• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4636010)   Today's Articles (224)   Subscriber (50077)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Enders J, Cornwell ZA, Harrison AW, Murray C. Temperature-Dependent Kinetics of the Reactions of the Criegee Intermediate CH2OO with Aliphatic Aldehydes. J Phys Chem A 2024;128:7879-7888. [PMID: 39233465 PMCID: PMC11421089 DOI: 10.1021/acs.jpca.4c04990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
2
Yang L, Zhang J. Effect of Carbon Chain Length on Nascent Yields of Stabilized Criegee Intermediates in Ozonolysis of a Series of Terminal Alkenes. J Am Chem Soc 2024;146:24591-24601. [PMID: 39169747 DOI: 10.1021/jacs.4c08051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
3
DeCecco AC, Conrad AR, Floyd AM, Jasper AW, Hansen N, Dagaut P, Moody NE, Popolan-Vaida DM. Tracking the reaction networks of acetaldehyde oxide and glyoxal oxide Criegee intermediates in the ozone-assisted oxidation reaction of crotonaldehyde. Phys Chem Chem Phys 2024;26:22319-22336. [PMID: 38980126 DOI: 10.1039/d4cp01942c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
4
Jiang H, Liu Y, Xiao C, Yang X, Dong W. Reaction Kinetics of CH2OO and syn-CH3CHOO Criegee Intermediates with Acetaldehyde. J Phys Chem A 2024;128:4956-4965. [PMID: 38868987 DOI: 10.1021/acs.jpca.4c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
5
Cornwell Z, Enders JJ, Harrison AW, Murray C. Temperature-Dependent Kinetics of the Reactions of the Criegee Intermediate CH2OO with Hydroxyketones. J Phys Chem A 2024;128:1880-1891. [PMID: 38428028 PMCID: PMC10945482 DOI: 10.1021/acs.jpca.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
6
Debnath A, Rajakumar B. Experimental and theoretical study of Criegee intermediate (CH2OO) reactions with n-butyraldehyde and isobutyraldehyde: kinetics, implications and atmospheric fate. Phys Chem Chem Phys 2024;26:6872-6884. [PMID: 38332729 DOI: 10.1039/d3cp05482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
7
Shabin M, Kumar A, Hakkim H, Rudich Y, Sinha V. Sources, sinks, and chemistry of Stabilized Criegee Intermediates in the Indo-Gangetic Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;896:165281. [PMID: 37406701 DOI: 10.1016/j.scitotenv.2023.165281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/08/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
8
Wu YJ, Takahashi K, Lin JJM. Kinetics of the Simplest Criegee Intermediate Reaction with Water Vapor: Revisit and Isotope Effect. J Phys Chem A 2023;127:8059-8072. [PMID: 37734061 DOI: 10.1021/acs.jpca.3c03418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
9
Luo PL, Chen IY, Khan MAH, Shallcross DE. Direct gas-phase formation of formic acid through reaction of Criegee intermediates with formaldehyde. Commun Chem 2023;6:130. [PMID: 37349562 DOI: 10.1038/s42004-023-00933-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]  Open
10
Pham TV, Trang HTT. Mechanistic and Kinetic Approach on the Propargyl Radical (C3H3) with the Criegee Intermediate (CH2OO). ACS OMEGA 2023;8:16859-16868. [PMID: 37214685 PMCID: PMC10193399 DOI: 10.1021/acsomega.3c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
11
Zhang T, Wen M, Ding C, Zhang Y, Ma X, Wang Z, Lily M, Liu J, Wang R. Multiple evaluations of atmospheric behavior between Criegee intermediates and HCHO: Gas-phase and air-water interface reaction. J Environ Sci (China) 2023;127:308-319. [PMID: 36522063 DOI: 10.1016/j.jes.2022.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 06/17/2023]
12
