1
|
Liu W, Khorsand Ahmadi M, Dekkers MHJ, Henzen A, den Toonder JMJ, Yuan D, Groenewold J, Zhou G, Wyss HM. Charge injection mediated by inverse micelles in nonpolar solvents: A microscopic model. J Colloid Interface Sci 2025; 678:449-459. [PMID: 39303563 DOI: 10.1016/j.jcis.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
HYPOTHESIS Nonpolar solvents with added charge control agents are widely used in various applications, such as E-paper displays. In spite of previous work, the mechanisms governing charge generation in nonpolar liquids, particularly those induced by electrochemical reactions at the liquid-solid interface, are not completely understood. We hypothesize that a physics-based model, according to the modified Butler-Volmer equation, can be used to quantitatively predict the injection of charges and the corresponding currents, in nonpolar solvents with surfactants. SIMULATION AND EXPERIMENTS We propose a model to describe the migration and charge generation of inverse micelles. In addition to the mechanisms of electromigration, diffusion and charge generation via disproportionation that were introduced in earlier models, we include charge generation via electron injection at the electrodes using a microscopically justified expression as opposed to the previously used semi-empirical approaches. To validate our model, we compare its results to experimental current measurements in a simplified, effectively 1D, geometry. FINDINGS We find that the incorporation of both bulk and electrochemical reaction mechanisms in the model can effectively explain the experimental steady-state currents in a wide range of concentrations, voltages (0.5 V-5 V), and cell thicknesses. These numerical results of currents at longer time scales show a steady-state current only when both bulk and electrochemical reactions are taken into account. Moreover, we have observed in our simulation that at low applied voltages, the electric field in the bulk is fully shielded, and the steady-state current in this low-voltage regime is governed by the charge injection at the electrodes. Conversely, when the voltage is high enough and the electric field remains partially unscreened, the bulk disproportionation mechanism dominates the current generation. This also explains why we observe a non-Ohmic behavior where the steady-state currents at high voltages are independent of applied voltage. Hence, by elucidating the physical processes underlying the experimental observations, our model offers a more profound comprehension of charge transport in these systems, which could facilitate advancements in the design of enhanced E-ink displays and smart windows.
Collapse
Affiliation(s)
- Wei Liu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China; Department of Mechanical Engineering, Microsystems, Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands; Institute for Complex Molecular Systems [ICMS], Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands
| | - Mohammad Khorsand Ahmadi
- Department of Mechanical Engineering, Microsystems, Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands; Institute for Complex Molecular Systems [ICMS], Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands
| | - Max H J Dekkers
- Department of Mechanical Engineering, Microsystems, Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands
| | - Alex Henzen
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Jaap M J den Toonder
- Department of Mechanical Engineering, Microsystems, Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands; Institute for Complex Molecular Systems [ICMS], Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands
| | - Dong Yuan
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.
| | - Jan Groenewold
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, Utrecht, 3584 CH, Netherlands.
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Hans M Wyss
- Department of Mechanical Engineering, Microsystems, Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands; Institute for Complex Molecular Systems [ICMS], Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands.
| |
Collapse
|
2
|
Majumdar I, Ganguli AK. Modulating Interfacial Properties in Pseudoternary Microemulsions via Urea Addition: Impact of Cosurfactant on the Reverse Micellar Structure and Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39087250 DOI: 10.1021/acs.langmuir.4c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We have studied the structural and interfacial properties of CTAB/isooctane/alcohol/aqueous urea reverse micelles (RMs) for the first time using time-resolved fluorescence and small-angle X-ray scattering techniques. The chain length of alcohol, used as cosurfactant, has been varied to design three microemulsion systems: CTAB/1-butanol, CTAB/1-hexanol, and CTAB/1-octanol/isooctane/water, at a fixed water loading ratio, w0 = 12. Time-resolved fluorescence anisotropy studies indicate that urea induces micellar aggregation in CTAB/1-butanol and CTAB/1-hexanol RMs but breaks down RM aggregates in CTAB/1-octanol RMs. Urea addition slows down solvation dynamics inside RMs at higher urea concentrations, evident from the longer lifetimes of solvent correlation decay. The underlying changes in microemulsion structure and intermicellar interactions are studied using small-angle X-ray scattering studies. The significant intermicellar interactions were modeled using the sticky hard sphere (SHS) for the CTAB/1-butanol and CTAB/1-hexanol RMs and by using the Macroion model for the CTAB/1-octanol RMs. The two different structural factors highlight the dominance of attractive and repulsive forces, respectively. Although there is no change in RM shape, the combination of urea addition and chain length variation in cosurfactants significantly alters the size and interface in these pseudoternary RMs.
Collapse
Affiliation(s)
- Ipshita Majumdar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ashok K Ganguli
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur, Laudigam, Odisha 760003, India
| |
Collapse
|
3
|
Wilson-Whitford SR, Gao J, Gilchrist JF. Density Matching for Microencapsulation of Field Responsive Suspensions of Non-Brownian Microparticles. J Phys Chem B 2024; 128:6394-6399. [PMID: 38778787 PMCID: PMC11228997 DOI: 10.1021/acs.jpcb.4c02288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
When forming composite microcapsules through the emulsification of a dispersed phase laden with microparticles, one will find that the microparticles become irreversibly embedded in the resulting microcapsule membrane. This phenomenon, known as Pickering stabilization, is detrimental when the end function of the microcapsules relies on the mobility of encapsulated microparticles within the capsule core. In this work, a robust microencapsulation route using density matching of non-Brownian microparticles in a binary solvent is shown to easily and effectively encapsulate particles, with >90% of particles retaining mobility within the microcapsules, without the necessity for prior chemical/physical modifications to the microparticles. This is proposed as a generalized method to be used for all manner of particle chemistries, shapes, and sizes.
Collapse
Affiliation(s)
| | - Jinghui Gao
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - James F Gilchrist
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
4
|
Khorsand Ahmadi M, Liu W, Groenewold J, den Toonder JMJ, Henzen A, Wyss HM. Interplay of electrokinetic effects in nonpolar solvents for electronic paper displays. J Colloid Interface Sci 2024; 665:263-273. [PMID: 38485631 DOI: 10.1016/j.jcis.2024.02.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
HYPOTHESIS Electronic paper displays rely on electrokinetic effects in nonpolar solvents to drive the displacement of colloidal particles within a fluidic cell. While Electrophoresis (EP) is a well-established and frequently employed phenomenon, electro-osmosis (EO), which drives fluid flow along charged solid surfaces, has not been studied as extensively. We hypothesize that by exploiting the interplay between these effects, an enhanced particle transport can be achieved. EXPERIMENTS In this study, we experimentally investigate the combined effects of EP and EO for colloidal particles in non-polar solvents, driven by an electric field. We use astigmatism micro-particle tracking velocimetry (A-μPTV) to measure the motion of charged particles within model fluidic cells. Using a simple approach that relies on basic fluid flow properties we extract the contributions due to EP and EO, finding that EO contributes significantly to particle transport. The validity of our approach is confirmed by measurements on particles with different magnitudes of charge, and by comparison to numerical simulations. FINDINGS We find that EO flows can play a dominant role in the transport of particles in electrokinetic display devices. This can be exploited to speed up particle transport, potentially yielding displays with significantly faster switching times.
