexisting phases, a transient striped phase and a stable dense phase. A detailed analysis of high-resolution noncontact atomic force microscopy images indicates the transient striped phase being a bulk-like phase, which requires hydrogen bonds between the carboxylic acid moieties to be formed. With time, the striped phase transforms into the dense phase, which is explained by the deprotonation of the molecules. In the deprotonated state, the molecules can no longer form hydrogen bonds, but anchor to the surface calcium cations with their negatively charged carboxylate group. The deprotonation step is directly confirmed by Kelvin probe force microscopy images that unravel the change in the molecular charge.
Collapse
Affiliation(s)
- Markus Kittelmann
- Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | | | | | | |
Collapse
|