Reactions with criegee intermediates are the dominant gas-phase sink for formyl fluoride in the atmosphere. FUNDAMENTAL RESEARCH 2023. [DOI: 10.1016/j.fmre.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]  Open
13
Wang S, Zhao Y, Chan AWH, Yao M, Chen Z, Abbatt JPD. Organic Peroxides in Aerosol: Key Reactive Intermediates for Multiphase Processes in the Atmosphere. Chem Rev 2023;123:1635-1679. [PMID: 36630720 DOI: 10.1021/acs.chemrev.2c00430] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
14
Franzon L, Peltola J, Valiev R, Vuorio N, Kurtén T, Eskola A. An Experimental and Master Equation Investigation of Kinetics of the CH2OO + RCN Reactions (R = H, CH3, C2H5) and Their Atmospheric Relevance. J Phys Chem A 2023;127:477-488. [PMID: 36602183 PMCID: PMC9869398 DOI: 10.1021/acs.jpca.2c07073] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
15
Karsili TNV, Marchetti B, Lester MI, Ashfold MNR. Electronic Absorption Spectroscopy and Photochemistry of Criegee Intermediates. Photochem Photobiol 2023;99:4-18. [PMID: 35713380 DOI: 10.1111/php.13665] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 01/26/2023]
16
Debnath A, Rajakumar B. Investigation of kinetics and mechanistic insights of the reaction of criegee intermediate (CH2OO) with methyl-ethyl ketone (MEK) under tropospherically relevant conditions. CHEMOSPHERE 2023;312:137217. [PMID: 36370759 DOI: 10.1016/j.chemosphere.2022.137217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
17
Cornwell ZA, Enders JJ, Harrison AW, Murray C. Temperature‐dependent kinetics of the reactions of CH 2 OO with acetone, biacetyl, and acetylacetone. INT J CHEM KINET 2022. [DOI: 10.1002/kin.21625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
18
Qiu J, Fujita M, Tonokura K, Enami S. Stability of Terpenoid-Derived Secondary Ozonides in Aqueous Organic Media. J Phys Chem A 2022;126:5386-5397. [PMID: 35921086 PMCID: PMC9393869 DOI: 10.1021/acs.jpca.2c04077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
19
Behera B, Takahashi K, Lee YP. Mechanism and kinetics of the reaction of the Criegee intermediate CH2OO with acetic acid studied using a step-scan Fourier-transform IR spectrometer. Phys Chem Chem Phys 2022;24:18568-18581. [PMID: 35917139 DOI: 10.1039/d2cp01053d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
20
Assali M, Fittschen C. Self-Reaction of Acetonyl Peroxy Radicals and Their Reaction with Cl Atoms. J Phys Chem A 2022;126:4585-4597. [PMID: 35793477 DOI: 10.1021/acs.jpca.2c02602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
21
Wang PB, Truhlar DG, Xia Y, Long B. Temperature-dependent kinetics of the atmospheric reaction between CH2OO and acetone. Phys Chem Chem Phys 2022;24:13066-13073. [PMID: 35583864 DOI: 10.1039/d2cp01118b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
22
Nikoobakht B, Köppel H. Correlated quantum treatment of the photodissociation dynamics of formaldehyde oxide CH2OO. Phys Chem Chem Phys 2022;24:12433-12441. [PMID: 35575032 DOI: 10.1039/d2cp01007k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
23
Esposito VJ, Werba O, Bush SA, Marchetti B, Karsili TNV. Insights into the Ultrafast Dynamics of CH2 OO and CH3 CHOO Following Excitation to the Bright 1 ππ* State: The Role of Singlet and Triplet States. Photochem Photobiol 2021;98:763-772. [PMID: 34767632 DOI: 10.1111/php.13560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022]
24
Cornwell ZA, Harrison AW, Murray C. Kinetics of the Reactions of CH2OO with Acetone, α-Diketones, and β-Diketones. J Phys Chem A 2021;125:8557-8571. [PMID: 34554761 DOI: 10.1021/acs.jpca.1c05280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
25