Collapse
Affiliation(s)
- Mohammad Khorsand Ahmadi
- Department of Mechanical Engineering, Microsystems, Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands; Institute for Complex Molecular Systems [ICMS], Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands
| | - Wei Liu
- Department of Mechanical Engineering, Microsystems, Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands; Institute for Complex Molecular Systems [ICMS], Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands; South China Academy of Advanced Optoelectronics, Electronic Paper Display Institute, Guangzhou 510006, China
| | - Jan Groenewold
- South China Academy of Advanced Optoelectronics, Electronic Paper Display Institute, Guangzhou 510006, China; Department of Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, Utrecht, 3584 CH, Netherlands
| | - Jaap M J den Toonder
- Department of Mechanical Engineering, Microsystems, Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands; Institute for Complex Molecular Systems [ICMS], Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands
| | - Alex Henzen
- South China Academy of Advanced Optoelectronics, Electronic Paper Display Institute, Guangzhou 510006, China
| | - Hans M Wyss
- Department of Mechanical Engineering, Microsystems, Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands; Institute for Complex Molecular Systems [ICMS], Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands.
| |
Collapse
|
5
|
Wang W, Vahabi H, Taassob A, Pillai S, Kota AK. On-Demand, Contact-Less and Loss-Less Droplet Manipulation via Contact Electrification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308101. [PMID: 38233209 PMCID: PMC10933654 DOI: 10.1002/advs.202308101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/25/2023] [Indexed: 01/19/2024]
Abstract
While there are many droplet manipulation techniques, all of them suffer from at least one of the following drawbacks - complex fabrication or complex equipment or liquid loss. In this work, a simple and portable technique is demonstrated that enables on-demand, contact-less and loss-less manipulation of liquid droplets through a combination of contact electrification and slipperiness. In conjunction with numerical simulations, a quantitative analysis is presented to explain the onset of droplet motion. Utilizing the contact electrification technique, contact-less and loss-less manipulation of polar and non-polar liquid droplets on different surface chemistries and geometries is demonstrated. It is envisioned that the technique can pave the way to simple, inexpensive, and portable lab on a chip and point of care devices.
Collapse
Affiliation(s)
- Wei Wang
- Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighNC27695USA
- Department of MechanicalAerospace and Biomedical EngineeringUniversity of Tennessee KnoxvilleKnoxvilleTN37996USA
| | - Hamed Vahabi
- Department of Mechanical EngineeringColorado State UniversityFort CollinsCO80525USA
| | - Arsalan Taassob
- Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Sreekiran Pillai
- Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Arun Kumar Kota
- Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighNC27695USA
- Department of Mechanical EngineeringColorado State UniversityFort CollinsCO80525USA
| |
Collapse
|
6
|
Gao J, Sugimoto T, Kobayashi M. Effects of ionic valence on aggregation kinetics of colloidal particles with and without a mixing flow. J Colloid Interface Sci 2023; 638:733-742. [PMID: 36780852 DOI: 10.1016/j.jcis.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
HYPOTHESIS The classical Schulze-Hardy rule states that the critical coagulation concentration (CCC) of colloidal particles is inversely proportional to the counter-ionic valence at powers ranging from 2 to 6. However, the inverse Schulze-Hardy rule has recently been proposed, suggesting that the CCC can also be inversely proportional to the co-ionic valence. Previous studies on these rules did not consider the effect of flow on aggregation kinetics and the CCC. This study aims to investigate the effect of multivalent counter-ions and co-ions on aggregation kinetics and the CCCs in systems with and without a mixing flow. EXPERIMENTS We measured the aggregation rate coefficients of polystyrene sulfate latex particles as a function of the salt concentration with different ionic species. Furthermore, we analyzed these measurements using theoretical models based on hydrodynamic pair-diffusion in a random flow and trajectory analysis in two steady flows. The analysis was conducted using zeta potentials determined through electrophoretic measurements. FINDINGS Although the trajectory analysis underestimates the CCCs, the hydrodynamic pair-diffusion model can capture the shift of critical coagulation concentrations in the mixing flow to higher values than those in Brownian aggregation and also shows a better agreement with the experimental results. This result suggests that combining random flow and Brownian diffusion is crucial for developing a consistent framework for predicting both Brownian aggregation and aggregation in a mixing flow.
Collapse
Affiliation(s)
- Jiahui Gao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Takuya Sugimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Motoyoshi Kobayashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
7
|
Shadloo A, Peyvandi K, Shojaeian A, Shariat S. Determination of the Second Critical Micelle Concentration of Aqueous Non-Ionic Surfactants: Measurement and Calculation of Various Physicochemical Properties above the First CMC Point. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c02641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Azam Shadloo
- Faculty of Chemical, Gas and Petroleum Engineering, Semnan University, Semnan35196-45399, Iran
| | - Kiana Peyvandi
- Faculty of Chemical, Gas and Petroleum Engineering, Semnan University, Semnan35196-45399, Iran
| | - Abolfazl Shojaeian
- Department of Chemical Engineering, Hamedan University of Technology, Hamedan65169, Iran
| | - Sheida Shariat
- Department of Pharmacy, Damghan Branch, Islamic Azad University, Damghan36711, Iran
| |
Collapse
|
8
|
Sergeevich Popovetskiy P, Victorovich Kasyanov A, Anatolievich Maximovskiy E, Eugenievich Plyusnin P. Electrophoretic mobility of silver nanoparticles stabilized with nonionic surfactant Ecosurf SA4: origin of charged particles, concentration by electrophoresis and production of conductive coatings. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Rahman A, Eastoe J. The effects of surfactant and oil chemical structures on self-assembly in apolar media. SOFT MATTER 2022; 18:9133-9152. [PMID: 36444561 DOI: 10.1039/d2sm00827k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The thermodynamic and chemical structural aspects of surfactant self-assembly in aqueous systems have been much studied. On the other hand, for oil-water interfaces the effects of chemical structures of surfactants and solvents have received less attention. This review focuses on the surfactant chemical effects in low dielectric solvents, in particular formation and properties of surfactant films at oil-water interfaces. For this purpose, reversed micelles (RMs) and water-in-oil (W/O) microemulsions (μEs) serve as model systems, since electrostatic effects are minimized, allowing a focus on chain architecture of the surfactants and oil solvents themselves. It is noted that chemical structure can have profound effects on stability and self-assembly, suggesting a possibility of identifying unified chemical principles for designing and formulating systems across various thermodynamic conditions.
