1
|
Kong T, Kang B, Wang W, Deckert-Gaudig T, Zhang Z, Deckert V. Thermal-effect dominated plasmonic catalysis on silver nanoislands. NANOSCALE 2024; 16:10745-10750. [PMID: 38738933 DOI: 10.1039/d4nr00049h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Plasmonic metal nanostructures with the intrinsic property of localized surface plasmon resonance can effectively promote energy conversion in many applications such as photocatalysis, photothermal therapy, seawater desalinization, etc. It is known that not only are plasmonically excited hot electrons generated from metal nanostructures under light irradiation, which can effectively trigger chemical reactions, but also plasmonically induced heating simultaneously occurs. Although plasmonic catalysis has been widely explored in recent years, the underlying mechanisms for distinguishing the contribution of hot electrons from thermal effects are not fully understood. Here, a simple and efficient self-assembly system using silver nanoislands as plasmonic substrates is designed to investigate the photo-induced azo coupling reaction of nitro- and amino-groups at various temperatures. In the experiments, surface-enhanced Raman spectroscopy is employed to monitor the time and temperature dependence of plasmon-induced catalytic reactions. It was found that a combination of hot electrons and thermal effects contribute to the reactivity. The thermal effects play the dominant role in the plasmon-induced azo coupling reaction of nitro-groups, which suggests that the localized temperature must be considered in the development of photonic applications based on plasmonic nanomaterials.
Collapse
Affiliation(s)
- Ting Kong
- School of Science, Xi'an University of Posts & Telecommunications, 710121, Xi'an, China.
- School of Physics and Information Technology, Shaanxi Normal University, 710119, Xi'an, China.
| | - Bowen Kang
- School of Physics and Information Technology, Shaanxi Normal University, 710119, Xi'an, China.
| | - Wei Wang
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Tanja Deckert-Gaudig
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Zhenglong Zhang
- School of Physics and Information Technology, Shaanxi Normal University, 710119, Xi'an, China.
| | - Volker Deckert
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
2
|
Bruni G, Capsoni D, Pellegrini A, Altomare A, Coduri M, Ferrara C, Galinetto P, Molteni R. New Findings on the Crystal Polymorphism of Imepitoin. Molecules 2024; 29:1724. [PMID: 38675544 PMCID: PMC11052430 DOI: 10.3390/molecules29081724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Scientific and industrial reasons dictate the study of the solid state of imepitoin, a highly safe and tolerable anticonvulsant drug used in the therapy of epileptic dogs that was approved in the Europe Union in 2013. Our investigations allowed us to discover the existence of a new polymorph of imepitoin, which finds itself in a monotropic relationship with the crystalline form (polymorph I) already known and present on the market. This form (polymorph II), obtained by crystallization from xylene, remains metastable under ambient conditions for at least 1 year. Both solid forms were characterized by thermal (DSC and TGA), spectroscopic (FT-IR and Raman), microscopic (SEM and HSM), and diffractometric techniques. The thermodynamic relationship between the two polymorphs (monotropic) is such that it is not possible to study the melting of polymorph II, not even by adopting appropriate experimental strategies. Our measurements highlighted that the melting peak of imepitoin actually also includes an onset of melt decomposition. The ab initio structure solution, obtained from synchrotron X-ray powder diffraction data collected at room temperature, allowed us to determine the crystal structure of the new polymorph (II). It crystallizes in the monoclinic crystal structure, P21/c space group (#14), with a = 14.8687(6) Å, b = 7.2434(2) Å, c = 12.5592(4) Å, β = 107.5586(8)°, V = 1289.61(8) Å3, and Z = 4.
Collapse
Affiliation(s)
- Giovanna Bruni
- Department of Chemistry, Physical Chemistry Section & C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase), University of Pavia, 27100 Pavia, Italy; (D.C.); (A.P.); (M.C.)
| | - Doretta Capsoni
- Department of Chemistry, Physical Chemistry Section & C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase), University of Pavia, 27100 Pavia, Italy; (D.C.); (A.P.); (M.C.)
| | - Anna Pellegrini
- Department of Chemistry, Physical Chemistry Section & C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase), University of Pavia, 27100 Pavia, Italy; (D.C.); (A.P.); (M.C.)
| | - Angela Altomare
- Institute of Crystallography—CNR, Via Amendola 122/o, 70126 Bari, Italy;
| | - Mauro Coduri
- Department of Chemistry, Physical Chemistry Section & C.S.G.I. (Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase), University of Pavia, 27100 Pavia, Italy; (D.C.); (A.P.); (M.C.)
| | - Chiara Ferrara
- Department of Materials Science, University of Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy;
| | - Pietro Galinetto
- Department of Physics, University of Pavia, Via Bassi 6, 27100 Pavia, Italy;
| | - Renato Molteni
- A.M.S.A. Anonima Materie Sintetiche Affini S.p.A., Viale Giuseppe Di Vittorio 6, 22100 Como, Italy;
| |
Collapse
|
3
|
Yao X, Ehtesabi S, Höppener C, Deckert-Gaudig T, Schneidewind H, Kupfer S, Gräfe S, Deckert V. Mechanism of Plasmon-Induced Catalysis of Thiolates and the Impact of Reaction Conditions. J Am Chem Soc 2024; 146:3031-3042. [PMID: 38275163 PMCID: PMC10859934 DOI: 10.1021/jacs.3c09309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
The conversion of the thiols 4-aminothiophenol (ATP) and 4-nitrothiophenol (NTP) can be considered as one of the standard reactions of plasmon-induced catalysis and thus has already been the subject of numerous studies. Currently, two reaction pathways are discussed: one describes a dimerization of the starting material yielding 4,4'-dimercaptoazobenzene (DMAB), while in the second pathway, it is proposed that NTP is reduced to ATP in HCl solution. In this combined experimental and theoretical study, we disentangled the involved plasmon-mediated reaction mechanisms by carefully controlling the reaction conditions in acidic solutions and vapor. Motivated by the different surface-enhanced Raman scattering (SERS) spectra of NTP/ATP samples and band shifts in acidic solution, which are generally attributed to water, additional experiments under pure gaseous conditions were performed. Under such acidic vapor conditions, the Raman data strongly suggest the formation of a hitherto not experimentally identified stable compound. Computational modeling of the plasmonic hybrid systems, i.e., regarding the wavelength-dependent character of the involved electronic transitions of the detected key intermediates in both reaction pathways, confirmed the experimental finding of the new compound, namely, 4-nitrosothiophenol (TP*). Tracking the reaction dynamics via time-dependent SERS measurements allowed us to establish the link between the dimer- and monomer-based pathways and to suggest possible reaction routes under different environmental conditions. Thereby, insight at the molecular level was provided with respect to the thermodynamics of the underlying reaction mechanism, complementing the spectroscopic results.
Collapse
Affiliation(s)
- Xiaobin Yao
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Sadaf Ehtesabi
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Christiane Höppener
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Tanja Deckert-Gaudig
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Henrik Schneidewind
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Stephan Kupfer
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Stefanie Gräfe
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Fraunhofer Institute of Applied Optics and
Precision Engineering, Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - Volker Deckert
- Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
4
|
Singh R, Yadav V, Siddhanta S. Probing plasmon-induced surface reactions using two-dimensional correlation vibrational spectroscopy. Phys Chem Chem Phys 2023; 25:6032-6043. [PMID: 36779479 DOI: 10.1039/d2cp05705k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Surface plasmon resonance (SPR) has the ability to drive catalytic conversion of the reactant molecules via the production of hot electrons, which in general requires high activation energy. The reactions driven by these hot electrons are critical and essential in various heterogeneous surface catalytic reactions. However, there is a need to understand the dynamics of surface reactions and the underlying mechanism, which are influenced by several factors such as the constitution of the nanoparticle, exposure time, and reaction conditions to name a few. However, the effect of solvent in stabilizing the electron-hole pair, the orientation, and the surface coverage of the analyte are poorly understood due to the limitations of current methods. To get deeper insights into the reaction dynamics, we have demonstrated the combined utility of plasmon-enhanced Raman spectroscopy and Two-dimensional correlation spectroscopy (2DCOS) to study the plasmon-driven conversion of 4-nitrothiophenol on the surface of plasmonic nanoparticles. Interestingly, this combined technique provided us with previously unobservable results regarding surface catalysis by conventional spectroscopic analysis alone. Specifically, for the first time, 2DCOS provided critical insights in bridging the gap in our understanding of the interplay of solvent effect, orientation, and surface packing of the analyte molecules. It was observed that certain species like 4,4-dimercaptoazobenzene (DMAB) or 4-aminothiophenol (4-ATP) can be selectively formed based on the ordered or disordered phases of the analytes on the surface, thus paving the way to precisely control light-driven reactions through operando spectroscopy.
Collapse
Affiliation(s)
- Ruchi Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Vikas Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Soumik Siddhanta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
5
|
dos Santos Lopes D, dos Santos Abreu D, Ando RA, Corio P. Regioselective Plasmon-Driven Decarboxylation of Mercaptobenzoic Acids Triggered by Distinct Reactive Oxygen Species. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Douglas dos Santos Lopes
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, Sao Paulo 05508000, Brazil
| | - Dieric dos Santos Abreu
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, Sao Paulo 05508000, Brazil
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara, Campus Pici, Fortaleza, Ceara 60455-970, Brazil
| | - Rômulo Augusto Ando
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, Sao Paulo 05508000, Brazil
| | - Paola Corio
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, Sao Paulo 05508000, Brazil
| |
Collapse
|
6
|
Chen J, Zhang X, Wu D. Dissociation reactions of hydrogen molecules at active sites on gold clusters: A
DFT
study. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jia‐Li Chen
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering Xiamen University Xiamen China
| | - Xia‐Guang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering Xiamen University Xiamen China
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering Henan Normal University Xinxiang China
| | - De‐Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surface, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering Xiamen University Xiamen China
| |
Collapse
|
7
|
Gutowski Ł, Liszewska M, Bartosewicz B, Budner B, Weyher JL, Jankiewicz BJ. Investigation of organic monoradicals reactivity using surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121312. [PMID: 35537259 DOI: 10.1016/j.saa.2022.121312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/28/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) and self-assembled monolayer (SAM) approaches were used to investigate the reactions of organic monoradicals with methanol. An attempt was made to generate monoradicals from thiophenols and phenylmethanethiols substituted with bromine, iodine, and nitro groups by irradiation with UV light. Monolayers of radical precursors were deposited on SERS substrates, which were then immersed in methanol and irradiated for 1 and/or 3, 6, 12 and 24 h in a UV photochemical reactor. Pre- and postreaction SERS spectra were obtained by using a confocal Raman microscope and compared with the spectra of expected products of the radical reaction with methanol. Our studies have shown that the efficiency of monoradical generation is highly dependent on the chemical structure of the precursor. In addition, it is shown that both the SERS substrate and experimental conditions used strongly influence the obtained results.
Collapse
Affiliation(s)
- Łukasz Gutowski
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland.
| | - Malwina Liszewska
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland.
| | - Bartosz Bartosewicz
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland.
| | - Bogusław Budner
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland.
| | - Jan L Weyher
- Institute of High-Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland.
| | - Bartłomiej J Jankiewicz
- Institute of Optoelectronics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland.
| |
Collapse
|
8
|
Unraveling a role of molecular linker in nanoparticles self-organization by SERS spectroscopy: Comparative study of three aromatic diamines. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Devasenathipathy R, Wang JZ, Xiao YH, Rani KK, Lin JD, Zhang YM, Zhan C, Zhou JZ, Wu DY, Tian ZQ. Plasmonic Photoelectrochemical Coupling Reactions of para-Aminobenzoic Acid on Nanostructured Gold Electrodes. J Am Chem Soc 2022; 144:3821-3832. [PMID: 35199991 DOI: 10.1021/jacs.1c10447] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Surface plasmon resonance (SPR) bridges photonics and photoelectrochemistry by providing an effective interaction between absorption and confinement of light to surface electrons of plasmonic metal nanostructures (PMNs). SPR enhances the Raman intensity enormously in surface-enhanced Raman spectroscopy (SERS) and leads to the plasmon-mediated chemical reaction on the surface of nanostructured metal electrodes. To observe variations in chemical reactivity and selectivity, we studied the SPR photoelectrochemical reactions of para-aminobenzoic acid (PABA) on nanostructured gold electrodes. The head-to-tail coupling product "4-[(4-imino-2,5-cyclohexadien-1-ylidene)amino]benzoic acid (ICBA)" and the head-to-head coupling product p,p'-azodibenzoate (ADBA) were obtained from PABA adsorbed on PMN-modified gold electrodes. In particular, under acidic and neutral conditions, ICBA was obtained as the main product, and ADBA was obtained as the minor product. At the same time, under basic conditions, ADBA was obtained as the major product, and ICBA was obtained as the minor product. We have also provided sufficient evidence for the oxidation of the tail-to-tail coupling reaction product that occurred in a nonaqueous medium rather than in an aqueous medium. The above finding was validated by the cyclic voltammetry, SERS, and theoretical calculation results of possible reaction intermediates, namely, 4-aminophenlylenediamine, 4-hydroxyphenlylenediamine, and benzidine. The theoretical adsorption model and experimental results indicated that PABA has been adsorbed as para-aminobenzoate on the gold cluster in a bidentate configuration. This work offers a new view toward the modulation of selective surface catalytic coupling reactions on PMN, which benefits the hot carrier transfer efficiency at photoelectrochemical interfaces.
Collapse
Affiliation(s)
- Rajkumar Devasenathipathy
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Jia-Zheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Yuan-Hui Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Karuppasamy Kohila Rani
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Jian-De Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Yi-Miao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Chao Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Jian-Zhang Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
10
|
Su HS, Feng HS, Wu X, Sun JJ, Ren B. Recent advances in plasmon-enhanced Raman spectroscopy for catalytic reactions on bifunctional metallic nanostructures. NANOSCALE 2021; 13:13962-13975. [PMID: 34477677 DOI: 10.1039/d1nr04009j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metallic nanostructures exhibit superior catalytic performance for diverse chemical reactions and the in-depth understanding of reaction mechanisms requires versatile characterization methods. Plasmon-enhanced Raman spectroscopy (PERS), including surface-enhanced Raman spectroscopy (SERS), shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), and tip-enhanced Raman spectroscopy (TERS), appears as a powerful technique to characterize the Raman fingerprint information of surface species with high chemical sensitivity and spatial resolution. To expand the range of catalytic reactions studied by PERS, catalytically active metals are integrated with plasmonic metals to produce bifunctional metallic nanostructures. In this minireview, we discuss the recent advances in PERS techniques to probe the chemical reactions catalysed by bifunctional metallic nanostructures. First, we introduce different architectures of these dual-functionality nanostructures. We then highlight the recent works using PERS to investigate important catalytic reactions as well as the electronic and catalytic properties of these nanostructures. Finally, we provide some perspectives for future PERS studies in this field.
Collapse
Affiliation(s)
- Hai-Sheng Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | |
Collapse
|
11
|
Hajiahmadi Z, Tavangar Z. Proposing a new complexing agent for cyanide-free silver electroplating through a comprehensive computational study of dimethyl hydantoin. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1895436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Zahra Hajiahmadi
- Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Zahra Tavangar
- Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Iran
| |
Collapse
|
12
|
Ma L, Zhang Q, Li J, Lu X, Gao C, Song P, Xia L. Ag-ZnO Nanocomposites Are Used for SERS Substrates and Promote the Coupling Reaction of PATP. MATERIALS 2021; 14:ma14040922. [PMID: 33672047 PMCID: PMC7919486 DOI: 10.3390/ma14040922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 11/18/2022]
Abstract
Noble metal-semiconductor nanocomposites have received extensive attention in Surface Enhanced Raman Scattering (SERS) due to their unique properties. In this paper, the Ag–ZnO nanocomposites are prepared by hydrothermal growth and simple chemical reduction immersion. The synthesized nanocomposite material simultaneously integrates the individual enhancement effects of the two materials in the SERS, such as the electromagnetic enhancement of silver nanoparticles and the chemical enhancement of ZnO semiconductor materials. Using this substrate, Rhodamine 6G molecules with a concentration as low as 10−8 M can be detected, and the coupling reaction of PATP can be effectively promoted. The nanocomposite materials prepared by selecting appropriate semiconductor materials and metal materials combined, could be potentially applied, as SERS substrates, in certain catalytic reactions.
Collapse
Affiliation(s)
- Liping Ma
- College of Chemistry, Liaoning University, Shenyang 110036, China; (L.M.); (Q.Z.); (C.G.)
| | - Qijia Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China; (L.M.); (Q.Z.); (C.G.)
| | - Jia Li
- College of Physics, Liaoning University, Shenyang 110036, China; (J.L.); (X.L.)
| | - Xuemei Lu
- College of Physics, Liaoning University, Shenyang 110036, China; (J.L.); (X.L.)
| | - Ce Gao
- College of Chemistry, Liaoning University, Shenyang 110036, China; (L.M.); (Q.Z.); (C.G.)
| | - Peng Song
- College of Physics, Liaoning University, Shenyang 110036, China; (J.L.); (X.L.)
- Correspondence: (P.S.); (L.X.); Tel.: +86-246-2202-258 (L.X.)
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, China; (L.M.); (Q.Z.); (C.G.)
- Yingkou Institute of Technology, Yingkou 115014, China
- Correspondence: (P.S.); (L.X.); Tel.: +86-246-2202-258 (L.X.)
| |
Collapse
|
13
|
Hostert L, Blanc C, Zarbin AJG, Anglaret E, Orth ES. SERS detection and comprehensive study of p-nitrophenol: towards pesticide sensing. NEW J CHEM 2021. [DOI: 10.1039/d0nj05933a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pesticide sensing is an important object of study due to its increasing use worldwide.
Collapse
Affiliation(s)
- Leandro Hostert
- Department of Chemistry
- Universidade Federal do Paraná (UFPR)
- Curitiba
- Brazil
- Laboratoire Charles Coulomb
| | - Christophe Blanc
- Laboratoire Charles Coulomb
- CNRS
- Université de Montpellier
- 34095 Montpellier Cedex 5
- France
| | - Aldo J. G. Zarbin
- Department of Chemistry
- Universidade Federal do Paraná (UFPR)
- Curitiba
- Brazil
| | - Eric Anglaret
- Laboratoire Charles Coulomb
- CNRS
- Université de Montpellier
- 34095 Montpellier Cedex 5
- France
| | - Elisa S. Orth
- Department of Chemistry
- Universidade Federal do Paraná (UFPR)
- Curitiba
- Brazil
| |
Collapse
|
14
|
Zhao W, Liu Z, Yu J, Lu X, Lam JWY, Sun J, He Z, Ma H, Tang BZ. Turning On Solid-State Luminescence by Phototriggered Subtle Molecular Conformation Variations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006844. [PMID: 33270285 DOI: 10.1002/adma.202006844] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 06/12/2023]
Abstract
The development of solid-state intelligent materials, in particular those showing photoresponsive luminescence (PRL), is highly desirable for their cutting-edge applications in sensors, displays, data-storage, and anti-counterfeiting, but is challenging. Few PRL materials are constructed by tethering the classic photochromic systems with newly-emerged solid-state emitters. Selective solid-state photoreactions are demanded to precisely manipulate the luminescent behavior of these emitters, which require dramatic structural change and enough free space, thus limiting the scope of the PRL family. Here, a new PRL material, TPE-4N, that features sensitive and reversible fluorescence switching is reported. The interesting on-off luminescent property of TPE-4N can be facilely tuned through fast phototriggering and thermal annealing. Experimental and theoretical investigations reveal that subtle molecular conformation variation induces the corresponding PRL behavior. The crystalline and amorphous state endows an efficient and weak ISC process, respectively, to turn on and off the emission. The readily fabricated thin-film of TPE-4N exhibits non-destructive PRL behavior with high contrast (>102 ), good light transmittance (>72.3%), and great durability and reversibility under room light for months. Remarkably, a uniform thin-film with such fascinating PRL properties allows high-tech applications in invisible anti-counterfeiting and dynamic optical data storage with micro-resolution.
Collapse
Affiliation(s)
- Weijun Zhao
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research, Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhiyang Liu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research, Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jie Yu
- School of Science, Harbin Institute of Technology, Shenzhen, HIT Campus of University Town, Shenzhen, 518055, China
| | - Xuefeng Lu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research, Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jacky W Y Lam
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research, Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Jinyan Sun
- School of Science, Harbin Institute of Technology, Shenzhen, HIT Campus of University Town, Shenzhen, 518055, China
| | - Zikai He
- School of Science, Harbin Institute of Technology, Shenzhen, HIT Campus of University Town, Shenzhen, 518055, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Ben Zhong Tang
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research, Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
15
|
Devasenathipathy R, Rani KK, Liu J, Wu DY, Tian ZQ. Plasmon mediated photoelectrochemical transformations: The example of para-aminothiophenol. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137485] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Sartin MM, Su HS, Wang X, Ren B. Tip-enhanced Raman spectroscopy for nanoscale probing of dynamic chemical systems. J Chem Phys 2020; 153:170901. [PMID: 33167627 DOI: 10.1063/5.0027917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dynamics are fundamental to all aspects of chemistry and play a central role in the mechanism and product distribution of a chemical reaction. All dynamic processes are influenced by the local environment, so it is of fundamental and practical value to understand the structure of the environment and the dynamics with nanoscale resolution. Most techniques for measuring dynamic processes have microscopic spatial resolution and can only measure the average behavior of a large ensemble of sites within their sampling volumes. Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for overcoming this limitation due to its combination of high chemical specificity and spatial resolution that is on the nanometer scale. Adapting it for the study of dynamic systems remains a work in progress, but the increasing sophistication of TERS is making such studies more routine, and there are now growing efforts to use TERS to examine more complex processes. This Perspective aims to promote development in this area of research by highlighting recent progress in using TERS to understand reacting and dynamic systems, ranging from simple model reactions to complex processes with practical applications. We discuss the unique challenges and opportunities that TERS presents for future studies.
Collapse
Affiliation(s)
- Matthew M Sartin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hai-Sheng Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
17
|
Zhang C, Wang Y, Liang Y, Zhu Y, Li Z, Huang X, Lu G. Modulating the Plasmon-Mediated Oxidation of p-Aminothiophenol with Asymmetrically Grafted Thiol Molecules. J Phys Chem Lett 2020; 11:7650-7656. [PMID: 32820939 DOI: 10.1021/acs.jpclett.0c02092] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A surface plasmon can drive many photochemical reactions, in which effective charge separation and migration is a key. In analogy to the plasmon-semiconductor interface, the plasmon-molecule interface may also be used to improve the separation and migration of hot carriers. In this work, by using in situ Raman spectroscopy, molecular grafting on silver nanostructures is found essential for modulating the charge separation and p-aminothiophenol (PATP) oxidation reaction. When the LUMO of the grafted molecules match well the energy distribution of the plasmon-generated hot electrons, the PATP oxidation process accelerates significantly. Moreover, compared with symmetrical grafting, asymmetrical grafting is more effective in regulating the charge separation and plasmon-mediated chemical reaction. This work provides an effective strategy for deep understanding and fine modulation of plasmon-mediated photochemistry.
Collapse
Affiliation(s)
- Chengyu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Yaoli Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Yan Liang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Yameng Zhu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Zhuoyao Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| |
Collapse
|
18
|
Zhao Y, Zhang Q, Ma L, Song P, Xia L. A P/N type silicon semiconductor loaded with silver nanoparticles used as a SERS substrate to selectively drive the coupling reaction induced by surface plasmons. NANOSCALE ADVANCES 2020; 2:3460-3466. [PMID: 36134259 PMCID: PMC9417093 DOI: 10.1039/d0na00350f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/18/2020] [Indexed: 06/16/2023]
Abstract
Semiconductor materials are favoured in the field of photocatalysis due to their unique optoelectronic properties. When a semiconductor is excited by external energy, electrons will transition through the band gap, providing electrons or holes for the reaction. This is similar to the chemical enhancement mode of a catalytic reaction initiated by the rough noble metal on the surface excited by plasmon resonance. In this study, different types of semiconductor silicon loaded with silver nanoparticles were used as SERS substrates. SERS detection of p-aminothiophenol (PATP) and p-nitrothiophenol (PNTP) probe molecules was performed using typical surface plasmon-driven coupling reactions, and the mechanism of optical drive charge transfer in semiconductor-metal-molecular systems was investigated. Scanning electron microscopy and plasmon luminescence spectroscopy were used to characterize the silver deposited on the substrate surface. Mapping technology and electrochemistry were used to characterize the photocatalytic reaction of the probe molecules. This study proposed a mechanism for the coupling reaction of "hot electrons" and "hot holes" on the surface of plasmon-driven molecules and provides a method for preparing a stable SERS substrate.
Collapse
Affiliation(s)
- Yuanchun Zhao
- Department of Chemistry, Liaoning University Shenyang 110036 P. R. China
| | - Qijia Zhang
- Department of Chemistry, Liaoning University Shenyang 110036 P. R. China
| | - Liping Ma
- Department of Chemistry, Liaoning University Shenyang 110036 P. R. China
| | - Peng Song
- Department of Physics, Liaoning University Shenyang 110036 P. R. China
| | - Lixin Xia
- Department of Chemistry, Liaoning University Shenyang 110036 P. R. China
- Yingkou Institute of Technology Yingkou 115014 China
| |
Collapse
|
19
|
Eum Y, Kim BS, Chae IS, Moon GH, Park SC, Jang J, Kang YS. Nitroaromatic Compounds to Induce a Partial Positive Charge on the Silver Nanoparticle Surface for Facilitated Transport Membranes for Olefin/Paraffin Separation. Macromol Res 2020. [DOI: 10.1007/s13233-020-8131-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Wang CF, O'Callahan BT, Kurouski D, Krayev A, El-Khoury PZ. The Prevalence of Anions at Plasmonic Nanojunctions: A Closer Look at p-Nitrothiophenol. J Phys Chem Lett 2020; 11:3809-3814. [PMID: 32340455 DOI: 10.1021/acs.jpclett.0c01006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We revisit the reductive coupling of p-nitrothiophenol (NTP) to form dimercaptoazobenzene (DMAB), herein monitored through gap-mode tip-enhanced Raman spectroscopy (TERS) and nanoimaging. We employ a plasmonic Au probe (100 nm diameter at its apex) illuminated with a 633 nm laser source (50 μW/μm2 at the sample position) to image an NTP-coated faceted silver nanoparticle (∼70 nm diameter). A detailed analysis of the recorded spectra reveals that anionic NTP species contribute to the recorded spectral images, in addition to the more thoroughly described DMAB product. Notably, the signatures of the anions are more pronounced than those of the DMAB product under our present experimental conditions. Our results thus demonstrate that anions and their spectral signatures must be considered in the analysis of plasmon-enhanced optical spectra and images.
Collapse
Affiliation(s)
- Chih-Feng Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Brian T O'Callahan
- Earth and Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Andrey Krayev
- Horiba Instruments Inc., 359 Bel Marin Keys Blvd, Suite 18, Novato, California 94949, United States
| | - Patrick Z El-Khoury
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
21
|
Qiu L, Pang GA, Zheng G, Bauer D, Wieland K, Haisch C. Kinetic and Mechanistic Investigation of the Photocatalyzed Surface Reduction of 4-Nitrothiophenol Observed on a Silver Plasmonic Film via Surface-Enhanced Raman Scattering. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21133-21142. [PMID: 32286058 DOI: 10.1021/acsami.0c05977] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hot electrons generated by photoinduced plasmon decay from a plasmonic metal surface can reduce 4-nitrothiophenol (4-NTP) to 4-aminothiophenol (4-ATP). Compared to the reduction with a reducing agent such as sodium borohydride, surface-enhanced Raman scattering (SERS) measurements were performed here to elucidate the complex molecular mechanism of the reduction in the presence of halide ions and hydrogen ions. The SERS measurements were performed using a simply prepared silver plasmonic film (AgPF), which enables monitoring of the reaction under different conditions at a solid-liquid surface and eliminates the need for the use of a reducing agent. As the concentration of H+ and Cl- could be controlled, the observation of the reaction under a systematic set of conditions was possible. Based on the kinetic traces of the intermediates, a reaction mechanism for the 4-NTP to 4-ATP reduction is suggested. Rate constants for the individual reactions are presented that fit the measured kinetic traces, and the role of hydrogen in each reaction step is characterized. This work provides clarification on the molecular transformation directly using protons as the hydrogen source and demonstrates an effective method of applying a simple and low-cost silver surface catalyst for SERS studies. Moreover, the monitoring of Cl--concentration-dependent spectra provides insight into the hot-electron conversion process during the photoreduction and strongly supports the formation of AgCl for the activation of H+.
Collapse
Affiliation(s)
- Li Qiu
- Chair of Analytical Chemistry, Technische Universität München, Marchioninistr. 17, D-81377 Munich, Germany
| | - Genny A Pang
- Chair of Analytical Chemistry, Technische Universität München, Marchioninistr. 17, D-81377 Munich, Germany
| | - Guangchao Zheng
- School of Physics and Microelectronics,, Zhengzhou University, 450001 Zhengzhou, Henan, People's Republic of China
| | - David Bauer
- Chair of Analytical Chemistry, Technische Universität München, Marchioninistr. 17, D-81377 Munich, Germany
| | - Karin Wieland
- Chair of Analytical Chemistry, Technische Universität München, Marchioninistr. 17, D-81377 Munich, Germany
| | - Christoph Haisch
- Chair of Analytical Chemistry, Technische Universität München, Marchioninistr. 17, D-81377 Munich, Germany
| |
Collapse
|
22
|
Liang W, Sun Y, Liang Z, Li D, Wang Y, Qin W, Jiang L. Plasmonic Nanoparticle Film for Low-Power NIR-Enhanced Photocatalytic Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16753-16761. [PMID: 32119778 DOI: 10.1021/acsami.9b20843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmonic metal nanostructures offer the unique ability to effectively enhance sunlight harvesting by localized surface plasmon resonance (LSPR), which can induce direct photocatalytic reactions. However, only metal nanoparticles with a relatively low magnitude of electromagnetic field enhancement usually require a high illumination intensity to ensure the catalytic performance, which greatly limits the solar photocatalytic efficiency. Herein, we designed plasmonic Au nanoparticle film with high electromagnetic field enhancement to achieve high-efficiency catalytic activity under low-power NIR light illumination. This work minimized the influence of the photothermal effect on the reaction by using a low illumination intensity and further revealed the main contribution of plasmon-excited hot electrons to the photochemical reaction. This study provides important insights into the study of the mechanism of LSPR in photocatalytic reactions and further improves the efficiency of solar energy utilization.
Collapse
Affiliation(s)
- Wenkai Liang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yinghui Sun
- College of Energy, Soochow Institute for Energy and Materials InnovationS and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Zhiqiang Liang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Dong Li
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yawen Wang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Wei Qin
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Lin Jiang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
23
|
Lin PY, He G, Chen J, Dwivedi AK, Hsieh S. Monitoring the photoinduced surface catalytic coupling reaction and environmental exhaust fumes with an Ag/PDA/CuO modified 3D glass microfiber platform. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Liu Y, Zhao Y, Zhang L, Yan Y, Jiang Y. Controllable plasmon-induced catalytic reaction by surface-enhanced and tip-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:539-546. [PMID: 31078821 DOI: 10.1016/j.saa.2019.04.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The controllable catalytic reaction plays a pivotal role in heterogeneous catalysis. Surface-enhanced Raman scattering (SERS) and tip enhanced Raman spectroscopy (TERS) are considered promising techniques for the study of catalytic reactions due to the highly localized sensitivity of SERS and the nanoscale spatial resolution of TERS. Herein, Ag/Au composite films were employed as catalyst for in situ monitoring of the catalytic reaction of 4‑nitrobenzenethiol (4NBT) to p, p'‑dimercaptoazobenzene (DMAB). The catalytic reaction of 4NBT adsorbed on Au film can be manipulated at the nanoscale using TERS by controlling the height between the tip-apex and the sample surface in Ag tip-Au substrate geometry. According to finite difference time domain (FDTD) simulations, the 'hot electron' induced by the localized surface plasmon is sufficient for promoting the catalytic reaction. These findings provide a novel way for controllable graph drawing of molecules at the nanoscale level.
Collapse
Affiliation(s)
- Yanqi Liu
- Beijing Engineering Research Center of Laser Technology, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yan Zhao
- Beijing Engineering Research Center of Laser Technology, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Lisheng Zhang
- The Beijing Key Laboratory for Nano-photonics and Nano-structure, Department of Physics, Capital Normal University, Beijing 100048, China
| | - Yinzhou Yan
- Beijing Engineering Research Center of Laser Technology, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yijian Jiang
- Beijing Engineering Research Center of Laser Technology, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
25
|
Enhanced photocatalysis and biomolecular sensing with field-activated nanotube-nanoparticle templates. Nat Commun 2019; 10:2496. [PMID: 31175281 PMCID: PMC6555825 DOI: 10.1038/s41467-019-10393-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 04/30/2019] [Indexed: 11/23/2022] Open
Abstract
The development of new catalysts for oxidation reactions is of central importance for many industrial processes. Plasmonic catalysis involves photoexcitation of templates/chips to drive and enhance oxidation of target molecules. Raman-based sensing of target molecules can also be enhanced by these templates. This provides motivation for the rational design, characterization, and experimental demonstration of effective template nanostructures. In this paper, we report on a template comprising silver nanoparticles on aligned peptide nanotubes, contacted with a microfabricated chip in a dry environment. Efficient plasmonic catalysis for oxidation of molecules such as p-aminothiophenol results from facile trans-template charge transfer, activated and controlled by application of an electric field. Raman detection of biomolecules such as glucose and nucleobases are also dramatically enhanced by the template. A reduced quantum mechanical model is formulated, comprising a minimum description of key components. Calculated nanotube-metal-molecule charge transfer is used to understand the catalytic mechanism and shows this system is well-optimized. Plasmonic nanomaterials offer new frontiers as photocatalysis and sensor materials, yet elucidating factors controlling each is a challenge. Here, authors examine the role of electric fields in photocatalysis and biomolecule sensing abilities of peptide-nanotubesupported silver nanoparticles.
Collapse
|
26
|
Bhattarai A, El-Khoury PZ. Nanoscale Chemical Reaction Imaging at the Solid-Liquid Interface via TERS. J Phys Chem Lett 2019; 10:2817-2822. [PMID: 31074285 DOI: 10.1021/acs.jpclett.9b00935] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Not all regions of optical field nanolocalization and enhancement are suitable sites for chemical transformations on plasmonic metals. We illustrate the concept using chemically functionalized monocrystalline gold platelets in aqueous solution imaged using a Au-coated tip-enhanced Raman scattering (TERS) probe. For our proof-of-principle study, we select a model plasmon-driven chemical process, namely, the dimerization of p-nitrothiophenol (NTP) to dimercaptoazobenzene. Consistent with recent observations from our group, we find that TERS maps at vibrational resonances corresponding to NTP trace the optical fields that are maximally enhanced toward the edges of the platelets. Conversely, simultaneously recorded product maps reveal that the dimerization process occurs only at specific sites on our substrate. Given the uniformity of the structures and local optical fields at the edges of the gold platelets, our results suggest that molecular crowding and steric effects play a key role in our case of plasmon-driven NTP dimerization at the gold-water interface.
Collapse
Affiliation(s)
- Ashish Bhattarai
- Physical Sciences Division , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| | - Patrick Z El-Khoury
- Physical Sciences Division , Pacific Northwest National Laboratory , P.O. Box 999, Richland , Washington 99352 , United States
| |
Collapse
|
27
|
Sun JJ, Su HS, Yue HL, Huang SC, Huang TX, Hu S, Sartin MM, Cheng J, Ren B. Role of Adsorption Orientation in Surface Plasmon-Driven Coupling Reactions Studied by Tip-Enhanced Raman Spectroscopy. J Phys Chem Lett 2019; 10:2306-2312. [PMID: 31013094 DOI: 10.1021/acs.jpclett.9b00203] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In the field of surface plasmon-mediated photocatalysis, the coupling reactions of p-aminothiophenol (PATP) and p-nitrothiophenol (PNTP) to produce p, p'-dimercaptoazobenzene (DMAB) are the most widely investigated systems. However, a clear understanding of the structure-function relationship is still required. Here, we used tip-enhanced Raman spectroscopy (TERS) to study the coupling reactions of PATP and PNTP on well-defined Ag(111) and Au(111) surfaces using 632.8 and 532 nm lasers. On Au(111), the oxidative coupling of PATP can proceed under irradiation by a 632.8 nm laser, and the reductive coupling of PNTP can only occur under irradiation by a 532 nm laser. Neither wavelength of laser light can induce the coupling reactions of these two molecules on Ag(111). Density functional theory (DFT) was used to calculate the stable adsorption configurations of PATP and PNTP on Ag(111) and Au(111). Both the adsorption configurations of the two molecules on the surfaces and laser energies were, experimentally and theoretically, found to determine whether the coupling reactions can occur on different substrates. These results may help the rational design of photocatalysts with enhanced reactivity.
Collapse
Affiliation(s)
- Juan-Juan Sun
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Hai-Sheng Su
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Hui-Li Yue
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Sheng-Chao Huang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Teng-Xiang Huang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Shu Hu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Matthew M Sartin
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Jun Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Bin Ren
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| |
Collapse
|
28
|
Zhan C, Wang ZY, Zhang XG, Chen XJ, Huang YF, Hu S, Li JF, Wu DY, Moskovits M, Tian ZQ. Interfacial Construction of Plasmonic Nanostructures for the Utilization of the Plasmon-Excited Electrons and Holes. J Am Chem Soc 2019; 141:8053-8057. [DOI: 10.1021/jacs.9b02518] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chao Zhan
- State Key Laboratory
of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center
of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Zi-Yuan Wang
- State Key Laboratory
of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center
of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Xia-Guang Zhang
- State Key Laboratory
of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center
of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Xue-Jiao Chen
- State Key Laboratory
of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center
of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Yi-Fan Huang
- State Key Laboratory
of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center
of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Shu Hu
- State Key Laboratory
of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center
of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory
of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center
of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - De-Yin Wu
- State Key Laboratory
of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center
of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Martin Moskovits
- State Key Laboratory
of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center
of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
- Department of Chemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Zhong-Qun Tian
- State Key Laboratory
of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center
of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
29
|
Gao ST, Xiang SQ, Jiang Y, Zhao LB. A Density Functional Theoretical Study on the Charge-Transfer Enhancement in Surface-Enhanced Raman Scattering. Chemphyschem 2018; 19:3401-3409. [PMID: 30294973 DOI: 10.1002/cphc.201800812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 11/09/2022]
Abstract
The chemical enhancement due to ground-state charge transfer (GSCT) and photon-driven charge transfer (PDCT) in surface-enhanced Raman scattering (SERS) has been investigated by density functional theory. Para-substituted thiophenol derivatives adsorbed on silver and gold surfaces are selected as model systems to evaluate the chemical enhancement factor. By changing the functional groups on thiophenol, we are allowed to modulate the chemical interactions between the thiophenol and the metal cluster in both ground state and charge transfer excited state. Both off-resonance and pre-resonance SERS spectra are simulated to calculate the chemical enhancement factors. The GSCT enhancement factor, EFGSCT , shows a roughly linear relationship to (ωTP /ωM-TP )4 , where ωTP denotes the HOMO-LUMO gap of free molecule, and ωM-TP denotes the energy difference between the HOMO of the molecule and the LUMO of the metal. The PDCT enhancement factor, EFPDCT , is governed by the energy difference between the incident light energy and the excitation energy to the CT excited state. EFPDCT first increases and then decreases with the increase of incident light energy.
Collapse
Affiliation(s)
- Shu-Ting Gao
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shi-Qin Xiang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yimin Jiang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Liu-Bin Zhao
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
30
|
Huang D, He Q, Shan JJ, Sartin M, Pang R, Yang FZ, Zhou Y, Ren B, Tian ZQ, Zhan D. Illuminating nanostructured gold electrode: surface plasmons or electron ejection? Faraday Discuss 2018; 210:281-287. [PMID: 29999067 DOI: 10.1039/c8fd00012c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recently, the photoelectric effect in metals in electrolyte environments has aroused the interest of researchers. However, direct evidence for surface plasmons-enhanced electrochemical reactions involving classic outer-sphere reactions of reversible redox couples is seldom reported. We used a surface plasmons-active gold-mushroom-array as a working electrode and observed enhanced faradaic current from ferrocenemethanol following illumination with a xenon lamp. The photoelectric current behaved differently in the presence and absence of oxygen in the solution. The preliminary results are discussed with consideration of the possible mechanisms of electron transfer, although they are very complex, due to the lack of direct evidence. Some consideration was also taken of the research on photoelectrochemical reactions on metallic electrodes.
Collapse
Affiliation(s)
- Di Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Muniz‐Miranda M, Muniz‐Miranda F, Pedone A. SERS and DFT investigation on push‐pull molecules: 4‐Dimethylamino‐ 4’‐nitrostilbene adsorbed on silver colloidal nanoparticles. ChemistrySelect 2018. [DOI: 10.1002/slct.201801825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Maurizio Muniz‐Miranda
- Dipartimento di Chimica “Ugo Schiff”Università degli Studi di Firenze (UniFI) Via Lastruccia 3 50019 Sesto Fiorentino Italy
| | - Francesco Muniz‐Miranda
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di Modena e Reggio Emilia (UniMORE) Via Campi 103 41125 Modena Italy
- Center for Molecular ModelingGhent University Technologiepark 903 9052 Zwijnaarde Belgium
| | - Alfonso Pedone
- Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di Modena e Reggio Emilia (UniMORE) Via Campi 103 41125 Modena Italy
| |
Collapse
|
32
|
Kudaibergenov S, Dauletbekova M, Toleutay G, Kabdrakhmanova S, Seilkhanov T, Abdullin K. Hydrogenation of p-Nitrobenzoic Acid by Gold and Palladium Nanoparticles Immobilized Within Macroporous Amphoteric Cryogels in Aqueous Solution. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0930-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Xie Z, Duan S, Tian G, Wang CK, Luo Y. Theoretical modeling of tip-enhanced resonance Raman images of switchable azobenzene molecules on Au(111). NANOSCALE 2018; 10:11850-11860. [PMID: 29897090 DOI: 10.1039/c8nr01988f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
With a highly localized plasmonic field, tip-enhanced Raman spectroscopy (TERS) images have reached atomic-scale resolution, providing an optical means to explore the structure of a single molecule. We have applied the recently developed theoretical method to simulate the TERS images of trans and cis azobenzene as well as its derivatives on Au(111). Our theoretical results reveal that when the first excited state is resonantly excited, TERS images from a highly confined plasmonic field can effectively distinguish the isomer configurations of the adsorbates. The decay of the plasmonic field along the surface normal can be further used to distinguish different nonplanar cis configurations. Moreover, subtle characteristics of different molecular configurations can also be identified from the TERS images of other resonant excited states with a super-high confined plasmonic field. These findings serve as good references for future TERS experiments on molecular isomers.
Collapse
Affiliation(s)
- Zhen Xie
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | | | | | | | | |
Collapse
|
34
|
Zhang Z, Kneipp J. Mapping the Inhomogeneity in Plasmonic Catalysis on Supported Gold Nanoparticles Using Surface-Enhanced Raman Scattering Microspectroscopy. Anal Chem 2018; 90:9199-9205. [DOI: 10.1021/acs.analchem.8b01701] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zhiyang Zhang
- Humboldt-Universität zu Berlin, Department of Chemistry and School of Analytical Sciences Adlershof (SALSA), Brook-Taylor-Straße 2, 12489 Berlin, Germany
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin. Germany
| | - Janina Kneipp
- Humboldt-Universität zu Berlin, Department of Chemistry and School of Analytical Sciences Adlershof (SALSA), Brook-Taylor-Straße 2, 12489 Berlin, Germany
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin. Germany
| |
Collapse
|
35
|
Almohammed S, Zhang F, Rodriguez BJ, Rice JH. Photo-induced surface-enhanced Raman spectroscopy from a diphenylalanine peptide nanotube-metal nanoparticle template. Sci Rep 2018; 8:3880. [PMID: 29497167 PMCID: PMC5832858 DOI: 10.1038/s41598-018-22269-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/16/2018] [Indexed: 11/09/2022] Open
Abstract
UV irradiation of aligned diphenylalanine peptide nanotubes (FF-PNTs) decorated with plasmonic silver nanoparticles (Ag NPs) enables photo-induced surface-enhanced Raman spectroscopy. UV-induced charge transfer facilitates a chemical enhancement that provides up to a 10-fold increase in surface-enhanced Raman intensity and allows the detection of a wide range of small molecules and low Raman cross-section molecules at concentrations as low as 10-13 M. The aligned FF-PNT/Ag NP template further prevents photodegradation of the molecules under investigation. Our results demonstrate that FF-PNTs can be used as an alternative material to semiconductors such as titanium dioxide for photo-induced surface-enhanced Raman spectroscopy applications.
Collapse
Affiliation(s)
- Sawsan Almohammed
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fengyuan Zhang
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Brian J Rodriguez
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | - James H Rice
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
36
|
Aranda D, Avila FJ, López-Tocón I, Arenas JF, Otero JC, Soto J. An MS-CASPT2 study of the photodecomposition of 4-methoxyphenyl azide: role of internal conversion and intersystem crossing. Phys Chem Chem Phys 2018; 20:7764-7771. [DOI: 10.1039/c8cp00147b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Photoexcitation of 4-methoxyphenyl azide at 266 nm yields triplet nitrene after decaying through an intersystem crossing (ISC1, 21A′/23A′′) in a first step followed by internal conversion (CI2, 23A′′/13A′′).
Collapse
Affiliation(s)
- Daniel Aranda
- Department of Physical Chemistry
- Faculty of Science
- University of Málaga
- E-29071-Málaga
- Spain
| | - Francisco J. Avila
- Department of Physical Chemistry
- Faculty of Science
- University of Málaga
- E-29071-Málaga
- Spain
| | - Isabel López-Tocón
- Department of Physical Chemistry
- Faculty of Science
- University of Málaga
- E-29071-Málaga
- Spain
| | - Juan F. Arenas
- Department of Physical Chemistry
- Faculty of Science
- University of Málaga
- E-29071-Málaga
- Spain
| | - Juan C. Otero
- Department of Physical Chemistry
- Faculty of Science
- University of Málaga
- E-29071-Málaga
- Spain
| | - Juan Soto
- Department of Physical Chemistry
- Faculty of Science
- University of Málaga
- E-29071-Málaga
- Spain
| |
Collapse
|
37
|
Walia J, Guay JM, Krupin O, Variola F, Berini P, Weck A. Visible light driven plasmonic photochemistry on nano-textured silver. Phys Chem Chem Phys 2017; 20:238-246. [PMID: 29199757 DOI: 10.1039/c7cp07024a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Plasmon assisted generation of silver sulfate from dodecanethiol is demonstrated on a nano-textured silver substrate with a strong surface plasmon resonance in the visible range. The observed photo-physical processes are attributed to hot charge carriers that are generated from the excitation of surface plasmon resonances using 532 nm laser light. Excited charge carriers are responsible for cleaving the alkane chain, and for generating reactive oxygen species which rapidly photooxidize the exposed sulfur atoms. The ability to drive photochemical reactions with photon energies in the visible range rather than in the UV, on nano-textured silver surfaces, will enable researchers to study photochemical transformations for a wide variety of applications. The strong optical absorbance across the visible range, combined with the fact that the substrates can be fabricated over large areas, naturally makes them candidates for solar driven photochemical applications, and for large scale plasmonic reactors.
Collapse
Affiliation(s)
- Jaspreet Walia
- Centre for Research in Photonics, University of Ottawa, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
38
|
Zhang Y, He S, Guo W, Hu Y, Huang J, Mulcahy JR, Wei WD. Surface-Plasmon-Driven Hot Electron Photochemistry. Chem Rev 2017; 118:2927-2954. [DOI: 10.1021/acs.chemrev.7b00430] [Citation(s) in RCA: 730] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yuchao Zhang
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Shuai He
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Wenxiao Guo
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Yue Hu
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Jiawei Huang
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Justin R. Mulcahy
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Wei David Wei
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
39
|
Wu H, Li X, Xu J, Wang C, Rong Z, Xiao R, Wang S. Study on the SERS substrate composed of Au@Ag core-shell nanoparticles linked to SiO 2 spheres. INORG NANO-MET CHEM 2017. [DOI: 10.1080/15533174.2016.1212232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Huiyun Wu
- Beijing Institute of Radiation Medicine, Beijing, P. R. China
- Department of Science and Technology, Academy of Military Medical Sciences, Beijing, P. R. China
| | - Xin Li
- Department of Science and Technology, Academy of Military Medical Sciences, Beijing, P. R. China
| | - Jiawen Xu
- Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Congwen Wang
- Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Zhen Rong
- Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Rui Xiao
- Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing, P. R. China
| |
Collapse
|
40
|
Viana MAA, Araújo RCMU, Neto JAM, Chame HC, Pereira AM, Oliveira BG. The interaction strengths and spectroscopy parameters of the C 2H 2∙∙∙HX and HCN∙∙∙HX complexes (X = F, Cl, CN, and CCH) and related ternary systems valued by fluxes of charge densities: QTAIM, CCFO, and NBO calculations. J Mol Model 2017; 23:110. [PMID: 28285444 DOI: 10.1007/s00894-017-3270-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/31/2017] [Indexed: 11/30/2022]
Abstract
This theoretical work exhibits a new systematic study of structural parameters, electronic properties, infrared vibration modes, and molecular topography of hydrogen complexes, namely linear-type HCN⋯HX and T-type C2H2⋯HX (X = F, Cl, CN, and CCH). Ideally, the knowledge of the ternary systems of C2H2⋯HCN⋯HF and HCN⋯HCN⋯HF whose subparts integrate the linear and T-shaped complexes were used to give support in this current research. By means of computational calculations carried out in both levels B3LYP and MP2, the variations of the HX bond lengths are clearly overestimated in the HCN⋯HX linear complexes. In agreement with the analyses of the electrostatic potentials, the higher intermolecular energies of these complexes agree with the larger red-shifts in the stretch frequencies in HX. Also, the QTAIM descriptors and NBO calculations were used to inspect the interaction strength as well as to confirm the π cloud as a proton accepting center. By taking into account the absorption intensity ratio as a standard parameter to predict the interaction strength and intermolecular characterization, the formalism of the charge-charge flux-overlap modified (CCFO) was applied.
Collapse
Affiliation(s)
- Marco A A Viana
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, 59215-000, Nova Cruz, RN, Brazil
| | - Regiane C M U Araújo
- Departamento de Química - Centro das Ciências Exatas e da Natureza, Universidade Federal da Paraíba, 58051-900, João Pessoa, PB, Brazil
| | - José A Maia Neto
- Departamento de Química - Centro das Ciências Exatas e da Natureza, Universidade Federal da Paraíba, 58051-900, João Pessoa, PB, Brazil
| | - Henrique C Chame
- Departamento de Química - Centro das Ciências Exatas e da Natureza, Universidade Federal da Paraíba, 58051-900, João Pessoa, PB, Brazil
| | - Arquimedes M Pereira
- Ciência e Tecnologia da Paraíba, Instituto Federal de Educação, Campus Guarabira, 58200-000, Guarabira, PB, Brazil
| | - Boaz G Oliveira
- Centro das Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Campus Reitor Edgard Santos, 47805-000, Barreiras, BA, Brazil.
| |
Collapse
|
41
|
Lei G, Gao PF, Yang T, Zhou J, Zhang HZ, Sun SS, Gao MX, Huang CZ. Photoinduced Electron Transfer Process Visualized on Single Silver Nanoparticles. ACS NANO 2017; 11:2085-2093. [PMID: 28117958 DOI: 10.1021/acsnano.6b08282] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Understanding the photoinduced electron transfer (PET) mechanism is vital to improving the photoelectric conversion efficiency for solar energy materials and photosensitization systems. Herein, we visually demonstrate the PET process by real-time monitoring the photoinduced chemical transformation of p-aminothiophenol (p-ATP), an important SERS signal molecule, to 4,4'-dimercaptoazobenzene on single silver nanoparticles (AgNPs) with a localized surface plasmon resonance (LSPR) spectroscopy coupled dark-field microscopy. The bidirectional LSPR scattering spectral shifts bathochromically at first and hypsochromically then, which are caused by the electron transfer delay of p-ATP, disclose the PET path from p-ATP to O2 through AgNPs during the reaction, and enable us to digitalize the corresponding electron loss and gain on the surface of AgNP at different time periods. This visualized PET process could provide a simple and efficient approach to explore the nature of PET and help to interpret the SERS mechanism in terms of p-ATP.
Collapse
Affiliation(s)
- Gang Lei
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing 400716, P. R. China
| | - Peng Fei Gao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing 400716, P. R. China
| | - Tong Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing 400716, P. R. China
| | - Jun Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing 400716, P. R. China
| | - Hong Zhi Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing 400716, P. R. China
| | - Shan Shan Sun
- College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Ming Xuan Gao
- College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University , Chongqing 400716, P. R. China
- College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, P. R. China
| |
Collapse
|
42
|
Błoński P, Tuček J, Sofer Z, Mazánek V, Petr M, Pumera M, Otyepka M, Zbořil R. Doping with Graphitic Nitrogen Triggers Ferromagnetism in Graphene. J Am Chem Soc 2017; 139:3171-3180. [PMID: 28110530 PMCID: PMC5334781 DOI: 10.1021/jacs.6b12934] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitrogen doping opens possibilities for tailoring the electronic properties and band gap of graphene toward its applications, e.g., in spintronics and optoelectronics. One major obstacle is development of magnetically active N-doped graphene with spin-polarized conductive behavior. However, the effect of nitrogen on the magnetic properties of graphene has so far only been addressed theoretically, and triggering of magnetism through N-doping has not yet been proved experimentally, except for systems containing a high amount of oxygen and thus decreased conductivity. Here, we report the first example of ferromagnetic graphene achieved by controlled doping with graphitic, pyridinic, and chemisorbed nitrogen. The magnetic properties were found to depend strongly on both the nitrogen concentration and type of structural N-motifs generated in the host lattice. Graphenes doped below 5 at. % of nitrogen were nonmagnetic; however, once doped at 5.1 at. % of nitrogen, N-doped graphene exhibited transition to a ferromagnetic state at ∼69 K and displayed a saturation magnetization reaching 1.09 emu/g. Theoretical calculations were used to elucidate the effects of individual chemical forms of nitrogen on magnetic properties. Results showed that magnetic effects were triggered by graphitic nitrogen, whereas pyridinic and chemisorbed nitrogen contributed much less to the overall ferromagnetic ground state. Calculations further proved the existence of exchange coupling among the paramagnetic centers mediated by the conduction electrons.
Collapse
Affiliation(s)
- Piotr Błoński
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc , 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jiří Tuček
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc , 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague , Technická 5, 166 28 Prague 6, Czech Republic
| | - Vlastimil Mazánek
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague , Technická 5, 166 28 Prague 6, Czech Republic
| | - Martin Petr
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc , 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Martin Pumera
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , 637371 Singapore
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc , 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc , 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
43
|
Wang C, Zou W, Wang J, Ge Y, Lu R, Zhang S. Insight into the mechanism of gold-catalyzed reduction of nitroarenes based on the substituent effect and in situ IR. NEW J CHEM 2017. [DOI: 10.1039/c7nj00157f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new insight into the Au–SiO2-catalyzed reduction of nitroarenes based on the substituent effect and in situ IR.
Collapse
Affiliation(s)
- Cui Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- People's Republic of China
| | - Wei Zou
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- People's Republic of China
| | - Jiasheng Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- People's Republic of China
| | - Yuzhen Ge
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- People's Republic of China
| | - Rongwen Lu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- People's Republic of China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- People's Republic of China
| |
Collapse
|
44
|
Hu W, Duan S, Luo Y. Theoretical modeling of surface and tip‐enhanced Raman spectroscopies. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Hu
- Department of Theoretical Chemistry and BiologySchool of Biotechnology, Royal Institute of Technology Stockholm Sweden
| | - Sai Duan
- Department of Theoretical Chemistry and BiologySchool of Biotechnology, Royal Institute of Technology Stockholm Sweden
| | - Yi Luo
- Department of Theoretical Chemistry and BiologySchool of Biotechnology, Royal Institute of Technology Stockholm Sweden
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical PhysicsUniversity of Science and Technology of China Hefei P. R. China
| |
Collapse
|
45
|
Hartman T, Wondergem C, Kumar N, van den
Berg A, Weckhuysen BM. Surface- and Tip-Enhanced Raman Spectroscopy in Catalysis. J Phys Chem Lett 2016; 7:1570-84. [PMID: 27075515 PMCID: PMC4902183 DOI: 10.1021/acs.jpclett.6b00147] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/31/2016] [Indexed: 05/19/2023]
Abstract
Surface- and tip-enhanced Raman spectroscopy (SERS and TERS) techniques exhibit highly localized chemical sensitivity, making them ideal for studying chemical reactions, including processes at catalytic surfaces. Catalyst structures, adsorbates, and reaction intermediates can be observed in low quantities at hot spots where electromagnetic fields are the strongest, providing ample opportunities to elucidate reaction mechanisms. Moreover, under ideal measurement conditions, it can even be used to trigger chemical reactions. However, factors such as substrate instability and insufficient signal enhancement still limit the applicability of SERS and TERS in the field of catalysis. By the use of sophisticated colloidal synthesis methods and advanced techniques, such as shell-isolated nanoparticle-enhanced Raman spectroscopy, these challenges could be overcome.
Collapse
Affiliation(s)
- Thomas Hartman
- Faculty
of Science, Debye Institute for
Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Caterina
S. Wondergem
- Faculty
of Science, Debye Institute for
Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Naresh Kumar
- Faculty
of Science, Debye Institute for
Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- National
Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, U.K.
| | - Albert van den
Berg
- BIOS
Lab on a Chip Group and MESA+ Institute for Nanotechnology, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Bert M. Weckhuysen
- Faculty
of Science, Debye Institute for
Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- E-mail:
| |
Collapse
|
46
|
Lin TW, Tasi TT, Chang PL, Cheng HY. Reversible Association of Nitro Compounds with p-Nitrothiophenol Modified on Ag Nanoparticles/Graphene Oxide Nanocomposites through Plasmon Mediated Photochemical Reaction. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8315-8322. [PMID: 26977529 DOI: 10.1021/acsami.6b01522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Because localized surface plasmon resonance in nanostructures of noble metals is accompanied by interesting physical effects such as optical near-field enhancement, heat release, and the generation of hot electrons, it has been employed in a wide range of applications, including plasmon-assisted chemical reactions. Here, we use a composite of silver nanoparticles and graphene oxide (Ag@GO) as the catalytic as well as the analytic platform for plasmon-assisted chemical reactions. Through time-dependent surface-enhanced Raman scattering experiments, it is found that p-nitrothiophenol (pNTP) molecules on Ag@GO can be associated with nitro compounds such as nitrobenzene and 1-nitropropane to form azo compounds when aided by the plasmons. Furthermore, the reaction rate can be modulated by varying the wavelength and power of the excitation laser as well as the nitro compounds used. In addition, the aforementioned coupling reaction can be reversed. We demonstrate that the oxidation of azo compounds on Ag@GO using KMnO4 leads to the dissociation of the N═N double bond in the azo compounds and that the rate of bond dissociation can be accelerated significantly via laser irradiation. Furthermore, the pNTP molecules on Ag@GO can be recovered after the oxidation reaction. Finally, we demonstrate that the plasmon-assisted coupling reaction allows for the immobilization of nitro-group-containing fluorophores at specific locations on Ag@GO.
Collapse
Affiliation(s)
- Tsung-Wu Lin
- Department of Chemistry, Tunghai University , No. 181, Sec. 3, Taichung Port Rd., Taichung City 40704, Taiwan
| | - Ting-Ti Tasi
- Department of Chemistry, Tunghai University , No. 181, Sec. 3, Taichung Port Rd., Taichung City 40704, Taiwan
| | - Po-Ling Chang
- Department of Chemistry, Tunghai University , No. 181, Sec. 3, Taichung Port Rd., Taichung City 40704, Taiwan
| | - Hsiu-Yao Cheng
- Department of Chemistry, Tunghai University , No. 181, Sec. 3, Taichung Port Rd., Taichung City 40704, Taiwan
| |
Collapse
|
47
|
Xiao Q, Sarina S, Waclawik ER, Jia J, Chang J, Riches JD, Wu H, Zheng Z, Zhu H. Alloying Gold with Copper Makes for a Highly Selective Visible-Light Photocatalyst for the Reduction of Nitroaromatics to Anilines. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02643] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Qi Xiao
- School
of Chemistry, Physics and Mechanical Engineering, Science and Engineering
Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Sarina Sarina
- School
of Chemistry, Physics and Mechanical Engineering, Science and Engineering
Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Eric R. Waclawik
- School
of Chemistry, Physics and Mechanical Engineering, Science and Engineering
Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Jianfeng Jia
- School
of Chemical and Material Science, Shanxi Normal University, Linfen 041004, China
| | - Jin Chang
- School
of Chemistry, Physics and Mechanical Engineering, Science and Engineering
Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Institute
of Advanced Materials (IAM), National Jiangsu Synergistic Innovation
Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - James D. Riches
- Institute for Future Environments & School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Haishun Wu
- School
of Chemical and Material Science, Shanxi Normal University, Linfen 041004, China
| | - Zhanfeng Zheng
- State
Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Taiyuan 030001, China
| | - Huaiyong Zhu
- School
of Chemistry, Physics and Mechanical Engineering, Science and Engineering
Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
48
|
Shi X, Li HW, Ying YL, Liu C, Zhang L, Long YT. In situ monitoring of catalytic process variations in a single nanowire by dark-field-assisted surface-enhanced Raman spectroscopy. Chem Commun (Camb) 2016; 52:1044-7. [DOI: 10.1039/c5cc09220e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this communication, we provide a new method for characterizing the kinetics of a catalytic process on multiple sites of a single nanowire by dark-field-assisted surface-enhanced Raman spectroscopy (DFSERS).
Collapse
Affiliation(s)
- Xin Shi
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Hao-Wen Li
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Yi-Lun Ying
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Chang Liu
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241000
- P. R. China
| | - Li Zhang
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241000
- P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai
- P. R. China
| |
Collapse
|
49
|
Barman T, Hussain AA, Sharma B, Pal AR. Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline. Sci Rep 2015; 5:18276. [PMID: 26656664 PMCID: PMC4674755 DOI: 10.1038/srep18276] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/16/2015] [Indexed: 11/30/2022] Open
Abstract
Studies on hot carrier science and technology associated with various types of nanostructures are dominating today’s nanotechnology research. Here we report a novel synthesis of polyaniline-gold (PAni-Au) nanocomposite thin films with gold nanostructures (AuNs) of desired shape and size uniformly incorporated in the polymer matrix. According to shape as well as size variation of AuNs, two tunable plasmonic UV-Visible absorption bands are observed in each of the nanocomposites. Plasmonic devices are fabricated using PAni-Au nanocomposite having different UV-Visible plasmon absorption bands. However, all the devices show strong photoelectrical responses in the blue region (400–500 nm) of the visible spectrum. The d-band to sp-band (d-sp) transition of electrons in AuNs produces hot holes that are the only carriers in the material responsible for photocurrent generation in the device. This work provides an experimental evidence of novel plasmonic hot hole generation process that was still a prediction.
Collapse
Affiliation(s)
- Tapan Barman
- Plasma Nanotech Lab, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati 781035, Assam, India
| | - Amreen A Hussain
- Plasma Nanotech Lab, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati 781035, Assam, India
| | - Bikash Sharma
- Plasma Nanotech Lab, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati 781035, Assam, India
| | - Arup R Pal
- Plasma Nanotech Lab, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati 781035, Assam, India
| |
Collapse
|
50
|
Yang J, Li Y, Zu L, Tong L, Liu G, Qin Y, Shi D. Light-concentrating plasmonic Au superstructures with significantly visible-light-enhanced catalytic performance. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8200-8208. [PMID: 25840556 DOI: 10.1021/acsami.5b01078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Noble metals are well-known for their surface plasmon resonance effect that enables strong light absorption typically in the visible regions for gold and silver. However, unlike semiconductors, noble metals are commonly considered incapable of catalyzing reactions via photogenerated electron-hole pairs due to their continuous energy band structures. So far, photonically activated catalytic system based on pure noble metal nanostructures has seldom been reported. Here, we report the development of three different novel plasmonic Au superstructures comprised of Au nanoparticles, multiple-twinned nanoparticles and nanoworms assembling on the surfaces of SiO2 nanospheres respectively via a well-designed synthetic strategy. It is found that these novel Au superstructures show enhanced broadband visible-light absorption due to the plasmon resonance coupling within the superstructures, and thus can effectively focus the energy of photon fluxes to generate much more excited hot electrons and holes for promoting catalytic reactions. Accordingly, these Au superstructures exhibit significantly visible-light-enhanced catalytic efficiency (up to ∼264% enhancement) for the commercial reaction of p-nitrophenol reduction.
Collapse
Affiliation(s)
- Jinhu Yang
- †Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, People's Republic of China
| | - Ying Li
- †Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, People's Republic of China
| | - Lianhai Zu
- †Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, People's Republic of China
| | - Lianming Tong
- §Institute of Physics Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Guanglei Liu
- †Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, People's Republic of China
| | | | - Donglu Shi
- ∥Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|