Hassan Z, Stahlberger M, Rosenbaum N, Bräse S. Criegee‐Intermediate über die Ozonolyse hinaus: Ein Einblick in Synthesen und Mechanismen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
26
Hassan Z, Stahlberger M, Rosenbaum N, Bräse S. Criegee Intermediates Beyond Ozonolysis: Synthetic and Mechanistic Insights. Angew Chem Int Ed Engl 2021;60:15138-15152. [PMID: 33283439 PMCID: PMC8359312 DOI: 10.1002/anie.202014974] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 12/20/2022]
27
Zhou X, Chen Y, Liu Y, Li X, Dong W, Yang X. Kinetics of CH2OO and syn-CH3CHOO reaction with acrolein. Phys Chem Chem Phys 2021;23:13276-13283. [PMID: 34095924 DOI: 10.1039/d1cp00492a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
28
McCoy JC, Marchetti B, Thodika M, Karsili TNV. A Simple and Efficient Method for Simulating the Electronic Absorption Spectra of Criegee Intermediates: Benchmarking on CH2OO and CH3CHOO. J Phys Chem A 2021;125:4089-4097. [PMID: 33970629 DOI: 10.1021/acs.jpca.1c01074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
29
Cui L, Li HW, Huang Y, Zhang Z, Lee SC, Blake DR, Wang XM, Ho KF, Cao JJ. The characteristics and sources of roadside VOCs in Hong Kong: Effect of the LPG catalytic converter replacement programme. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021;757:143811. [PMID: 33246717 DOI: 10.1016/j.scitotenv.2020.143811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/07/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
30
Wang L, Han J, Yuan Q, Cao W, Zhou X, Liu S, Wang XB. Electron Affinity and Electronic Structure of Hexafluoroacetone (HFA) Revealed by Photodetaching the [HFA]•- Radical Anion. J Phys Chem A 2021;125:746-753. [PMID: 33295772 DOI: 10.1021/acs.jpca.0c08996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
31
Rousso AC, Jasper AW, Ju Y, Hansen N. Extreme Low-Temperature Combustion Chemistry: Ozone-Initiated Oxidation of Methyl Hexanoate. J Phys Chem A 2020;124:9897-9914. [PMID: 33174431 DOI: 10.1021/acs.jpca.0c07584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
32
Li Y, Lin C, Lin Y, Lin JJ. Temperature‐dependent kinetics of the simplest Criegee intermediate reaction with dimethyl sulfoxide. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
33
Chhantyal-Pun R, Khan MAH, Taatjes CA, Percival CJ, Orr-Ewing AJ, Shallcross DE. Criegee intermediates: production, detection and reactivity. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1792104] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
34
Zhou X, Liu Y, Chen Y, Li X, Xiao C, Dong W, Yang X. Kinetic Studies for the Reaction of syn-CH3CHOO with CF3CH═CH2. J Phys Chem A 2020;124:6125-6132. [PMID: 32614580 DOI: 10.1021/acs.jpca.0c03534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
35
Liu Y, Zhou X, Chen Y, Chen M, Xiao C, Dong W, Yang X. Temperature- and pressure-dependent rate coefficient measurement for the reaction of CH2OO with CH3CH2CHO. Phys Chem Chem Phys 2020;22:25869-25875. [DOI: 10.1039/d0cp04316h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
36
Wagner JP. Gauging stability and reactivity of carbonyl O-oxide Criegee intermediates. Phys Chem Chem Phys 2019;21:21530-21540. [PMID: 31536065 DOI: 10.1039/c9cp03790j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
37
Rousso AC, Hansen N, Jasper AW, Ju Y. Identification of the Criegee intermediate reaction network in ethylene ozonolysis: impact on energy conversion strategies and atmospheric chemistry. Phys Chem Chem Phys 2019;21:7341-7357. [DOI: 10.1039/c9cp00473d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
38