Collapse
Affiliation(s)
- Adhip Rahman
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Julian Eastoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
10
|
Shadloo A, Peyvandi K, Shojaeian A, Shariat S. Thermodynamic modeling of density, viscosity and critical micelle concentration of aqueous Tween and Span solutions via Cubic plus association equation of state. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Shadloo A, Peyvandi K, Shojaeian A. How the CMC adjust the liquid mixture density and viscosity of non-ionic surfactants at various temperatures? J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Kim J, Jeong J, Hyun Y, Chung SK, Lee J. Electrostatic Stabilization of Nano Liquid Metals in Doped Nonpolar Liquids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104143. [PMID: 34623028 DOI: 10.1002/smll.202104143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Liquid metals and alloys are attracting renewed attention owing to their potential for application in various advanced technologies. Eutectic gallium-indium (EGaIn) has been focused on in particular because of its integrated advantages of high conductivity, low melting point, and low toxicity. In this study, the colloidal behavior of nano-dispersed EGaIn in nonpolar oils is investigated. Although the nonpolar oil continuous phase is commonly considered to be free of electric charges, electrostatic repulsion appears to be crucial in the colloidal stabilization of the nano-dispersed EGaIn phases, the modulation of which is possible by doping the oil phases with different types of oil-soluble surfactants. The qualitative correlation between the observed colloidal stabilities and the "zero field" particle mobilities inferred from the field-dependent electrophoretic mobilities indicates that the electric charging of EGaIn particles in surfactant-doped nonpolar oils is a static phenomenon that is maintained in equilibrium, rather than a solely field-induced process. A systematic investigation of the charging properties of these unique biphasic particles, consisting of the liquid Ga-In bulk and the solid Ga2 O3 surface that formed spontaneously, reveals the complicated system-dependent nature of the charging mechanisms mediated by ionic and nonionic surfactants in nonpolar media.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Korea
| | - Jinwon Jeong
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Korea
| | - Youngbin Hyun
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Korea
| | - Sang Kug Chung
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Korea
| | - Joohyung Lee
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Korea
| |
Collapse
|
13
|
Owodeha-Ashaka K, Ilomuanya MO, Iyire A. Evaluation of sonication on stability-indicating properties of optimized pilocarpine hydrochloride-loaded niosomes in ocular drug delivery. Prog Biomater 2021; 10:207-220. [PMID: 34549376 PMCID: PMC8511210 DOI: 10.1007/s40204-021-00164-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/09/2021] [Indexed: 01/17/2023] Open
Abstract
Niosomes are increasingly explored for enhancing drug penetration and retention in ocular tissues for both posterior and anterior eye delivery. They have been employed in encapsulating both hydrophilic and hydrophobic drugs, but their use is still plagued with challenges of stability and poor entrapment efficiency particularly with hydrophilic drugs. As a result, focus is on understanding the parameters that affect their stability and their optimization for improved results. Pilocarpine hydrochloride (HCl), a hydrophilic drug is used in the management of intraocular pressure in glaucoma. We aimed at optimizing pilocarpine HCl niosomes and evaluating the effect of sonication on its stability-indicating properties such as particle size, polydispersity index (PDI), zeta potential and entrapment efficiency. Pilocarpine niosomes were prepared by ether injection method. Composition concentrations were varied and the effects of these variations on niosomal properties were evaluated. The effects of sonication on niosomes were determined by sonicating optimized drug-loaded formulations for 30 min and 60 min. Tween 60 was confirmed to be more suitable over Span 60 for encapsulating hydrophilic drugs, resulting in the highest entrapment efficiency (EE) and better polydispersity and particle size indices. Optimum sonication duration as a process variable was determined to be 30 min which increased EE from 24.5% to 42% and zeta potential from (-)14.39 ± 8.55 mV to (-)18.92 ± 7.53 mV. In addition to selecting the appropriate surfactants and varying product composition concentrations, optimizing sonication parameters can be used to fine-tune niosomal properties to those most desirable for extended eye retainment and maintenance of long term stability.
Collapse
Affiliation(s)
- Kruga Owodeha-Ashaka
- Aston Pharmacy School, College of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK.
| | - Margaret O Ilomuanya
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Yaba, Lagos State, Nigeria
| | - Affiong Iyire
- Aston Pharmacy School, College of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| |
Collapse
|
14
|
Gradzielski M, Duvail M, de Molina PM, Simon M, Talmon Y, Zemb T. Using Microemulsions: Formulation Based on Knowledge of Their Mesostructure. Chem Rev 2021; 121:5671-5740. [PMID: 33955731 DOI: 10.1021/acs.chemrev.0c00812] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microemulsions, as thermodynamically stable mixtures of oil, water, and surfactant, are known and have been studied for more than 70 years. However, even today there are still quite a number of unclear aspects, and more recent research work has modified and extended our picture. This review gives a short overview of how the understanding of microemulsions has developed, the current view on their properties and structural features, and in particular, how they are related to applications. We also discuss more recent developments regarding nonclassical microemulsions such as surfactant-free (ultraflexible) microemulsions or ones containing uncommon solvents or amphiphiles (like antagonistic salts). These new findings challenge to some extent our previous understanding of microemulsions, which therefore has to be extended to look at the different types of microemulsions in a unified way. In particular, the flexibility of the amphiphilic film is the key property to classify different microemulsion types and their properties in this review. Such a classification of microemulsions requires a thorough determination of their structural properties, and therefore, the experimental methods to determine microemulsion structure and dynamics are reviewed briefly, with a particular emphasis on recent developments in the field of direct imaging by means of electron microscopy. Based on this classification of microemulsions, we then discuss their applications, where the application demands have to be met by the properties of the microemulsion, which in turn are controlled by the flexibility of their amphiphilic interface. Another frequently important aspect for applications is the control of the rheological properties. Normally, microemulsions are low viscous and therefore enhancing viscosity has to be achieved by either having high concentrations (often not wished for) or additives, which do not significantly interfere with the microemulsion. Accordingly, this review gives a comprehensive account of the properties of microemulsions, including most recent developments and bringing them together from a united viewpoint, with an emphasis on how this affects the way of formulating microemulsions for a given application with desired properties.
Collapse
Affiliation(s)
- Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Magali Duvail
- ICSM, Université Montpellier, CEA, CNRS, ENSCM, 30207 Marcoule, France
| | - Paula Malo de Molina
- Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain.,IKERBASQUE - Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Miriam Simon
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany.,Department of Chemical Engineering and the Russell Berrie Nanotechnolgy Inst. (RBNI), Technion-Israel Institute of Technology, Haifa, IL-3200003, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnolgy Inst. (RBNI), Technion-Israel Institute of Technology, Haifa, IL-3200003, Israel
| | - Thomas Zemb
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany.,ICSM, Université Montpellier, CEA, CNRS, ENSCM, 30207 Marcoule, France
| |
Collapse
|
15
|
Influence of Surfactants on the Tribological Behavior of Nanoparticle Additives Under Boundary Lubrication Conditions. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05622-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Smith GN, Prévost S. Small-angle neutron scattering measurements of mixtures of hydrogenous and deuterated n-tetradecane. J Appl Crystallogr 2021. [DOI: 10.1107/s1600576721001138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Small-angle neutron scattering (SANS) measurements on mixtures of hydrogenous and deuterated species can be used to determine the distribution of molecules in these blends. The molecules are isotopically distinguishable but are chemically identical. This approach has been applied with great success to polymer science, but fewer examples are available for small molecules, such as solvents. SANS measurements of combinations of the linear alkane n-tetradecane were performed on mixtures prepared at different volume fractions of hydrogenous and deuterated alkane. These data have been analyzed using the framework of polymer scattering, and good agreement between experiment and theory was found.
Collapse
|
17
|
Shafiq MD, Waggett F, Ismail NLM, Bartlett P. Electrostatic interactions of poly (methyl methacrylate) colloids: deposition patterns of evaporating non-aqueous colloidal droplets. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-020-04769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Ivanova AG, Khamova TV, Gubanova NN, Masalovich MS, Zagrebelnyy OA, Khoroshavina YV, Nikolaev AM, Kovalenko AS, Kruchinina IY, Shilova OA. Chemistry and Manufacturing Technology of Electronic Ink for Electrophoretic Displays (A Review). RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s003602362013001x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Radium in groundwater hosted in porous aquifers: estimation of retardation factor and recoil rate constant by using NAPLs. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03610-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
20
|
Poleeva EV, Arymbaeva AT, Bulavchenko AI. Varying the Surface Charges of Gold Nanoparticles in Span 80, AOT, and Span 80 + AOT Micellar Systems in n-Decane. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420110278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Liu K, Wang X, Li-Blatter X, Wolf M, Hunziker P. Systematic and Quantitative Structure-Property Relationships of Polymeric Medical Nanomaterials: From Systematic Synthesis and Characterization to Computer Modeling and Nano-Bio Interaction and Toxicity. ACS APPLIED BIO MATERIALS 2020; 3:6919-6931. [PMID: 35019353 DOI: 10.1021/acsabm.0c00808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nanomaterials allow designing targeted therapies, facilitate molecular diagnostics, and are therefore enabling platforms for personalized medicine. A systematic science and a predictive understanding of molecular/supramolecular structure relationships and nanoparticle structure/biological property relationships are needed for rational design and clinical progress but are hampered by the anecdotal nature, nonsystematic and nonrepresentative nanomaterial assortment, and oligo-disciplinary approach of many publications. Here, we find that a systematic and comprehensive multidisciplinary approach to production and exploration of molecular-structure/nanostructure relationship and nano-bio structure/function relationship of medical nanomaterials can be achieved by combining systematic chemical synthesis, thorough physicochemical analysis, computer modeling, and biological experiments, as shown in a nanomaterial family of amphiphilic, micelle-forming oxazoline/siloxane block copolymers suited for the clinical application. This comprehensive interdisciplinary approach leads to improved understanding of nanomaterial structures, allows good insights into binding modes for the nanomaterial protein corona, induces the design of minimal cell-binding materials, and yields rational strategies to avoid toxicity. Thus, this work contributes to a systematic and scientific basis for rational design of medical nanomaterials.
Collapse
Affiliation(s)
- Kegang Liu
- Nanomedicine Research Lab CLINAM, University of Basel, University Hospital Basel, Bernoullistrasse 20, CH-4056 Basel, Switzerland
| | - Xueya Wang
- Nanomedicine Research Lab CLINAM, University of Basel, University Hospital Basel, Bernoullistrasse 20, CH-4056 Basel, Switzerland
| | - Xiaochun Li-Blatter
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Marc Wolf
- Nanomedicine Research Lab CLINAM, University of Basel, University Hospital Basel, Bernoullistrasse 20, CH-4056 Basel, Switzerland
| | - Patrick Hunziker
- Nanomedicine Research Lab CLINAM, University of Basel, University Hospital Basel, Bernoullistrasse 20, CH-4056 Basel, Switzerland.,Intensive Care Clinic, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland.,CLINAM Foundation for Nanomedicine, Alemannengasse, 4058 Basel, Switzerland
| |
Collapse
|
22
|
Smith GN, van Meurs S, Armes SP. The extent of counterion dissociation at the interface of cationic diblock copolymer nanoparticles in non-polar solvents. J Colloid Interface Sci 2020; 577:523-529. [PMID: 32534191 DOI: 10.1016/j.jcis.2020.04.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 11/16/2022]
Abstract
HYPOTHESIS Diblock copolymer nanoparticles prepared in non-polar solvents that are sterically stabilized but possess ionic functionality from the inclusion of cationic comonomers in the stabilizer shell are known to exhibit complex electrokinetic behavior (Chem. Sci. 9 (2018) 922-934). For example, core-shell nanoparticles with cationic comonomers located solely within the shell layer have lower magnitude electrophoretic mobilities than nanoparticles containing the same cationic comonomers located within the core, whereas nanoparticles prepared using a minor fraction of steric stabilizer chains containing cationic comonomer repeat units have comparable electrophoretic mobilities to nanoparticles prepared with this cationic comonomer solely located within the core. We hypothesize that these observations can be explained in terms of the strength of the Coulombic interaction between counterions and the nanoparticle interface. EXPERIMENTS The highly-fluorinated anionic counterion associated with these cationic nanoparticles is studied by 19F nuclear magnetic resonance (NMR) spectroscopy in n-dodecane. This revealed only one type of 19F environment for a soluble macromolecular cation (the oil-soluble steric stabilizer chains used to prepare the nanoparticles), whereas two distinct environments were observed for the sterically-stabilized cationic nanoparticles. Both 19F diffusion NMR and 19F-13C heteronuclear single quantum correlation (HSQC) measurements support the existence of two environments for this counterion. FINDINGS The existence of two distinct 19F environments for the highly-fluorinated anion associated with the sterically-stabilized nanoparticles demonstrates the presence of spectroscopically distinguishable populations of ion pairs and of fully dissociated free anions. 19F NMR spectra recorded for sterically-stabilized nanoparticles with a fully ionic shell (all stabilizer chains containing the cationic comonomer) and those with a partly ionic shell (10% of stabilizer chains containing the cationic comonomer) reveal a higher proportion of dissociated anions in the partly ionic case. This suggests a stronger Coulombic interaction between counterions and the cationic interface when the shell is fully ionic, which accounts for the observed reduction in the magnitude of the electrophoretic mobility.
Collapse
Affiliation(s)
- Gregory N Smith
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, United Kingdom; Niels Bohr Institute, University of Copenhagen, H. C. Ørsted Institute, Universitetsparken 5, 2100 Copenhagen Ø, Denmark.
| | - Sandra van Meurs
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, United Kingdom
| | - Steven P Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, United Kingdom
| |
Collapse
|
23
|
Shaparenko NO, Kompan'kov NB, Demidova MG, Bulavchenko AI. Structure and conductivity of AOT solutions in n‐hexadecane‐chloroform mixtures. Electrophoresis 2020; 41:1592-1599. [DOI: 10.1002/elps.202000085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/30/2020] [Accepted: 07/22/2020] [Indexed: 11/11/2022]
|
24
|
Smith GN. Electrolytic conductivity of ionic polymers in a nonpolar solvent. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:52. [PMID: 32743710 DOI: 10.1140/epje/i2020-11976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The electrolytic conductivity of two electrolytes as solutions in the nonpolar solvent, n -dodecane, as a function of concentration has been studied. One was a small molecule electrolyte (tetraalkyl cation and a highly fluorinated tetraphenylborate anion), and the other was a macromolecular electrolyte (cation-containing poly(alkyl methacrylate) chain with the same anion). Two series of the macromolecular cation were prepared: one with entirely cation-containing molecules and the other with a small proportion (10%) cation-containing and the rest nonionic. The conductivity data were qualitatively similar for all systems, which formed both single ions and triple ions. The data from the two series of macromolecular electrolytes were particularly informative to understand some recent and counterintuitive electrokinetic data for particles that were stabilized by these polymers. Reducing the proportion of cationic chains in the stabilizer of the particles was found to increase their electrophoretic mobility. In the conductivity data in this study, reducing the proportion of cationic chains in solution was found to increase the magnitude of the single-ion equilibrium constant and suppress the formation of triple ions. These data should support the development of models to understand these electrokinetic results.
Collapse
Affiliation(s)
- Gregory N Smith
- Department of Chemistry, University of Sheffield, Brook Hill, S3 7HF, Sheffield, South Yorkshire, UK.
| |
Collapse
|
25
|
Khademi M, Cheng SSY, Barz DPJ. Charge and Electrical Double Layer Formation in a Nonpolar Solvent Using a Nonionic Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5156-5164. [PMID: 32326706 DOI: 10.1021/acs.langmuir.0c00311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we study the charge formation and the characteristics of the electrical double layer in a nonpolar medium using electrical impedance spectroscopy. To stabilize the free ionic species, a nonionic surfactant is added to the system. The conductivity and permittivity of the medium are obtained from high- to medium-frequency impedance data. Based on the correlation between (viscosity-adjusted) conductivity and surfactant concentration, we conclude that charge formation occurs due to a disproportionation mechanism. We accordingly estimate the concentration of the charge carriers in the sample and the Debye length of the diffuse double layer. The capacitance of the electrical double layer can be extracted from the low-frequency impedance data. We use this data to calculate the electrode distance of an equivalent parallel-plate capacitor. It is found that this distance is on the order of magnitude of Angstroms, indicating that the measured electrical double-layer capacitance is in fact the Stern layer capacitance.
Collapse
Affiliation(s)
- Mahmoud Khademi
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sammi Sham Yin Cheng
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Dominik P J Barz
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
26
|
Sengupta R, Khair AS, Walker LM. Dynamic interfacial tension measurement under electric fields allows detection of charge carriers in nonpolar liquids. J Colloid Interface Sci 2020; 567:18-27. [DOI: 10.1016/j.jcis.2020.01.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 11/28/2022]
|
27
|
Masukawa MK, Hayakawa M, Takinoue M. Surfactant concentration modulates the motion and placement of microparticles in an inhomogeneous electric field. RSC Adv 2020; 10:8895-8904. [PMID: 35496525 PMCID: PMC9050010 DOI: 10.1039/d0ra00703j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
This study examined the effects of surfactants on the motion and positioning of microparticles in an inhomogeneous electric field. The microparticles were suspended in oil with a surfactant and the electric field was generated using sawtooth-patterned electrodes. The microparticles were trapped, oscillating, or attached to the electrodes. The proportion of microparticles in each state was defined by the concentration of surfactant and the voltage applied to the electrodes. Based on the trajectory of the microparticles in the electric field, we developed a new physical model in which the surfactant adsorbed on the microparticles allowed the microparticles to be charged by contact with the electrodes, with either positive or negative charges, while the non-adsorbed surfactant micellizing in the oil contributed to charge relaxation. A simulation based on this model showed that the charging and charge relaxation, as modulated by the surfactant concentration, can explain the trajectories and proportion of the trapped, oscillating, and attached microparticles. These results will be useful for the development of novel self-assembly and transport technologies and colloids sensitive to electricity.
Collapse
Affiliation(s)
- Marcos K Masukawa
- Department of Computer Science, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama Kanagawa 226-8502 Japan
| | - Masayuki Hayakawa
- Department of Computational Intelligence and Systems Science, School of Computing, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama Kanagawa 226-8502 Japan .,RIKEN Center for Biosystems Dynamics Research Kobe Hyogo 650-0047 Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama Kanagawa 226-8502 Japan.,Department of Computational Intelligence and Systems Science, School of Computing, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama Kanagawa 226-8502 Japan
| |
Collapse
|
28
|
Ponto BS, Berg JC. Nanoparticle charging with mixed reverse micelles in apolar media. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Bulavchenko AI, Shaparenko NO, Kompan’kov NB, Popovetskiy PS, Demidova MG, Arymbaeva AT. The formation of free ions and electrophoretic mobility of Ag and Au nanoparticles in n-hexadecane–chloroform mixtures at low concentrations of AOT. Phys Chem Chem Phys 2020; 22:14671-14681. [DOI: 10.1039/d0cp02153a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The electrophoretic mobility of Ag and Au nanoparticles in n-hexadecane–chloroform mixtures was studied as a function of the chloroform content (from 0 to 100 vol%).
Collapse
Affiliation(s)
| | - Nikita O. Shaparenko
- Nikolaev Institute of Inorganic Chemistry
- Russian Academy of Sciences
- Novosibirsk
- Russia
| | - Nikolay B. Kompan’kov
- Nikolaev Institute of Inorganic Chemistry
- Russian Academy of Sciences
- Novosibirsk
- Russia
| | - Pavel S. Popovetskiy
- Nikolaev Institute of Inorganic Chemistry
- Russian Academy of Sciences
- Novosibirsk
- Russia
| | - Marina G. Demidova
- Nikolaev Institute of Inorganic Chemistry
- Russian Academy of Sciences
- Novosibirsk
- Russia
| | - Aida T. Arymbaeva
- Nikolaev Institute of Inorganic Chemistry
- Russian Academy of Sciences
- Novosibirsk
- Russia
| |
Collapse
|
30
|
Ponto BS, Berg JC. Charging of Oxide Nanoparticles in Media of Intermediate Dielectric Constant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15249-15256. [PMID: 31729879 DOI: 10.1021/acs.langmuir.9b02729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The use of surfactants to charge colloidal particles in solvents of intermediate dielectric constants (5 < ε < 40) is investigated. While particle charging mechanisms in aqueous (ε = 80) and apolar (ε < 5) media are well understood, the interplay of these different charging mechanisms, which can all occur in solvents of intermediate dielectric constants (sometimes referred to as "leaky dielectrics"), remains to be fully explored. Conductometric titrations determining the critical micelle concentration (CMC) of the surfactant (aerosol-OT) confirm the existence of reverse micelles in intermediate dielectrics and show that as the solvent dielectric constant decreases, the CMC decreases as well. Electrophoretic mobility measurements of three oxide particles (SiO2, TiO2, and MgO) highlight various charging mechanisms that arise from particle-solvent, particle-surfactant, and solvent-surfactant interactions in a solvent series of alcohols and ketones. The results show that a combination of donor-acceptor particle-solvent interactions, surfactant ion adsorption, and reverse micelle-mediated acid-base interactions can all charge oxide particles in intermediate dielectrics. Furthermore, the results show that the dielectric constant of the solvent affects the relative magnitudes of each charging mechanism.
Collapse
Affiliation(s)
- Benjamin S Ponto
- Department of Chemical Engineering , University of Washington , Seattle , Washington 98195-1750 , United States
| | - John C Berg
- Department of Chemical Engineering , University of Washington , Seattle , Washington 98195-1750 , United States
| |
Collapse
|
31
|
Pradillo GE, Karani H, Vlahovska PM. Quincke rotor dynamics in confinement: rolling and hovering. SOFT MATTER 2019; 15:6564-6570. [PMID: 31360980 DOI: 10.1039/c9sm01163c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Quincke effect is an electrohydrodynamic instability which gives rise to a torque on a dielectric particle in a uniform DC electric field. Previous studies reported that a sphere initially resting on the electrode rolls with steady velocity. We experimentally find that in strong fields the rolling becomes unsteady, with time-periodic velocity. Furthermore, we find another regime, where the rotating sphere levitates in the space between the electrodes. Our experimental results show that the onset of Quincke rotation strongly depends on particle confinement and the threshold for rolling is higher compared to rotation in the hovering state.
Collapse
Affiliation(s)
- Gerardo E Pradillo
- Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Hamid Karani
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.
| | - Petia M Vlahovska
- Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA and Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
32
|
Farrokhbin M, Stojimirović B, Galli M, Khajeh Aminian M, Hallez Y, Trefalt G. Surfactant mediated particle aggregation in nonpolar solvents. Phys Chem Chem Phys 2019; 21:18866-18876. [DOI: 10.1039/c9cp01985e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aggregation behavior of particles in nonpolar media is studied with time-resolved light scattering.
Collapse
Affiliation(s)
- Mojtaba Farrokhbin
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Biljana Stojimirović
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Marco Galli
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | | | - Yannick Hallez
- Laboratoire de Génie Chimique
- Université de Toulouse
- CNRS
- INPT
- UPS
| | - Gregor Trefalt
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| |
Collapse
|
33
|
Smith GN. Proton transfer in nonpolar solvents: an approach to generate electrolytes in aprotic media. Phys Chem Chem Phys 2018; 20:18919-18923. [PMID: 29974921 DOI: 10.1039/c8cp02349b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Stabilizing charged species in nonpolar solvents is challenging due to their low dielectric constant. As a contrast to formally ionic electrolytes, two series of acidic "potential" electrolytes have been developed in this study. These can be ionized by combining them stoichiometrically with a small molecule base in a typical nonpolar solvent, n-dodecane. The electrolytic conductivity of solutions of bis(2-ethylhexyl)phosphoric acid as mixtures with linear and branched dioctylamines and trioctylamines was measured, and the solutions were found to become increasingly conductive as the concentration increased, demonstrating that proton transfer occurred between the two species. Linear octylamines were found to be most effective at deprotonation. An acid-tipped poly(lauryl methacrylate) polymer (PLMA48-COOH) was also studied to give a polymer soluble in n-dodecane with a single ionizable group located precisely at the end of the polymer chain. Trioctylamine could successfully deprotonate this acid group. Even in an aprotic solvent, the transfer of protons between acidic and basic moieties is a useful method for controlling the properties of dissolved molecules.
Collapse
Affiliation(s)
- Gregory N Smith
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK
| |
Collapse
|
34
|
Smith GN, Ahualli S, Delgado ÁV, Gillespie DAJ, Kemp R, Peach J, Pegg JC, Rogers SE, Shebanova O, Smith N, Eastoe J. Charging Poly(methyl Methacrylate) Latexes in Nonpolar Solvents: Effect of Particle Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13543-13553. [PMID: 29064706 DOI: 10.1021/acs.langmuir.7b02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The electrophoresis of a well-established model system of charged colloids in nonpolar solvents has been studied as a function of particle volume fraction at constant surfactant concentration. Dispersions of poly(12-hydroxystearic acid)-stabilized poly(methyl methacrylate) (PMMA) latexes in dodecane were prepared with added Aerosol OT surfactant as the charging agent. The electrophoretic mobility (μ) of the PMMA latexes is found to decrease with particle concentration. The particles are charged by a small molecule charging agent (AOT) at finite concentration, and this makes the origin of this decrease in μ unclear. There are two suggested explanations. The decrease could either be due to the reservoir of available surfactant being exhausted at high particle concentrations or the interactions between the charged particles at high particle number concentrations. Contrast-variation small-angle neutron scattering measurements of PMMA latexes and deuterated AOT-d34 surfactant in latex core contrast-matched solvent were used to study the former, and electrokinetic modeling was used to study the latter. As the same amount of AOT-d34 is found to be incorporated with the latexes at all volume fractions, the solvodynamic and electrical interactions between particles are determined to be the explanation for the decrease in mobility. These measurements show that, for small latexes, there are interactions between the charged particles at all accessible particle volume fractions and that it is necessary to account for this to accurately determine the electrokinetic ζ potential.
Collapse
Affiliation(s)
- Gregory N Smith
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Silvia Ahualli
- Department of Applied Physics, School of Science, University of Granada , 18071 Granada, Spain
| | - Ángel V Delgado
- Department of Applied Physics, School of Science, University of Granada , 18071 Granada, Spain
| | - David A J Gillespie
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Roger Kemp
- Merck Chemicals Ltd, University Parkway , Chilworth, Southampton SO16 7QD, United Kingdom
| | - Jocelyn Peach
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Jonathan C Pegg
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Sarah E Rogers
- ISIS-STFC, Rutherford Appleton Laboratory , Chilton, Oxon OX11 0QX, United Kingdom
| | - Olga Shebanova
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus , Chilton, Didcot OX11 0DE, United Kingdom
| | - Nathan Smith
- Merck Chemicals Ltd, University Parkway , Chilworth, Southampton SO16 7QD, United Kingdom
| | - Julian Eastoe
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
35
|
Liber SR, Indech G, van der Wee EB, Butenko AV, Kodger TE, Lu PJ, Schofield AB, Weitz DA, van Blaaderen A, Sloutskin E. Axial Confocal Tomography of Capillary-Contained Colloidal Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13343-13349. [PMID: 29043816 DOI: 10.1021/acs.langmuir.7b03039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Confocal microscopy is widely used for three-dimensional (3D) sample reconstructions. Arguably, the most significant challenge in such reconstructions is posed by the resolution along the optical axis being significantly lower than in the lateral directions. In addition, the imaging rate is lower along the optical axis in most confocal architectures, prohibiting reliable 3D reconstruction of dynamic samples. Here, we demonstrate a very simple, cheap, and generic method of multiangle microscopy, allowing high-resolution high-rate confocal slice collection to be carried out with capillary-contained colloidal samples in a wide range of slice orientations. This method, realizable with any common confocal architecture and recently implemented with macroscopic specimens enclosed in rotatable cylindrical capillaries, allows 3D reconstructions of colloidal structures to be verified by direct experiments and provides a solid testing ground for complex reconstruction algorithms. In this paper, we focus on the implementation of this method for dense nonrotatable colloidal samples, contained in complex-shaped capillaries. Additionally, we discuss strategies to minimize potential pitfalls of this method, such as the artificial appearance of chain-like particle structures.
Collapse
Affiliation(s)
- Shir R Liber
- Physics Department and Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | - Ganit Indech
- Physics Department and Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | - Ernest B van der Wee
- Soft Condensed Matter, Debye Institute for NanoMaterials Science, Utrecht University , Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Alexander V Butenko
- Physics Department and Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| | - Thomas E Kodger
- Physical Chemistry and Soft Matter, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Peter J Lu
- Department of Physics and SEAS, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Andrew B Schofield
- The School of Physics and Astronomy, University of Edinburgh , Edinburgh EH9 3FD, U.K
| | - David A Weitz
- Department of Physics and SEAS, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Alfons van Blaaderen
- Soft Condensed Matter, Debye Institute for NanoMaterials Science, Utrecht University , Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Eli Sloutskin
- Physics Department and Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar-Ilan University , Ramat-Gan 5290002, Israel
| |
Collapse
|
36
|
Smith GN, Mears LLE, Rogers SE, Armes SP. Synthesis and electrokinetics of cationic spherical nanoparticles in salt-free non-polar media. Chem Sci 2017; 9:922-934. [PMID: 29629159 PMCID: PMC5874696 DOI: 10.1039/c7sc03334f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/16/2017] [Indexed: 01/29/2023] Open
Abstract
Cationic diblock copolymer nanoparticles have been prepared in n-dodecane via polymerization-induced self-assembly (PISA). A previously reported poly(stearyl methacrylate)-poly(benzyl methacrylate) (PSMA-PBzMA) PISA formulation (Chem. Sci. 2016, 7, 5078-5090) was modified by statistically copolymerizing an oil-soluble cationic methacrylic monomer, (2-(methacryloyloxy)ethyl)trimethylammonium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, with either SMA or BzMA, to produce either charged shell or charged core nanoparticles. The electrokinetics were studied as a function of many variables (function of volume function, particle size, solvent viscosity, and number of ions per chain). These data are consistent with electrophoresis controlled by counterion condensation, which is typically observed in salt-free media. However, there are several interesting and unexpected features of interest. In particular, charged shell nanoparticles have a lower electrophoretic mobility than the equivalent charged core nanoparticles, and the magnitude of the electrophoretic mobility increases as the fraction of cationic stabilizer chains in the shell layer is reduced. These results show that cationic PSMA-PBzMA spheres provide an interesting new example of electrophoretic nanoparticles in non-polar solvents. Moreover, they should provide an ideal model system to evaluate new electrokinetic theories.
Collapse
Affiliation(s)
- Gregory N Smith
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ;
| | - Laura L E Mears
- Department of Chemistry , University of Liverpool , Liverpool L69 7ZD , UK
| | - Sarah E Rogers
- ISIS-STFC , Rutherford Appleton Laboratory , Chilton , Oxon OX11 0QX , UK
| | - Steven P Armes
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield , South Yorkshire S3 7HF , UK . ;
| |
Collapse
|
37
|
Strubbe F, Neyts K. Charge transport by inverse micelles in non-polar media. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:453003. [PMID: 28895874 DOI: 10.1088/1361-648x/aa8bf6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Charged inverse micelles play an important role in the electrical charging and the electrodynamics of nonpolar colloidal dispersions relevant for applications such as electronic ink displays and liquid toner printing. This review examines the properties and the behavior of charged inverse micelles in microscale devices in the absence of colloidal particles. It is discussed how charge in nonpolar liquids is stabilized in inverse micelles and how conductivity depends on the inverse micelle size, water content and ionic impurities. Frequently used nonpolar surfactant systems are investigated with emphasis on aerosol-OT (AOT) and poly-isobutylene succinimide (PIBS) in dodecane. Charge generation in the bulk by disproportionation is studied from measurements of conductivity as a function of surfactant concentration and from generation currents in quasi steady-state. When a potential difference is applied, the steady-state situation can show electric field screening or complete charge separation. Different regimes of charge transport are identified when a voltage step is applied. It is shown how the transient and steady-state currents depend on the rate of bulk generation, on insulating layers and on the sticking or non-sticking behavior of charged inverse micelles at interfaces. For the cases of AOT and PIBS in dodecane, the magnitude of the generation rate and the type of interaction at the interface are very different.
Collapse
Affiliation(s)
- Filip Strubbe
- Electronics and Information Systems Department and Center for Nano and Biophotonics, Ghent University, Technologiepark Zwijnaarde 15, 9052 Zwijnaarde, Belgium
| | | |
Collapse
|
38
|
Prasad M, Strubbe F, Beunis F, Neyts K. Electrokinetics and behavior near the interface of colloidal particles in non-polar dispersions. SOFT MATTER 2017; 13:5604-5612. [PMID: 28737178 DOI: 10.1039/c7sm00559h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The electrokinetics and charging of nonpolar colloidal dispersions subjected to a voltage are investigated by electric current and optical measurements. From electric current measurements in response to an alternating triangular voltage with a peak value of a few hundred volts, we find that polystyrene toner particles are compacted near the electrodes and their charge increases by more than a factor of 20. The important increase of charge is interpreted by a mechanism in which counter charges, which are originally at the particle surface, are desorbed. Optical measurements performed under a dc voltage of the order of a few hundred volts demonstrate that the charge of the particles can again decrease or even be inverted. These phenomena are attributed to the movement of counter charged species from the interface layers onto the surface of the particles. The findings of this study are relevant for electrophoretic displays and liquid toner printing.
Collapse
Affiliation(s)
- Manoj Prasad
- Electronics and Information Systems, Ghent University, Technologiepark Zwijnaarde 15, 9052 Gent, Belgium.
| | | | | | | |
Collapse
|
39
|
Bleier BJ, Yezer BA, Freireich BJ, Anna SL, Walker LM. Droplet-based characterization of surfactant efficacy in colloidal stabilization of carbon black in nonpolar solvents. J Colloid Interface Sci 2017; 493:265-274. [DOI: 10.1016/j.jcis.2017.01.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
|
40
|
Bonham JA, Waggett F, Faers MA, van Duijneveldt JS. The role of initiator on the dispersibility of polystyrene microgels in non-aqueous solvents. Colloid Polym Sci 2017; 295:479-486. [PMID: 28280286 PMCID: PMC5321690 DOI: 10.1007/s00396-017-4023-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/02/2017] [Accepted: 01/16/2017] [Indexed: 11/29/2022]
Abstract
Non-aqueous microgel particles are commonly synthesised in water, dried, and then redispersed in non-aqueous solvents. An important factor to consider when synthesising such particles is the initiator, which can determine how well the particles disperse in solvents. Polystyrene microgel particles were made with three different initiators. When a neutral, oil soluble initiator (azobisisobutyronitrile) was used the particles dispersed in toluene as well as cyclohexane and decalin. In contrast, anionic, water-soluble initiators (potassium persulfate or azobis(4-cyanovaleric acid)) created particles that only redispersed in toluene and not the other two solvents. Of the three considered, toluene is the best solvent for polystyrene and also has the highest polarizability, making it most effective at redispersing particles with polar or ionisable functional groups. Zeta potential and conductivity measurements, however, did not detect a direct relationship between particle charging and redispersibility. Oil soluble initiators result in “inside out” polymerisation where the initiator groups are buried inside the growing particle, whereas water-soluble initiators result in “outside in” polymerisation, with the polar initiator groups residing on the particle surface. By tailoring the ratio between water and oil soluble initiators, it may be possible to synthesise microgel particles with uniform or designed charge profiles from the core to the surface.
Collapse
Affiliation(s)
- Jessica A Bonham
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS UK
| | - Franceska Waggett
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS UK
| | - Malcolm A Faers
- Bayer AG, Crop Science Division, Alfred-Nobel-Str. 50, D-40789 Monheim, Germany
| | | |
Collapse
|
41
|
Michor EL, Berg JC. The particle charging behavior of ion-exchanged surfactants in apolar media. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.10.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Sethi V, Mishra J, Bhattacharyya A, Sen D, Ganguli AK. Hydrotrope induced structural modifications in CTAB/butanol/water/isooctane reverse micellar systems. Phys Chem Chem Phys 2017; 19:22033-22048. [DOI: 10.1039/c7cp03191b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SAXS and NMR studies to gain insight of structural alterations in reverse micellar nanotemplates in presence of hydrotropes.
Collapse
Affiliation(s)
- Vaishali Sethi
- Department of Chemistry
- Indian Institute of Technology
- New Delhi-110016
- India
| | - Jayanti Mishra
- Department of Chemistry
- Indian Institute of Technology
- New Delhi-110016
- India
| | - Arpan Bhattacharyya
- Surface Physics and Material Science Division
- Saha Institute of Nuclear Physics
- Kolkata-700064
- India
| | - Debasis Sen
- Solid State Physics Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
| | - Ashok K. Ganguli
- Department of Chemistry
- Indian Institute of Technology
- New Delhi-110016
- India
- Institute of Nano Science & Technology
| |
Collapse
|
43
|
Michor EL, Ponto BS, Berg JC. Effects of Reverse Micellar Structure on the Particle Charging Capabilities of the Span Surfactant Series. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10328-10333. [PMID: 27649769 DOI: 10.1021/acs.langmuir.6b02959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper investigates the effects of reverse micellar core size on the particle charging behavior of a series of acidic surfactants in apolar media. A series of Span surfactants was dissolved in deuterated decane at concentrations above the critical micelle concentration. The structures of the reverse micelles were measured using small-angle neutron scattering. It was determined that as the tail length of the surfactant increased, the size of the polar reverse micellar core decreased. Tritailed surfactants formed reverse micelles with the smallest polar cores, with radii of ∼4 Å. The sizes of the polar cores were correlated with the particle charging behavior of the Span surfactant series, as measured in a previous study. It was found that reverse micelles with intermediate core sizes imparted the largest electrophoretic mobilities to the particles. Reverse micelles with very small cores did not offer a large enough polar environment to favor charge stabilization, while very large polar cores favored disproportionation reactions in the bulk, resulting in increased electrostatic screening.
Collapse
Affiliation(s)
- Edward L Michor
- Department of Chemical Engineering, University of Washington , Box 351750, Seattle, Washington 98195-1750, United States
| | - Benjamin S Ponto
- Department of Chemical Engineering, University of Washington , Box 351750, Seattle, Washington 98195-1750, United States
| | - John C Berg
- Department of Chemical Engineering, University of Washington , Box 351750, Seattle, Washington 98195-1750, United States
| |
Collapse
|
44
|
Smith GN, Finlayson SD, Gillespie DA, Peach J, Pegg JC, Rogers SE, Shebanova O, Terry AE, Armes SP, Bartlett P, Eastoe J. The internal structure of poly(methyl methacrylate) latexes in nonpolar solvents. J Colloid Interface Sci 2016; 479:234-243. [DOI: 10.1016/j.jcis.2016.06.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 11/26/2022]
|
45
|
Elbers NA, van der Hoeven JES, de Winter DAM, Schneijdenberg CTWM, van der Linden MN, Filion L, van Blaaderen A. Repulsive van der Waals forces enable Pickering emulsions with non-touching colloids. SOFT MATTER 2016; 12:7265-7272. [PMID: 27406917 DOI: 10.1039/c6sm01294a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Emulsions stabilized by solid particles, called Pickering emulsions, offer promising applications in drug delivery, cosmetics, food science and the manufacturing of porous materials. This potential stems from their high stability against coalescence and 'surfactant-free' nature. Generally, Pickering emulsions require that the solid particles are wetted by both phases and as a result, the adsorption free energy is often large with respect to the thermal energy (kBT). Here we provide the first experimental proof for an alternative scenario: non-touching (effectively non-wetting), charged, particles that are completely immersed in the oil phase through a balance of charge induced attractions and repulsions caused by van der Waals forces. These particles nonetheless stabilize the emulsion. The main advantage of this novel adsorption mechanism is that these particles can easily be detached from the interface simply by adding salt. This not only makes the finding fundamentally of interest, but also enables a triggered de-emulsification and particle recovery, which is useful in fields like enhanced oil recovery, heterogeneous catalysis, and emulsion polymerization.
Collapse
Affiliation(s)
- Nina A Elbers
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
46
|
Garbovskiy Y. The purification and contamination of liquid crystals by means of nanoparticles. The case of weakly ionized species. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.06.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Dipolar colloids in apolar media: direct microscopy of two-dimensional suspensions. Sci Rep 2016; 6:28578. [PMID: 27346611 PMCID: PMC4921927 DOI: 10.1038/srep28578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/06/2016] [Indexed: 02/07/2023] Open
Abstract
Spherical colloids, in an absence of external fields, are commonly assumed to interact solely through rotationally-invariant potentials, u(r). While the presence of permanent dipoles in aqueous suspensions has been previously suggested by some experiments, the rotational degrees of freedom of spherical colloids are typically neglected. We prove, by direct experiments, the presence of permanent dipoles in commonly used spherical poly(methyl methacrylate) (PMMA) colloids, suspended in an apolar organic medium. We study, by a combination of direct confocal microscopy, computer simulations, and theory, the structure and other thermodynamical properties of organic suspensions of colloidal spheres, confined to a two-dimensional (2D) monolayer. Our studies reveal the effects of the dipolar interactions on the structure and the osmotic pressure of these fluids. These observations have far-reaching consequences for the fundamental colloidal science, opening new directions in self-assembly of complex colloidal clusters.
Collapse
|
48
|
Lee J, Zhou ZL, Behrens SH. Charging Mechanism for Polymer Particles in Nonpolar Surfactant Solutions: Influence of Polymer Type and Surface Functionality. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4827-4836. [PMID: 27135950 DOI: 10.1021/acs.langmuir.6b00583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Surface charging phenomena in nonpolar dispersions are exploited in a wide range of industrial applications, but their mechanistic understanding lags far behind. We investigate the surface charging of a variety of polymer particles with different surface functionality in alkane solutions of a custom-synthesized and purified polyisobutylene succinimide (PIBS) polyamine surfactant and a related commercial surfactant mixture commonly used to control particle charge. We find that the observed electrophoretic particle mobility cannot be explained exclusively by donor-acceptor interactions between surface functional groups and surfactant polar moieties. Our results instead suggest an interplay of multiple charging pathways, which likely include the competitive adsorption of ions generated among inverse micelles in the solution bulk. We discuss possible factors affecting the competitive adsorption of micellar ions, such as the chemical nature of the particle bulk material and the size asymmetry between inverse micelles of opposite charge.
Collapse
Affiliation(s)
- Joohyung Lee
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive Northwest, Atlanta, Georgia 30332, United States
| | - Zhang-Lin Zhou
- HP Incorporated, 16399 West Bernardo Drive, San Diego, California 92127, United States
| | - Sven Holger Behrens
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive Northwest, Atlanta, Georgia 30332, United States
| |
Collapse
|
49
|
The effect of solvent and counterion variation on inverse micelle CMCs in hydrocarbon solvents. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Hao T. Exploring the charging mechanisms in non-aqueous multiphase surfactant solutions, emulsions and colloidal systems via conductivity behaviors predicted with eyring's rate process theory. Phys Chem Chem Phys 2016; 18:476-91. [DOI: 10.1039/c5cp05026j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The schematic diagram shows charge separation induced and stabilized by an electric field and inverse micelles charged in the end.
Collapse
|