Sun C, Xu B, Lv L, Zhang S. Theoretical investigation on the reaction mechanism and kinetics of a Criegee intermediate with ethylene and acetylene. Phys Chem Chem Phys 2019;21:16583-16590. [DOI: 10.1039/c9cp02644d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
39
Rousso AC, Hansen N, Jasper AW, Ju Y. Low-Temperature Oxidation of Ethylene by Ozone in a Jet-Stirred Reactor. J Phys Chem A 2018;122:8674-8685. [PMID: 30293425 DOI: 10.1021/acs.jpca.8b06556] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
40
Sun C, Zhang S, Yue J, Zhang S. Theoretical Study on the Reaction Mechanism and Kinetics of Criegee Intermediate CH2OO with Acrolein. J Phys Chem A 2018;122:8729-8737. [DOI: 10.1021/acs.jpca.8b06897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
41
Kaipara R, Rajakumar B. Temperature-Dependent Kinetics of the Reaction of a Criegee Intermediate with Propionaldehyde: A Computational Investigation. J Phys Chem A 2018;122:8433-8445. [DOI: 10.1021/acs.jpca.8b06603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
42
Eskola AJ, Döntgen M, Rotavera B, Caravan RL, Welz O, Savee JD, Osborn DL, Shallcross DE, Percival CJ, Taatjes CA. Direct kinetics study of CH2OO + methyl vinyl ketone and CH2OO + methacrolein reactions and an upper limit determination for CH2OO + CO reaction. Phys Chem Chem Phys 2018;20:19373-19381. [PMID: 29999060 DOI: 10.1039/c8cp03606c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
43
Khan MAH, Percival CJ, Caravan RL, Taatjes CA, Shallcross DE. Criegee intermediates and their impacts on the troposphere. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018;20:437-453. [PMID: 29480909 DOI: 10.1039/c7em00585g] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
44
Anglada JM, Solé A. Impact of the water dimer on the atmospheric reactivity of carbonyl oxides. Phys Chem Chem Phys 2018;18:17698-712. [PMID: 27308802 DOI: 10.1039/c6cp02531e] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
45
Grambow CA, Jamal A, Li YP, Green WH, Zádor J, Suleimanov YV. Unimolecular Reaction Pathways of a γ-Ketohydroperoxide from Combined Application of Automated Reaction Discovery Methods. J Am Chem Soc 2018;140:1035-1048. [DOI: 10.1021/jacs.7b11009] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
46
Heine N, Houle FA, Wilson KR. Connecting the Elementary Reaction Pathways of Criegee Intermediates to the Chemical Erosion of Squalene Interfaces during Ozonolysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017;51:13740-13748. [PMID: 29120614 DOI: 10.1021/acs.est.7b04197] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
47
Trabelsi T, Kumar M, Francisco JS. Substituent effects on the spectroscopic properties of Criegee intermediates. J Chem Phys 2017;147:164303. [DOI: 10.1063/1.4998170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
48
Berndt T, Herrmann H, Kurtén T. Direct Probing of Criegee Intermediates from Gas-Phase Ozonolysis Using Chemical Ionization Mass Spectrometry. J Am Chem Soc 2017;139:13387-13392. [DOI: 10.1021/jacs.7b05849] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
49
Xu K, Wang W, Wei W, Feng W, Sun Q, Li P. Insights into the Reaction Mechanism of Criegee Intermediate CH2OO with Methane and Implications for the Formation of Methanol. J Phys Chem A 2017;121:7236-7245. [DOI: 10.1021/acs.jpca.7b05858] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
50
Kumar M, Francisco JS. Reactions of Criegee Intermediates with Non-Water Greenhouse Gases: Implications for Metal Free Chemical Fixation of Carbon Dioxide. J Phys Chem Lett 2017;8:4206-4213. [PMID: 28825826 DOI: 10.1021/acs.jpclett.7b01762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
PrevPage 1 of 3 123Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA