1
|
Chib S, Dutta BJ, Chalotra R, Abubakar M, Kumar P, Singh TG, Singh R. Role of Flavonoids in Mitigating the Pathological Complexities and Treatment Hurdles in Alzheimer's Disease. Phytother Res 2024. [PMID: 39660432 DOI: 10.1002/ptr.8406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
With the passage of time, people step toward old age and become more prone to several diseases associated with the age. One such is Alzheimer's disease (AD) which results into neuronal damage and dementia with the progression of age. The existing therapeutics has been hindered by various enkindles like less eminent between remote populations, affordability issues and toxicity profiles. Moreover, lack of suitable therapeutic option further worsens the quality of life in older population. Developing an efficient therapeutic intervention to cure AD is still a challenge for medical fraternity. Recently, alternative approaches attain the attention of researchers to focus on plant-based therapy in mitigating AD. In this context, flavonoids gained centrality as a feasible treatment in modifying various neurological deficits. This review mainly focuses on the pathological facets and economic burden of AD. Furthermore, we have explored the possible mechanism of flavonoids with the preclinical and clinical aspects for curing AD. Flavonoids being potential therapeutic, target the pathogenic factors of AD such as oxidative stress, inflammation, metal toxicity, Aβ accumulation, modulate neurotransmission and insulin signaling. In this review, we emphasized on potential neuroprotective effects of flavonoids in AD pathology, with focus on both experimental and clinical findings. While preclinical studies suggest promising therapeutic benefits, clinical data remains limited and inconclusive. Thus, further high-quality clinical trials are necessary to validate the efficacy of flavonoids in AD. The study aim is to promote the plant-based therapies and encourage people to add flavonoids to regular diet to avail the beneficial effects in preventive therapy for AD.
Collapse
Affiliation(s)
- Shivani Chib
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Bhaskar Jyoti Dutta
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Rishabh Chalotra
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Md Abubakar
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | | | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
2
|
Gucký A, Hamuľaková S. Targeting Biometals in Alzheimer's Disease with Metal Chelating Agents Including Coumarin Derivatives. CNS Drugs 2024; 38:507-532. [PMID: 38829443 PMCID: PMC11182807 DOI: 10.1007/s40263-024-01093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/05/2024]
Abstract
Numerous physiological processes happening in the human body, including cerebral development and function, require the participation of biometal ions such as iron, copper, and zinc. Their dyshomeostasis may, however, contribute to the onset of Alzheimer's disease (AD) and potentially other neurodegenerative diseases. Chelation of biometal ions is therefore a therapeutic strategy against AD. This review provides a survey of natural and synthetic chelating agents that are or could potentially be used to target the metal hypothesis of AD. Since metal dyshomeostasis is not the only pathological aspect of AD, and the nature of this disorder is very complex and multifactiorial, the most efficient therapeutics should target as many neurotoxic factors as possible. Various coumarin derivatives match this description and apart from being able to chelate metal ions, they exhibit the capacity to inhibit cholinesterases (ChEs) and monoamine oxidase B (MAO-B) while also possessing antioxidant, anti-inflammatory, and numerous other beneficial effects. Compounds based on the coumarin scaffold therefore represent a desirable class of anti-AD therapeutics.
Collapse
Affiliation(s)
- Adrián Gucký
- Department of Biochemistry, Institute of Chemical Sciences, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 040 01, Kosice, Slovak Republic
| | - Slávka Hamuľaková
- Department of Organic Chemistry, Institute of Chemical Sciences, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 040 01, Kosice, Slovak Republic.
| |
Collapse
|
3
|
Zeng X, Wei T, Wang X, Liu Y, Tan Z, Zhang Y, Feng T, Cheng Y, Wang F, Ma B, Qin W, Gao C, Xiao J, Wang C. Discovery of metal-binding proteins by thermal proteome profiling. Nat Chem Biol 2024; 20:770-778. [PMID: 38409364 DOI: 10.1038/s41589-024-01563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Metal-binding proteins (MBPs) have various and important biological roles in all living species and many human diseases are intricately linked to dysfunctional MBPs. Here, we report a chemoproteomic method named 'metal extraction-triggered agitation logged by thermal proteome profiling' (METAL-TPP) to globally profile MBPs in proteomes. The method involves the extraction of metals from MBPs using chelators and monitoring the resulting protein stability changes through thermal proteome profiling. Applying METAL-TPP to the human proteome with a broad-spectrum chelator, EDTA, revealed a group of proteins with reduced thermal stability that contained both previously known MBPs and currently unannotated MBP candidates. Biochemical characterization of one potential target, glutamine-fructose-6-phosphate transaminase 2 (GFPT2), showed that zinc bound the protein, inhibited its enzymatic activity and modulated the hexosamine biosynthesis pathway. METAL-TPP profiling with another chelator, TPEN, uncovered additional MBPs in proteomes. Collectively, this study developed a robust tool for proteomic discovery of MBPs and provides a rich resource for functional studies of metals in cell biology.
Collapse
Affiliation(s)
- Xin Zeng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Tiantian Wei
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Xianghe Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yuan Liu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhenshu Tan
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yihai Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Tianyu Feng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yao Cheng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Fengzhang Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Bin Ma
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wei Qin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chuanping Gao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Junyu Xiao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
4
|
Hossain E, Hazra A, Datta S, Khan S, Pramanik S, Banerjee P, Mir MH, Mukhopadhyay S. Facile construction of an anthracene-decorated highly luminescent coordination polymer for the selective detection of explosive nitroaromatics and the mutagenic pollutant TNP. RSC Adv 2024; 14:397-404. [PMID: 38173612 PMCID: PMC10759258 DOI: 10.1039/d3ra06926e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Explosive nitroaromatic compounds (epNACs) are a group of chemicals that have caused significant human casualties through terrorist attacks and they also pose health risks. For the benefit of homeland security and environmental health, there is room for advancing research on the precise detection of epNACs. Coordination polymers (CPs) successfully serve this purpose because of their binding abilities and quenching capabilities. In this regard, a one-dimensional (1D) CP [Zn(bdc)(avp)2(H2O)]n (1; H2bdc = 1,4-benzenedicarboxylic acid and avp = 4-[2-(9-anthryl)vinyl]pyridine) was synthesized, which remarkably demonstrated extremely efficient ratiometric and selective sensing capacity toward epNACs and the mutagenic pollutant 2,4,6-trinitrophenol (TNP) with a quick response. Density functional theory (DFT) calculations provided a thorough analysis of the mechanistic routes behind the quenching reaction. Herein, geometrically accessible interaction sites were strategically decorated using anthracene moieties, allowing the quick and precise detection of explosive nitro derivatives and the carcinogenic pollutant TNP with increased sensitivity.
Collapse
Affiliation(s)
- Ersad Hossain
- Department of Chemistry, Jadavpur University Kolkata 700 032 India
| | - Abhijit Hazra
- Electric Mobility & Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue Durgapur 713 209 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Sourav Datta
- Electric Mobility & Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue Durgapur 713 209 India
- Department of Chemistry, Aliah University New Town Kolkata 700 160 India
| | - Samim Khan
- Department of Chemistry, Aliah University New Town Kolkata 700 160 India
| | - Samit Pramanik
- Department of Chemistry, Jadavpur University Kolkata 700 032 India
| | - Priyabrata Banerjee
- Electric Mobility & Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue Durgapur 713 209 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | | | | |
Collapse
|
5
|
La Manna S, Roviello V, Monaco V, Platts JA, Monti M, Gabano E, Ravera M, Marasco D. The inhibitory effects of platinum(II) complexes on amyloid aggregation: a theoretical and experimental approach. Dalton Trans 2023; 52:12677-12685. [PMID: 37655459 DOI: 10.1039/d3dt02187d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Platinum (Pt)(II) square planar complexes are well-known anticancer drugs whose Mechanism of Action (MOA) are finely tuned by the polar, hydrophobic and aromatic features of the ligands. In the attempt to translate this tunability to the identification of potential neurodrugs, herein, four Pt(II) complexes were investigated in their ability to modulate the self-aggregation processes of two amyloidogenic models: Sup35p7-13 and NPM1264-277 peptides. In particular, phenanthriplatin revealed the most efficient agent in the modulation of amyloid aggregation: through several biophysical assays, as Thioflavin T (ThT), electrospray ionization mass spectrometry (ESI-MS) and ultraviolet-visible (UV-vis) absorption spectroscopy, this complex revealed able to markedly suppress aggregation and to disassemble small soluble aggregates. This effect was due to a direct coordination of phenanthriplatin to the amyloid, with the loss of several ligands and different stoichiometries, by the formation of π-π and π-cation interactions as indicated from molecular dynamic simulations. Presented data support a growing and recent approach concerning the repurposing of metallodrugs as potential novel neurotherapeutics.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy.
| | - Valentina Roviello
- Department of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
| | - Vittoria Monaco
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131, Naples, Italy
| | - James A Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131, Naples, Italy
| | - Elisabetta Gabano
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, University of Piemonte Orientale, Piazza S. Eusebio 5, 13100, Vercelli, Italy
| | - Mauro Ravera
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy.
| |
Collapse
|
6
|
The Role of Copper Homeostasis in Brain Disease. Int J Mol Sci 2022; 23:ijms232213850. [PMID: 36430330 PMCID: PMC9698384 DOI: 10.3390/ijms232213850] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
In the human body, copper is an important trace element and is a cofactor for several important enzymes involved in energy production, iron metabolism, neuropeptide activation, connective tissue synthesis, and neurotransmitter synthesis. Copper is also necessary for cellular processes, such as the regulation of intracellular signal transduction, catecholamine balance, myelination of neurons, and efficient synaptic transmission in the central nervous system. Copper is naturally present in some foods and is available as a dietary supplement. Only small amounts of copper are typically stored in the body and a large amount of copper is excreted through bile and urine. Given the critical role of copper in a breadth of cellular processes, local concentrations of copper and the cellular distribution of copper transporter proteins in the brain are important to maintain the steady state of the internal environment. The dysfunction of copper metabolism or regulatory pathways results in an imbalance in copper homeostasis in the brain, which can lead to a myriad of acute and chronic pathological effects on neurological function. It suggests a unique mechanism linking copper homeostasis and neuronal activation within the central nervous system. This article explores the relationship between impaired copper homeostasis and neuropathophysiological progress in brain diseases.
Collapse
|
7
|
Exploitation of Structure‐Property Relationships towards Multi‐Dimensional Applications of a Paddle‐Wheel Cu(II) Compound. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Xie Y, Wang Y, Jiang S, Xiang X, Wang J, Ning L. Novel strategies for the fight of Alzheimer's disease targeting amyloid-β protein. J Drug Target 2021; 30:259-268. [PMID: 34435898 DOI: 10.1080/1061186x.2021.1973482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD), which is recognised as a devastating neurodegenerative disease throughout the world and lack of effective treatments, is a growing concern in modern society with a growing population of elderly patients. A growing number of studies reveal that abnormal accumulation and deposition of Aβ is responsible for AD. Inspired by this, strategies for the treatment of AD targeting-Aβ clearance have been discussed for a long period, exploring new drugs which is capable of destroying soluble Aβ oligomers and unsolvable Aβ aggregates. In this paper, results of recent clinical trials on several anti-amyloid-β drugs are presented and several emerging anti-amyloid AD therapies based on recent studies are reviewed. Furthermore, some of the current challenges and novel strategies to prevent AD are addressed. Herein, this review focuses on current pharmacotherapy of AD targeting-Aβ and intends to design a promising therapeutic agent for AD treatment.
Collapse
Affiliation(s)
- Yang Xie
- Pharmaceutical Engineering Center, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yan Wang
- Chemistry and Chemical Engineering College, Huangshan University, Huangshan, China
| | - Shangfei Jiang
- Pharmaceutical Engineering Center, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Xiaohong Xiang
- Pharmaceutical Engineering Center, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, China
| | - Linhong Ning
- Pharmaceutical Engineering Center, Chongqing Medical and Pharmaceutical College, Chongqing, China
| |
Collapse
|
9
|
Roldán-Martín L, Peccati F, Sciortino G, Sodupe M, Maréchal JD. Impact of Cu(II) and Al(III) on the conformational landscape of amyloidβ 1-42. Phys Chem Chem Phys 2021; 23:13023-13032. [PMID: 34095932 DOI: 10.1039/d1cp01561c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metal ions have been found to play an important role in the formation of extracellular β-amyloid plaques, a major hallmark of Alzheimer's disease. In the present study, the conformational landscape of Aβ42 with Al(iii) and Cu(ii) has been explored using Gaussian accelerated molecular dynamics. Both metals reduce the flexibility of the peptide and entail a higher structural organization, although to different degrees. As a general trend, Cu(ii) binding leads to an increased α-helix content and to the formation of two α-helices that tend to organize in a U-shape. By contrast, most Al(iii) complexes induce a decrease in helical content, leading to more extended structures that favor the appearance of transitory β-strands.
Collapse
Affiliation(s)
- Lorena Roldán-Martín
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Francesca Peccati
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain. and Institut of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Catalonia, Spain
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
10
|
Bataglioli JC, Gomes LMF, Maunoir C, Smith JR, Cole HD, McCain J, Sainuddin T, Cameron CG, McFarland SA, Storr T. Modification of amyloid-beta peptide aggregation via photoactivation of strained Ru(ii) polypyridyl complexes. Chem Sci 2021; 12:7510-7520. [PMID: 34163842 PMCID: PMC8171320 DOI: 10.1039/d1sc00004g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by progressive and irreversible damage to the brain. One of the hallmarks of the disease is the presence of both soluble and insoluble aggregates of the amyloid beta (Aβ) peptide in the brain, and these aggregates are considered central to disease progression. Thus, the development of small molecules capable of modulating Aβ peptide aggregation may provide critical insight into the pathophysiology of AD. In this work we investigate how photoactivation of three distorted Ru(ii) polypyridyl complexes (Ru1-3) alters the aggregation profile of the Aβ peptide. Photoactivation of Ru1-3 results in the loss of a 6,6'-dimethyl-2,2'-bipyridyl (6,6'-dmb) ligand, affording cis-exchangeable coordination sites for binding to the Aβ peptide. Both Ru1 and Ru2 contain an extended planar imidazo[4,5-f][1,10]phenanthroline ligand, as compared to a 2,2'-bipyridine ligand for Ru3, and we show that the presence of the phenanthroline ligand promotes covalent binding to Aβ peptide His residues, and in addition, leads to a pronounced effect on peptide aggregation immediately after photoactivation. Interestingly, all three complexes resulted in a similar aggregate size distribution at 24 h, forming insoluble amorphous aggregates as compared to significant fibril formation for peptide alone. Photoactivation of Ru1-3 in the presence of pre-formed Aβ1-42 fibrils results in a change to amorphous aggregate morphology, with Ru1 and Ru2 forming large amorphous aggregates immediately after activation. Our results show that photoactivation of Ru1-3 in the presence of either monomeric or fibrillar Aβ1-42 results in the formation of large amorphous aggregates as a common endpoint, with Ru complexes incorporating the extended phenanthroline ligand accelerating this process and thereby limiting the formation of oligomeric species in the initial stages of the aggregation process that are reported to show considerable toxicity.
Collapse
Affiliation(s)
| | - Luiza M F Gomes
- Department of Chemistry, Simon Fraser University BC Canada V5A-1S6
| | - Camille Maunoir
- Department of Chemistry, Simon Fraser University BC Canada V5A-1S6
| | - Jason R Smith
- Department of Chemistry, Simon Fraser University BC Canada V5A-1S6
| | - Houston D Cole
- Department of Chemistry and Biochemistry, University of Texas Arlington Texas USA 76019
| | - Julia McCain
- Department of Chemistry, Acadia University Wolfville Nova Scotia Canada B4P 2R6
| | - Tariq Sainuddin
- Department of Chemistry, Acadia University Wolfville Nova Scotia Canada B4P 2R6
| | - Colin G Cameron
- Department of Chemistry and Biochemistry, University of Texas Arlington Texas USA 76019
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry, University of Texas Arlington Texas USA 76019
| | - Tim Storr
- Department of Chemistry, Simon Fraser University BC Canada V5A-1S6
| |
Collapse
|
11
|
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, and the prevalence of this currently untreatable disease is expected to rise in step with increased global life expectancy. AD is a multifaceted disorder commonly characterized by extracellular amyloid–beta (Aβ) aggregates, oxidative stress, metal ion dysregulation, and intracellular neurofibrillary tangles. This review will focus on medicinal inorganic chemistry strategies to target AD, with a focus on the Aβ peptide and its relation to metal ion dysregulation and oxidative stress. Multifunctional compounds designed to target multiple disease processes have emerged as promising therapeutic options, and recent reports detailing multifunctional metal-binding compounds, as well as discrete metal complexes, will be discussed.
Collapse
Affiliation(s)
- Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
12
|
Lakey-Beitia J, Burillo AM, Penna GL, Hegde ML, Rao K. Polyphenols as Potential Metal Chelation Compounds Against Alzheimer's Disease. J Alzheimers Dis 2021; 82:S335-S357. [PMID: 32568200 PMCID: PMC7809605 DOI: 10.3233/jad-200185] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease affecting more than 50 million people worldwide. The pathology of this multifactorial disease is primarily characterized by the formation of amyloid-β (Aβ) aggregates; however, other etiological factors including metal dyshomeostasis, specifically copper (Cu), zinc (Zn), and iron (Fe), play critical role in disease progression. Because these transition metal ions are important for cellular function, their imbalance can cause oxidative stress that leads to cellular death and eventual cognitive decay. Importantly, these transition metal ions can interact with the amyloid-β protein precursor (AβPP) and Aβ42 peptide, affecting Aβ aggregation and increasing its neurotoxicity. Considering how metal dyshomeostasis may substantially contribute to AD, this review discusses polyphenols and the underlying chemical principles that may enable them to act as natural chelators. Furthermore, polyphenols have various therapeutic effects, including antioxidant activity, metal chelation, mitochondrial function, and anti-amyloidogenic activity. These combined therapeutic effects of polyphenols make them strong candidates for a moderate chelation-based therapy for AD.
Collapse
Affiliation(s)
- Johant Lakey-Beitia
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Andrea M. Burillo
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Giovanni La Penna
- National Research Council, Institute of Chemistry of Organometallic Compounds, Sesto Fiorentino (FI), Italy
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Weill Medical College of Cornell University, New York, NY, USA
| | - K.S. Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
- Zhongke Jianlan Medical Institute, Hangzhou, Republic of China
| |
Collapse
|
13
|
Park S, Yi Y, Lim MH. Reactivity of Flavonoids Containing a Catechol or Pyrogallol Moiety with Metal‐Free and Metal‐Associated Amyloid‐β. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Seongmin Park
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Yelim Yi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
14
|
Guo LX, Sun B. N,N'-1,10-Bis(Naringin) Triethylenetetraamine, Synthesis and as a Cu(II) Chelator for Alzheimer's Disease Therapy. Biol Pharm Bull 2020; 44:51-56. [PMID: 33162492 DOI: 10.1248/bpb.b20-00574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bis-Schiff base of N,N'-1,10-bis(naringin) triethylenetetraamine (1) was prepared, as a copper(II) ion chelator, compound 1 was used for Alzheimer's disease therapy in vitro. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay of compound 1 showed that this Schiff base could promote PC12 cells proliferation, and also, compound 1 could inhibit Cu2+-amyloid-β (Aβ)1-42 mediated cytotoxicity on PC12 cells. The thioflavine T (ThT) assay showed that 1 can effectively attenuate Cu2+-induced Aβ1-42 aggregation. In addition, compound 1 is determined to be potent antioxidants on the basis of in vitro antioxidant assay, it can effectively decease the level of reactive oxygen species (ROS) in Cu2+-Aβ1-42-treated PC12 cells and elevate the superoxide dismutase (SOD) activity in Cu2+-Aβ1-42-treated PC12 cells. The results show that N,N'-1,10-bis(naringin) triethylenetetraamine is a potential agent for therapy of Alzheimer's disease.
Collapse
Affiliation(s)
- Li-Xia Guo
- Key Laboratory of Natural Medicine Research of Chongqing Education Commission, Chongqing Technology and Business University.,College of Environment and Resources, Chongqing Technology and Business University
| | - Bin Sun
- Key Laboratory of Natural Medicine Research of Chongqing Education Commission, Chongqing Technology and Business University.,College of Environment and Resources, Chongqing Technology and Business University
| |
Collapse
|
15
|
Ejaz HW, Wang W, Lang M. Copper Toxicity Links to Pathogenesis of Alzheimer's Disease and Therapeutics Approaches. Int J Mol Sci 2020; 21:E7660. [PMID: 33081348 PMCID: PMC7589751 DOI: 10.3390/ijms21207660] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible, age-related progressive neurological disorder, and the most common type of dementia in aged people. Neuropathological lesions of AD are neurofibrillary tangles (NFTs), and senile plaques comprise the accumulated amyloid-beta (Aβ), loaded with metal ions including Cu, Fe, or Zn. Some reports have identified metal dyshomeostasis as a neurotoxic factor of AD, among which Cu ions seem to be a central cationic metal in the formation of plaque and soluble oligomers, and have an essential role in the AD pathology. Cu-Aβ complex catalyzes the generation of reactive oxygen species (ROS) and results in oxidative damage. Several studies have indicated that oxidative stress plays a crucial role in the pathogenesis of AD. The connection of copper levels in AD is still ambiguous, as some researches indicate a Cu deficiency, while others show its higher content in AD, and therefore there is a need to increase and decrease its levels in animal models, respectively, to study which one is the cause. For more than twenty years, many in vitro studies have been devoted to identifying metals' roles in Aβ accumulation, oxidative damage, and neurotoxicity. Towards the end, a short review of the modern therapeutic approach in chelation therapy, with the main focus on Cu ions, is discussed. Despite the lack of strong proofs of clinical advantage so far, the conjecture that using a therapeutic metal chelator is an effective strategy for AD remains popular. However, some recent reports of genetic-regulating copper transporters in AD models have shed light on treating this refractory disease. This review aims to succinctly present a better understanding of Cu ions' current status in several AD features, and some conflicting reports are present herein.
Collapse
Affiliation(s)
- Hafza Wajeeha Ejaz
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth WA6027, Australia;
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
16
|
A β-sheet-targeted theranostic agent for diagnosing and preventing aggregation of pathogenic peptides in Alzheimer’s disease. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9594-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Sedjahtera A, Gunawan L, Bray L, Hung LW, Parsons J, Okamura N, Villemagne VL, Yanai K, Liu XM, Chan J, Bush AI, Finkelstein DI, Barnham KJ, Cherny RA, Adlard PA. Targeting metals rescues the phenotype in an animal model of tauopathy. Metallomics 2019; 10:1339-1347. [PMID: 30168573 DOI: 10.1039/c8mt00153g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tauopathies are characterized by the pathological accumulation of the microtubule associated protein tau within the brain. We demonstrate here that a copper/zinc chaperone (PBT2, Prana Biotechnology) has rapid and profound effects in the rTg(tauP301L)4510 mouse model of tauopathy. This was evidenced by significantly improved cognition, a preservation of neurons, a decrease in tau aggregates and a decrease in other forms of "pathological" tau (including phosphorylated tau and sarkosyl-insoluble tau). Our data demonstrate that one of the primary mechanisms of action of PBT2 in this model may be driven by an interaction on the pathways responsible for the dephosphorylation of tau. Specifically, PBT2 increased protein levels of both the structural and catalytic subunits of protein phosphatase 2A (PP2A), decreased levels of the methyl esterase (PME1) that dampens PP2A activity, and increased levels of the prolyl isomerase (Pin1) that stimulates the dephosphorylation activity of PP2A. None of these effects were observed when the metal binding site of PBT2 was blocked. This highlights the potential utility of targeting metal ions as a novel therapeutic strategy for diseases in which tau pathology is a feature, which includes conditions such as frontotemporal dementia and Alzheimer's disease.
Collapse
Affiliation(s)
- Amelia Sedjahtera
- The Florey Institute for Neuroscience and Mental Health and The University of Melbourne, Parkville, 30 Royal Parade, Victoria 3052, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen K, Li W, Wang J, Wang W. Binding of Copper Ions with Octapeptide Region in Prion Protein: Simulations with Charge Transfer Model. J Phys Chem B 2019; 123:5216-5228. [PMID: 31242743 DOI: 10.1021/acs.jpcb.9b02457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Copper ions are important cofactors of many metalloproteins. The binding dynamics of proteins to the copper ion is important for biological functions but is less understood at the microscopic level. What are the key factors determining the recognition and the stabilization of the copper ion during the binding? Our work investigates the binding dynamics of the copper ion with a simple system (the N-terminus of PrP) using simulation methods. To precisely characterize the protein?ion interaction, we build up an effective copper?peptide force field based on quantum chemistry calculations. In our model, the effects of charge transfer, protonation/deprotonation, and induced polarization are considered. With this force field, we successfully characterize the local structures and the complex interactions of the octapeptide around the copper ion. Furthermore, using an enhanced sampling method, the binding/unbinding processes of the copper ion with the octapeptide are simulated. Free-energy landscapes are generated in consequence, and multiple binding pathways are characterized. It is observed that various native ligands contribute differently to the binding processes. Some residues are related to the capture of the ion (behaving like ?arm?s), and some others contribute to the stabilization of the coordination structure (acting like ?core?s). These different interactions induce various pathways. Besides, a nonnative binding ligand is determined, and it has essential contributions and modulations to the binding pathways. With all these results, the picture of copper?octapeptide binding is outlined. These features are believed to happen in many ion?peptide interactions, such as the cooperative stabilization between the coordinations with neighboring backbone nitrogens and an auxiliary intermediate coordination with the neighboring oxygen from the N-terminal direction. We believe that our studies are valuable to understand the complicated ion?peptide binding processes.
Collapse
Affiliation(s)
- Ke Chen
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, and School of Physics , Nanjing University , Nanjing 210093 , P.R. China
| | - Wenfei Li
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, and School of Physics , Nanjing University , Nanjing 210093 , P.R. China
| | - Jun Wang
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, and School of Physics , Nanjing University , Nanjing 210093 , P.R. China
| | - Wei Wang
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, and School of Physics , Nanjing University , Nanjing 210093 , P.R. China
| |
Collapse
|
19
|
Kang J, Nam JS, Lee HJ, Nam G, Rhee HW, Kwon TH, Lim MH. Chemical strategies to modify amyloidogenic peptides using iridium(iii) complexes: coordination and photo-induced oxidation. Chem Sci 2019; 10:6855-6862. [PMID: 31391908 PMCID: PMC6657414 DOI: 10.1039/c9sc00931k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Effective chemical strategies, i.e., coordination and coordination-/photo-mediated oxidation, are rationally developed towards modification of amyloidogenic peptides and subsequent control of their aggregation and toxicity.
Amyloidogenic peptides are considered central pathological contributors towards neurodegeneration as observed in neurodegenerative disorders [e.g., amyloid-β (Aβ) peptides in Alzheimer's disease (AD)]; however, their roles in the pathologies of such diseases have not been fully elucidated since they are challenging targets to be studied due to their heterogeneous nature and intrinsically disordered structure. Chemical approaches to modify amyloidogenic peptides would be valuable in advancing our molecular-level understanding of their involvement in neurodegeneration. Herein, we report effective chemical strategies for modification of Aβ peptides (i.e., coordination and coordination-/photo-mediated oxidation) implemented by a single Ir(iii) complex in a photo-dependent manner. Such peptide variations can be achieved by our rationally designed Ir(iii) complexes (Ir-Me, Ir-H, Ir-F, and Ir-F2) leading to significantly modulating the aggregation pathways of two main Aβ isoforms, Aβ40 and Aβ42, as well as the production of toxic Aβ species. Overall, we demonstrate chemical tactics for modification of amyloidogenic peptides in an effective and manageable manner utilizing the coordination capacities and photophysical properties of transition metal complexes.
Collapse
Affiliation(s)
- Juhye Kang
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea . .,Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea .
| | - Jung Seung Nam
- Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea .
| | - Hyuck Jin Lee
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea . .,Department of Chemistry Education , Kongju National University , Gongju 32588 , Republic of Korea
| | - Geewoo Nam
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea . .,Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea .
| | - Hyun-Woo Rhee
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | - Tae-Hyuk Kwon
- Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea .
| | - Mi Hee Lim
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea .
| |
Collapse
|
20
|
Huang J, Nguyen M, Liu Y, Robert A, Meunier B. Synthesis and characterization of 8-aminoquinolines, substituted by electron donating groups, as high-affinity copper chelators for the treatment of Alzheimer's disease. CR CHIM 2019. [DOI: 10.1016/j.crci.2019.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Florio D, Malfitano AM, Di Somma S, Mügge C, Weigand W, Ferraro G, Iacobucci I, Monti M, Morelli G, Merlino A, Marasco D. Platinum(II) O, S Complexes Inhibit the Aggregation of Amyloid Model Systems. Int J Mol Sci 2019; 20:ijms20040829. [PMID: 30769904 PMCID: PMC6413125 DOI: 10.3390/ijms20040829] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Platinum(II) complexes with different cinnamic acid derivatives as ligands were investigated for their ability to inhibit the aggregation process of amyloid systems derived from Aβ, Yeast Prion Protein Sup35p and the C-terminal domain of nucleophosmin 1. Thioflavin T binding assays and circular dichroism data indicate that these compounds strongly inhibit the aggregation of investigated peptides exhibiting IC50 values in the micromolar range. MS analysis confirms the formation of adducts between peptides and Pt(II) complexes that are also able to reduce amyloid cytotoxicity in human SH-SY5Y neuroblastoma cells. Overall data suggests that bidentate ligands based on β-hydroxy dithiocinnamic esters can be used to develop platinum or platinoid compounds with anti-amyloid aggregation properties.
Collapse
Affiliation(s)
- Daniele Florio
- Department of Pharmacy, University of Naples Federico II, Napoli 80134, Italy.
| | - Anna Maria Malfitano
- Department of Translational Medical Science, University of Naples Federico II, Napoli 80131, Italy.
| | - Sarah Di Somma
- Department of Translational Medical Science, University of Naples Federico II, Napoli 80131, Italy.
| | - Carolin Mügge
- Institute for Inorganic and Analytical Chemistry, University of Jena, Jena 07743, Germany.
- Department of Biology, Ruhr-University Bochum, Bochum 44801, Germany.
| | - Wolfgang Weigand
- Institute for Inorganic and Analytical Chemistry, University of Jena, Jena 07743, Germany.
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
- CEINGE Biotecnologie Avanzate s.c.a r.l., University of Naples Federico II, Napoli 80145, Italy.
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
- CEINGE Biotecnologie Avanzate s.c.a r.l., University of Naples Federico II, Napoli 80145, Italy.
| | - Giancarlo Morelli
- Department of Pharmacy, University of Naples Federico II, Napoli 80134, Italy.
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Napoli 80126, Italy.
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Federico II, Napoli 80134, Italy.
| |
Collapse
|
22
|
Synthesis, characterization, DFT and antimicrobial studies of transition metal ion complexes of a new schiff base ligand, 5-methylpyrazole-3yl-N-(2́-hydroxyphenylamine)methyleneimine, (MPzOAP). J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Suh JM, Kim G, Kang J, Lim MH. Strategies Employing Transition Metal Complexes To Modulate Amyloid-β Aggregation. Inorg Chem 2018; 58:8-17. [PMID: 30556393 DOI: 10.1021/acs.inorgchem.8b02813] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aggregation of amyloid-β (Aβ) peptides is implicated in the development of Alzheimer's disease (AD), the most common type of dementia. Thus, numerous efforts to identify chemical tactics to control the aggregation pathways of Aβ peptides have been made. Among them, transition metal complexes as a class of chemical modulators against Aβ aggregation have been designed and utilized. Transition metal complexes are able to carry out a variety of chemistry with Aβ peptides (e.g., coordination chemistry and oxidative and proteolytic reactions for peptide modifications) based on their tunable characteristics, including the oxidation state of and coordination geometry around the metal center. This Viewpoint illustrates three strategies employing transition metal complexes toward modulation of Aβ aggregation pathways (i.e., oxidation and hydrolysis of Aβ as well as coordination to Aβ), along with some examples of such transition metal complexes. In addition, proposed mechanisms for three reactivities of transition metal complexes with Aβ peptides are discussed. Our greater understanding of how transition metal complexes have been engineered and used for alteration of Aβ aggregation could provide insight into the new discovery of chemical reagents against Aβ peptides found in AD.
Collapse
Affiliation(s)
- Jong-Min Suh
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Gunhee Kim
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Juhye Kang
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea.,Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| |
Collapse
|
24
|
|
25
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
26
|
Zhang W, Liu Y, Hureau C, Robert A, Meunier B. N 4 -Tetradentate Chelators Efficiently Regulate Copper Homeostasis and Prevent ROS Production Induced by Copper-Amyloid-β 1-16. Chemistry 2018; 24:7825-7829. [PMID: 29687932 DOI: 10.1002/chem.201801387] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Indexed: 01/15/2023]
Abstract
The disruption of copper homeostasis and the oxidative stress induced by Cu-amyloids are crucial features of Alzheimer's disease pathology. The copper specific N4 -tetradendate ligands TDMQ20 and 1 are able to fully inhibit in vitro the aerobic oxidation of ascorbate induced by Cu-Aβ1-16 , even in the presence of 100 molar equivalents of ZnII with respect to CuII , whereas other ligands with N2 O2 or N3 O2 coordination spheres failed to do so. This essential result indicates that, in addition to metal selectivity, the coordination sphere of copper chelators should exhibit a N4 -tetradendate motif to be able to reduce an oxidative stress in the zinc-rich physiological environment of brain. The N4 -scaffolds of these two aminoquinoline-based ligands, TDMQ20 or 1, suitable for a square-planar coordination of copper(II), allowed them to enhance both the selectivity for copper and the ability to reduce the oxidative stress induced by copper-amyloid in a zinc-rich environment.
Collapse
Affiliation(s)
- Weixin Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi road, Panyu District, Guangzhou, 510006, P. R. China.,Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077, Toulouse cedex 4, France.,Université de Toulouse, 31077, Toulouse Cedex 4, France
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi road, Panyu District, Guangzhou, 510006, P. R. China
| | - Christelle Hureau
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077, Toulouse cedex 4, France.,Université de Toulouse, 31077, Toulouse Cedex 4, France
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077, Toulouse cedex 4, France.,Université de Toulouse, 31077, Toulouse Cedex 4, France
| | - Bernard Meunier
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi road, Panyu District, Guangzhou, 510006, P. R. China.,Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077, Toulouse cedex 4, France.,Université de Toulouse, 31077, Toulouse Cedex 4, France
| |
Collapse
|
27
|
Synthesis and characterization of copper-specific tetradendate ligands as potential treatment for Alzheimer's disease. CR CHIM 2018. [DOI: 10.1016/j.crci.2018.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Conte-Daban A, Ambike V, Guillot R, Delsuc N, Policar C, Hureau C. A Metallo Pro-Drug to Target Cu II in the Context of Alzheimer's Disease. Chemistry 2018; 24:5095-5099. [PMID: 29334419 PMCID: PMC6120673 DOI: 10.1002/chem.201706049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 01/28/2023]
Abstract
Alzheimer's disease and oxidative stress are connected. In the present communication, we report the use of a MnII -based superoxide dismutase (SOD) mimic ([MnII (L)]+ , 1+ ) as a pro-drug candidate to target CuII -associated events, namely, CuII -induced formation of reactive oxygen species (ROS) and modulation of the amyloid-β (Aβ) peptide aggregation. Complex 1+ is able to remove CuII from Aβ, stop ROS and prevent alteration of Aβ aggregation as would do the corresponding free ligand LH. Using 1+ instead of LH in further biological applications would have the double advantage to avoid the cell toxicity of LH and to benefit from its proved SOD-like activity.
Collapse
Affiliation(s)
- Amandine Conte-Daban
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| | - Vinita Ambike
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, Bâtiments 420, Université Paris-Sud 11, Université Paris-Saclay, Rue du doyen Georges Poitou, 91405 Orsay cedex, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, Bâtiments 420, Université Paris-Sud 11, Université Paris-Saclay, Rue du doyen Georges Poitou, 91405 Orsay cedex, France
| | - Nicolas Delsuc
- Laboratoire des Biomolécules, Département de chimie, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 24 rue Lhomond, 75005 Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, CNRS, Laboratoire des Biomolécules (LBM), 75005 Paris, France
| | - Clotilde Policar
- Laboratoire des Biomolécules, Département de chimie, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 24 rue Lhomond, 75005 Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, CNRS, Laboratoire des Biomolécules (LBM), 75005 Paris, France
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| |
Collapse
|
29
|
NBD-BPEA regulates Zn 2+- or Cu 2+-induced Aβ 40 aggregation and cytotoxicity. Food Chem Toxicol 2018; 119:260-267. [PMID: 29596976 DOI: 10.1016/j.fct.2018.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/21/2018] [Accepted: 03/24/2018] [Indexed: 11/21/2022]
Abstract
Abnormal interaction of amyloid-β peptide (Aβ) and metal ions is proved to be related to the etiology of Alzheimer's disease (AD). Using metal chelators to reverse metal-triggered Aβ aggregation has become one of the potential therapies for AD. In our work, the effect of metal chelator, NBD-BPEA, on Zn2+- or Cu2+-mediated Aβ40 aggregation and neurotoxicity has been systematically studied. NBD-BPEA exhibits the capability to inhibit the metal-mediated Aβ40 aggregation and disassemble performed Aβ40 aggregates. It also prevents the formation of the β-sheet structure and promotes the reversion of the β-sheet to the normal random coil conformation. Moreover, it can alleviate Zn2+- or Cu2+-Aβ40-induced neurotoxicity, suppress the intracellular ROS and protect against cell apoptosis. These preliminary findings indicate that NBD-BPEA has promising perspective of application in the treatment of AD, and therefore deserve further investigation as potential anti-AD agents.
Collapse
|
30
|
Sgarlata C, Arena G, Bonomo RP, Giuffrida A, Tabbì G. Simple and mixed complexes of copper(II) with 8-hydroxyquinoline derivatives and amino acids: Characterization in solution and potential biological implications. J Inorg Biochem 2018; 180:89-100. [DOI: 10.1016/j.jinorgbio.2017.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022]
|
31
|
Amyloid β-targeted metal complexes for potential applications in Alzheimer's disease. Future Med Chem 2018; 10:679-701. [DOI: 10.4155/fmc-2017-0248] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is currently an incurable neurodegenerative disorder that affects millions of people around the world. The aggregation of amyloid-β peptides (Aβ), one of the primary pathological hallmarks of AD, plays a key role in the AD pathogenesis. In this regard, Aβ aggregates have been considered as both biomarkers and drug targets for the diagnosis and therapy of AD. Various Aβ-targeted metal complexes have exhibited promising potential as anti-AD agents due to their fascinating physicochemical properties over the past two decades. This review classifies the complexes into three groups based on their potential applications in AD including therapy, diagnosis and theranosis. The recent representative examples are highlighted in terms of design rationale, working mechanism and potential applications.
Collapse
|
32
|
Zhang W, Huang D, Huang M, Huang J, Wang D, Liu X, Nguyen M, Vendier L, Mazères S, Robert A, Liu Y, Meunier B. Preparation of Tetradentate Copper Chelators as Potential Anti-Alzheimer Agents. ChemMedChem 2018; 13:684-704. [DOI: 10.1002/cmdc.201700734] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/25/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Weixin Zhang
- School of Chemical Engineering and Light Industry; Guangdong University of Technology (GDUT); no. 100 Waihuan Xi Road, Education Mega Center Guangzhou P.R. China
| | - Daya Huang
- School of Chemical Engineering and Light Industry; Guangdong University of Technology (GDUT); no. 100 Waihuan Xi Road, Education Mega Center Guangzhou P.R. China
| | - Meijie Huang
- School of Chemical Engineering and Light Industry; Guangdong University of Technology (GDUT); no. 100 Waihuan Xi Road, Education Mega Center Guangzhou P.R. China
| | - Ju Huang
- School of Chemical Engineering and Light Industry; Guangdong University of Technology (GDUT); no. 100 Waihuan Xi Road, Education Mega Center Guangzhou P.R. China
| | - Dean Wang
- School of Chemical Engineering and Light Industry; Guangdong University of Technology (GDUT); no. 100 Waihuan Xi Road, Education Mega Center Guangzhou P.R. China
| | - Xingguo Liu
- School of Chemical Engineering and Light Industry; Guangdong University of Technology (GDUT); no. 100 Waihuan Xi Road, Education Mega Center Guangzhou P.R. China
| | - Michel Nguyen
- Laboratoire de Chimie de Coordination du CNRS; Centre National de la Recherche Scientifique; 205 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
| | - Laure Vendier
- Laboratoire de Chimie de Coordination du CNRS; Centre National de la Recherche Scientifique; 205 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
| | - Serge Mazères
- Institut de Pharmacologie et Biologie Structurale; Centre National de la Recherche Scientifique; 205 route de Narbonne, BP 64182 31077 Toulouse cedex 4 France
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS; Centre National de la Recherche Scientifique; 205 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
| | - Yan Liu
- School of Chemical Engineering and Light Industry; Guangdong University of Technology (GDUT); no. 100 Waihuan Xi Road, Education Mega Center Guangzhou P.R. China
| | - Bernard Meunier
- School of Chemical Engineering and Light Industry; Guangdong University of Technology (GDUT); no. 100 Waihuan Xi Road, Education Mega Center Guangzhou P.R. China
- Laboratoire de Chimie de Coordination du CNRS; Centre National de la Recherche Scientifique; 205 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
| |
Collapse
|
33
|
Conte-Daban A, Boff B, Candido Matias A, Aparicio CNM, Gateau C, Lebrun C, Cerchiaro G, Kieffer I, Sayen S, Guillon E, Delangle P, Hureau C. A Trishistidine Pseudopeptide with Ability to Remove Both Cu Ι and Cu ΙΙ from the Amyloid-β Peptide and to Stop the Associated ROS Formation. Chemistry 2017; 23:17078-17088. [PMID: 28846165 PMCID: PMC5714062 DOI: 10.1002/chem.201703429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Indexed: 01/08/2023]
Abstract
The pseudopeptide L, derived from a nitrilotriacetic acid scaffold and functionalized with three histidine moieties, is reminiscent of the amino acid side chains encountered in the Alzheimer's peptide (Aβ). Its synthesis and coordination properties for CuΙ and CuΙΙ are described. L efficiently complex CuΙΙ in a square-planar geometry involving three imidazole nitrogen atoms and an amidate-Cu bond. By contrast, CuΙ is coordinated in a tetrahedral environment. The redox behavior is irreversible and follows an ECEC mechanism in accordance with the very different environments of the two redox states of the Cu center. This is in line with the observed resistance of the CuΙ complex to oxidation by oxygen and the CuΙΙ complex reduction by ascorbate. The affinities of L for CuΙΙ and CuΙ at physiological pH are larger than that reported for the Aβ peptide. Therefore, due to its peculiar Cu coordination properties, the ligand L is able to target both redox states of Cu, redox silence them and prevent reactive oxygen species production by the CuAβ complex. Because reactive oxygen species contribute to the oxidative stress, a key issue in Alzheimer's disease, this ligand thus represents a new strategy in the long route of finding molecular concepts for fighting Alzheimer's disease.
Collapse
Affiliation(s)
- A. Conte-Daban
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne,BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4, France
| | - B. Boff
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - A. Candido Matias
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
- Center for Natural Sciences and Humanities, Federal University of ABC – UFABC 09210-580, Santo André, SP, Brazil
| | - C. N. Montes Aparicio
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne,BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4, France
| | - C. Gateau
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - C. Lebrun
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - G. Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC – UFABC 09210-580, Santo André, SP, Brazil
| | - I. Kieffer
- BM30B/FAME beamline, ESRF, F-38043 Grenoble cedex 9, France
- Observatoire des Sciences de l’Univers de Grenoble, UMS 832 CNRS Université Grenoble Alpes, F-38041 Grenoble, France
| | - S. Sayen
- Institut de Chimie Moléculaire de Reims (ICMR, UMR CNRS 7312), Université de Reims Champagne-Ardenne, F-51687 Reims Cedex 2, France
| | - E. Guillon
- Institut de Chimie Moléculaire de Reims (ICMR, UMR CNRS 7312), Université de Reims Champagne-Ardenne, F-51687 Reims Cedex 2, France
| | - P. Delangle
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - C. Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne,BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4, France
| |
Collapse
|
34
|
Hiremathad A, Chand K, Tolayan L, Rajeshwari, Keri RS, Esteves AR, Cardoso SM, Chaves S, Santos MA. Hydroxypyridinone-benzofuran hybrids with potential protective roles for Alzheimer´s disease therapy. J Inorg Biochem 2017; 179:82-96. [PMID: 29182921 DOI: 10.1016/j.jinorgbio.2017.11.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/07/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022]
Abstract
A series of (3-hydroxy-4-pyridinone)-benzofuran hybrids have been developed and studied as potential multitargeting drugs for Alzheimer's disease (AD). Their design envisaged mainly to mimic the donepezil drug, a marketed inhibitor of acetylcholinesterase (AChE), and to endow the conjugate molecules with extra-properties such as metal chelation, radical scavenging and inhibition of amyloid peptide (Aβ) aggregation. Thus, a set of eleven new hybrid compounds was developed and evaluated for chemical and biological properties, in solution and in neuronal cell environment. The results are discussed in terms of the type of substituents on both main moieties and the linker size. The closest similarity with donepezil, in terms of AChE inhibitory activity, was obtained for the O-benzyl-hydroxypyridinone hybrids containing a 2-methylene linker, although still less active than the drug. However, the free-hydroxypyridinone hybrids present higher activity for the Aβ aggregation inhibition, metal chelating capacity and radical scavenging activity. Overall, some compounds demonstrated capacity to exert a multiple action by hitting three- (7d) or four- (8d, 8f) pathophysiological targets of AD. Furthermore, the compounds showed neuroprotective effects in neuronal cells subjected to model stressors of AD, but not significant dependence on the substituent groups. Importantly, the compounds evidenced drug-likeness properties, including good membrane permeability.
Collapse
Affiliation(s)
- Asha Hiremathad
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagara, Bangalore 562112, India
| | - Karam Chand
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Lori Tolayan
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Rajeshwari
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Rangappa S Keri
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagara, Bangalore 562112, India.
| | - A Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute of Cell and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute of Cell and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sílvia Chaves
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - M Amélia Santos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| |
Collapse
|
35
|
Zhang J, Pitto-Barry A, Shang L, Barry NPE. Anti-inflammatory activity of electron-deficient organometallics. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170786. [PMID: 29291071 PMCID: PMC5717645 DOI: 10.1098/rsos.170786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/26/2017] [Indexed: 05/14/2023]
Abstract
We report an evaluation of the cytotoxicity of a series of electron-deficient (16-electron) half-sandwich precious metal complexes of ruthenium, osmium and iridium ([Os/Ru(η6-p-cymene)(1,2-dicarba-closo-dodecarborane-1,2-dithiolato)] (1/2), [Ir(η5-pentamethylcyclopentadiene)(1,2-dicarba-closo-dodecarborane-1,2-dithiolato)] (3), [Os/Ru(η6-p-cymene)(benzene-1,2-dithiolato)] (4/5) and [Ir(η5-pentamethylcyclopentadiene)(benzene-1,2-dithiolato)] (6)) towards RAW 264.7 murine macrophages and MRC-5 fibroblast cells. Complexes 3 and 6 were found to be non-cytotoxic. The anti-inflammatory activity of 1-6 was evaluated in both cell lines after nitric oxide (NO) production and inflammation response induced by bacterial endotoxin lipopolysaccharide (LPS) as the stimulus. All metal complexes were shown to exhibit dose-dependent inhibitory effects on LPS-induced NO production on both cell lines. Remarkably, the two iridium complexes 3 and 6 trigger a full anti-inflammatory response against LPS-induced NO production, which opens up new avenues for the development of non-cytotoxic anti-inflammatory drug candidates with distinct structures and solution chemistry from that of organic drugs, and as such with potential novel mechanisms of action.
Collapse
Affiliation(s)
| | | | - Lijun Shang
- Authors for correspondence: Lijun Shang e-mail:
| | | |
Collapse
|
36
|
|
37
|
Fica-Contreras SM, Shuster SO, Durfee ND, Bowe GJK, Henning NJ, Hill SA, Vrla GD, Stillman DR, Suralik KM, Sandwick RK, Choi S. Glycation of Lys-16 and Arg-5 in amyloid-β and the presence of Cu 2+ play a major role in the oxidative stress mechanism of Alzheimer's disease. J Biol Inorg Chem 2017; 22:1211-1222. [PMID: 29038915 DOI: 10.1007/s00775-017-1497-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/09/2017] [Indexed: 01/21/2023]
Abstract
Extensive research has linked the amyloid-beta (Aβ) peptide to neurological dysfunction in Alzheimer's disease (AD). Insoluble Aβ plaques in the AD patient brain contain high concentrations of advanced glycation end-products (AGEs) as well as transition metal ions. This research elucidated the roles of Aβ, sugars, and Cu2+ in the oxidative stress mechanism of AD at the molecular level. Mass spectral (MS) analysis of the reactions of Aβ with two representative sugars, ribose-5-phosphate (R5P) and methylglyoxal (MG), revealed Lys-16 and Arg-5 as the primary glycation sites. Quantitative analysis of superoxide [Formula: see text] production by a cyt c assay showed that Lys-16 generated four times as much [Formula: see text] as Arg-5. Lys-16 and Arg-5 in Aβ1-40 are both adjacent to histidine residues, which are suggested to catalyze glycation. Additionally, Lys-16 is close to the central hydrophobic core (Leu-17-Ala-21) and to His-13, both of which are known to lower the pKa of the residue, leading to increased deprotonation of the amine and an enhanced glycation reactivity compared to Arg-5. Gel electrophoresis results indicated that all three components of AD plaques-Aβ1-40, sugars, and Cu2+-are necessary for DNA damage. It is concluded that the glycation of Aβ1-40 with sugars generates significant amounts of [Formula: see text], owing to the rapid glycation of Lys-16 and Arg-5. In the presence of Cu2+, [Formula: see text] converts to hydroxyl radical (HO·), the source of oxidative stress in AD.
Collapse
Affiliation(s)
| | - Sydney O Shuster
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA
| | - Nathaniel D Durfee
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA
| | - Gregory J K Bowe
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA
| | - Nathaniel J Henning
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA
| | - Staci A Hill
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA
| | - Geoffrey D Vrla
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA
| | - David R Stillman
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA
| | - Kelly M Suralik
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA
| | - Roger K Sandwick
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA
| | - Sunhee Choi
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA.
| |
Collapse
|
38
|
Jones MR, Mathieu E, Dyrager C, Faissner S, Vaillancourt Z, Korshavn KJ, Lim MH, Ramamoorthy A, Wee Yong V, Tsutsui S, Stys PK, Storr T. Multi-target-directed phenol-triazole ligands as therapeutic agents for Alzheimer's disease. Chem Sci 2017; 8:5636-5643. [PMID: 28989601 PMCID: PMC5621006 DOI: 10.1039/c7sc01269a] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/04/2017] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial disease that is characterized by the formation of intracellular neurofibrillary tangles and extracellular amyloid-β (Aβ) plaque deposits. Increased oxidative stress, metal ion dysregulation, and the formation of toxic Aβ peptide oligomers are all considered to contribute to the etiology of AD. In this work we have developed a series of ligands that are multi-target-directed in order to address several disease properties. 2-(1-(3-Hydroxypropyl)-1H-1,2,3-triazol-4-yl)phenol (POH), 2-(1-(2-morpholinoethyl)-1H-1,2,3-triazol-4-yl)phenol (PMorph), and 2-(1-(2-thiomorpholinoethyl)-1H-1,2,3-triazol-4-yl)phenol (PTMorph) have been synthesized and screened for their antioxidant capacity, Cu-binding affinity, interaction with the Aβ peptide and modulation of Aβ peptide aggregation, and the ability to limit Aβ1-42-induced neurotoxicity in human neuronal culture. The synthetic protocol and structural variance incorporated via click chemistry, highlights the influence of R-group modification on ligand-Aβ interactions and neuroprotective effects. Overall, this study demonstrates that the phenol-triazole ligand scaffold can target multiple factors associated with AD, thus warranting further therapeutic development.
Collapse
Affiliation(s)
- Michael R Jones
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
- Department of Clinical Neurosciences , Hotchkiss Brain Institute , Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Emilie Mathieu
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - Christine Dyrager
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - Simon Faissner
- Department of Clinical Neurosciences , Hotchkiss Brain Institute , Cumming School of Medicine , University of Calgary , Calgary , Canada
- Department of Neurology , St. Josef-Hospital , Ruhr-University , Bochum , Germany
| | - Zavier Vaillancourt
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - Kyle J Korshavn
- Department of Chemistry , University of Michigan , Ann Arbor , USA
| | - Mi Hee Lim
- Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan , Korea
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry , University of Michigan , Ann Arbor , USA
- Department of Biophysics , University of Michigan , Ann Arbor , USA
| | - V Wee Yong
- Department of Clinical Neurosciences , Hotchkiss Brain Institute , Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Shigeki Tsutsui
- Department of Clinical Neurosciences , Hotchkiss Brain Institute , Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Peter K Stys
- Department of Clinical Neurosciences , Hotchkiss Brain Institute , Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Tim Storr
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| |
Collapse
|
39
|
Nguyen M, Meunier B, Robert A. Catechol-Based Ligands as Potential Metal Chelators Inhibiting Redox Activity in Alzheimer's Disease. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michel Nguyen
- Laboratoire de Chimie de Coordination du CNRS, 2; 05 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
| | - Bernard Meunier
- Laboratoire de Chimie de Coordination du CNRS, 2; 05 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
- School of Chemical Engineering and Light Industry; Guangdong University of Technology (GDUT); Higher Education Mega Center; 100 Waihuan Xi road 510006 Guangzhou Panyu District P. R. China
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS, 2; 05 route de Narbonne, BP 44099 31077 Toulouse cedex 4 France
| |
Collapse
|
40
|
Tóth EN, May NV, Rockenbauer A, Peintler G, Gyurcsik B. Exploring the boundaries of direct detection and characterization of labile isomers - a case study of copper(ii)-dipeptide systems. Dalton Trans 2017; 46:8157-8166. [PMID: 28607997 DOI: 10.1039/c7dt00884h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The investigation of the linkage isomers of biologically essential and kinetically labile metal complexes in aqueous solutions poses a challenge, as these microspecies cannot be separately studied. Therefore, derivatives are commonly used to initially determine the stability or spectral characteristics of at least one of the isomers. Here we directly detect the isomers, describe the metal ion coordination sphere, speciation and thermodynamic parameters by a synergistic application of temperature dependent EPR and CD spectroscopic measurements in copper(ii)-dipeptide systems including His-Gly and His-Ala ligands. The ΔH = (-23 ± 4) kJ mol-1 value of the standard enthalpy change corresponding to the peptide-type to histamine-type isomerisation equilibrium of the [CuL]+ complex was corroborated by several techniques. The preferential coordination of the side-chains was observed at lower temperatures, whereas, metal-binding of the backbone atoms became favourable upon increasing temperature. This study exemplifies the necessity of using temperature dependent multiple methodologies for a reliable description of similar systems for upstream applications.
Collapse
Affiliation(s)
- Eszter N Tóth
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary. and PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Japan
| | - Nóra V May
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Magyar tudósok körútja 2, Hungary
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Magyar tudósok körútja 2, Hungary and Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Spintronics Research Group (PROSPIN), P.O. Box 91, H-1521 Budapest, Hungary
| | - Gábor Peintler
- Department of Physical Chemistry and Material Sciences, University of Szeged, Aradi Vértanuk tere 1, H-6720 Szeged, Hungary
| | - Béla Gyurcsik
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.
| |
Collapse
|
41
|
Drew SC. The Case for Abandoning Therapeutic Chelation of Copper Ions in Alzheimer's Disease. Front Neurosci 2017; 11:317. [PMID: 28626387 PMCID: PMC5455140 DOI: 10.3389/fnins.2017.00317] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/18/2017] [Indexed: 12/26/2022] Open
Abstract
The "therapeutic chelation" approach to treating Alzheimer's disease (AD) evolved from the metals hypothesis, with the premise that small molecules can be designed to prevent transition metal-induced amyloid deposition and oxidative stress within the AD brain. Over more than 20 years, countless in vitro studies have been devoted to characterizing metal binding, its effect on Aβ aggregation, ROS production, and in vitro toxicity. Despite a lack of evidence for any clinical benefit, the conjecture that therapeutic chelation is an effective approach for treating AD remains widespread. Here, the author plays the devil's advocate, questioning the experimental evidence, the dogma, and the value of therapeutic chelation, with a major focus on copper ions.
Collapse
Affiliation(s)
- Simon C. Drew
- Department of Medicine, Royal Melbourne Hospital, University of MelbourneMelbourne, VIC, Australia
| |
Collapse
|
42
|
Ji Y, Lee HJ, Kim M, Nam G, Lee SJC, Cho J, Park CM, Lim MH. Strategic Design of 2,2′-Bipyridine Derivatives to Modulate Metal–Amyloid-β Aggregation. Inorg Chem 2017; 56:6695-6705. [DOI: 10.1021/acs.inorgchem.7b00782] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | | | | | - Jaeheung Cho
- Department of Emerging Materials
Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | | | | |
Collapse
|
43
|
Verdugo M, Ogra Y, Quiroz W. Mechanisms underlying the toxic effects of antimony species in human embryonic kidney cells (HEK-293) and their comparison with arsenic species. J Toxicol Sci 2017; 41:783-792. [PMID: 27853107 DOI: 10.2131/jts.41.783] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Antimony cytotoxicity was assessed in human embryonic kidney cells (HEK-293). Uptake, mitochondrial respiratory activity, ROS generation and diffusional kinetics were measured using fluorescence recovery after photobleaching (FRAP). Furthermore, the toxic effect induced by Sb was compared with As toxicity in regard to ROS generation and diffusional kinetics, which provides information on the protein aggregation process. Our results show a favored uptake of Sb(III) and a more severe effect, decreasing the mitochondrial activity more than in the presence of Sb(V). In comparison with As, the Sb species did not generate a significant increase in ROS generation, which was observed with As(III) and As(V). FRAP analysis yielded important information on the diffusion and binding dynamics of live cells in presence of these metalloids. The mobile fraction showed a strong decrease with the As species and Sb(III). The diffusion rate and the koff-rate were significantly decreased for the As and Sb species but were more strong in the presence of As(III).
Collapse
Affiliation(s)
- Marcelo Verdugo
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University
| | | | | |
Collapse
|
44
|
Balestri F, Moschini R, Cappiello M, Mura U, Del-Corso A. Thiol oxidase ability of copper ion is specifically retained upon chelation by aldose reductase. J Biol Inorg Chem 2017; 22:559-565. [PMID: 28224255 DOI: 10.1007/s00775-017-1447-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/15/2017] [Indexed: 12/28/2022]
Abstract
Bovine lens aldose reductase is susceptible to a copper-mediated oxidation, leading to the generation of a disulfide bridge with the concomitant incorporation of two equivalents of the metal and inactivation of the enzyme. The metal complexed by the protein remains redox active, being able to catalyse the oxidation of different physiological thiol compounds. The thiol oxidase activity displayed by the enzymatic form carrying one equivalent of copper ion (Cu1-AR) has been characterized. The efficacy of Cu1-AR in catalysing thiol oxidation is essentially comparable to the free copper in terms of both thiol concentration and pH effect. On the contrary, the two catalysts are differently affected by temperature. The specificity of the AR-bound copper towards thiols is highlighted with Cu1-AR being completely ineffective in promoting the oxidation of both low-density lipoprotein and ascorbic acid.
Collapse
Affiliation(s)
- Francesco Balestri
- Biochemistry Unit, Department of Biology, University of Pisa, via San Zeno, 51, 56123, Pisa, Italy
| | - Roberta Moschini
- Biochemistry Unit, Department of Biology, University of Pisa, via San Zeno, 51, 56123, Pisa, Italy
| | - Mario Cappiello
- Biochemistry Unit, Department of Biology, University of Pisa, via San Zeno, 51, 56123, Pisa, Italy
| | - Umberto Mura
- Biochemistry Unit, Department of Biology, University of Pisa, via San Zeno, 51, 56123, Pisa, Italy
| | - Antonella Del-Corso
- Biochemistry Unit, Department of Biology, University of Pisa, via San Zeno, 51, 56123, Pisa, Italy.
| |
Collapse
|
45
|
Conte-Daban A, Borghesani V, Sayen S, Guillon E, Journaux Y, Gontard G, Lisnard L, Hureau C. Link between Affinity and Cu(II) Binding Sites to Amyloid-β Peptides Evaluated by a New Water-Soluble UV-Visible Ratiometric Dye with a Moderate Cu(II) Affinity. Anal Chem 2017; 89:2155-2162. [PMID: 28208266 PMCID: PMC5714188 DOI: 10.1021/acs.analchem.6b04979] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Being able to easily determine the Cu(II) affinity for biomolecules of moderate affinity is important. Such biomolecules include amyloidogenic peptides, such as the well-known amyloid-β peptide involved in Alzheimer's disease. Here, we report the synthesis of a new water-soluble ratiometric Cu(II) dye with a moderate affinity (109 M-1 at pH 7.1) and the characterizations of the Cu(II) corresponding complex by X-ray crystallography, EPR, and XAS spectroscopic methods. UV-vis competition was performed on the Aβ peptide as well as on a wide series of modified peptides, leading to an affinity value of 1.6 × 109 M-1 at pH 7.1 for the Aβ peptide and to a coordination model for the Cu(II) site within the Aβ peptide that agrees with the one mostly accepted currently.
Collapse
Affiliation(s)
- Amandine Conte-Daban
- CNRS; LCC (Laboratoire de Chimie de Coordination) ; 205, route de Narbonne, F-31077 Toulouse, France. Université de Toulouse; UPS, INPT ; LCC ; F-31077 Toulouse, France
| | - Valentina Borghesani
- CNRS; LCC (Laboratoire de Chimie de Coordination) ; 205, route de Narbonne, F-31077 Toulouse, France. Université de Toulouse; UPS, INPT ; LCC ; F-31077 Toulouse, France
| | - Stéphanie Sayen
- Université de Reims Champagne Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR 7312 CNRS-URCA, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France
| | - Emmanuel Guillon
- Université de Reims Champagne Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR 7312 CNRS-URCA, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France
| | - Yves Journaux
- Sorbonne Universités, UPMC Univ. Paris 06, UMR 8232, IPCM, F-75005, Paris, France
- CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire, F-75005, Paris, France
| | - Geoffrey Gontard
- Sorbonne Universités, UPMC Univ. Paris 06, UMR 8232, IPCM, F-75005, Paris, France
- CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire, F-75005, Paris, France
| | - Laurent Lisnard
- Sorbonne Universités, UPMC Univ. Paris 06, UMR 8232, IPCM, F-75005, Paris, France
- CNRS, UMR 8232, Institut Parisien de Chimie Moléculaire, F-75005, Paris, France
| | - Christelle Hureau
- CNRS; LCC (Laboratoire de Chimie de Coordination) ; 205, route de Narbonne, F-31077 Toulouse, France. Université de Toulouse; UPS, INPT ; LCC ; F-31077 Toulouse, France
| |
Collapse
|
46
|
Study of conformational changes and protein aggregation of bovine serum albumin in presence of Sb(III) and Sb(V). PLoS One 2017; 12:e0170869. [PMID: 28151990 PMCID: PMC5289473 DOI: 10.1371/journal.pone.0170869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/11/2017] [Indexed: 11/19/2022] Open
Abstract
Antimony is a metalloid that affects biological functions in humans due to a mechanism still not understood. There is no doubt that the toxicity and physicochemical properties of Sb are strongly related with its chemical state. In this paper, the interaction between Sb(III) and Sb(V) with bovine serum albumin (BSA) was investigated in vitro by fluorescence spectroscopy, and circular dichroism (CD) under simulated physiological conditions. Moreover, the coupling of the separation technique, asymmetric flow field-flow fractionation, with elemental mass spectrometry to understand the interaction of Sb(V) and Sb(III) with the BSA was also used. Our results showed a different behaviour of Sb(III) vs. Sb(V) regarding their effects on the interaction with the BSA. The effects in terms of protein aggregates and conformational changes were higher in the presence of Sb(III) compared to Sb(V) which may explain the differences in toxicity between both Sb species in vivo. Obtained results demonstrated the protective effect of GSH that modifies the degree of interaction between the Sb species with BSA. Interestingly, in our experiments it was possible to detect an interaction between BSA and Sb species, which may be related with the presence of labile complex between the Sb and a protein for the first time.
Collapse
|
47
|
Nguyen M, Vendier L, Stigliani JL, Meunier B, Robert A. Structures of the Copper and Zinc Complexes of PBT2, a Chelating Agent Evaluated as Potential Drug for Neurodegenerative Diseases. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601120] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Michel Nguyen
- Laboratoire de Chimie de Coordination du CNRS; 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
| | - Laure Vendier
- Laboratoire de Chimie de Coordination du CNRS; 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
| | - Jean-Luc Stigliani
- Laboratoire de Chimie de Coordination du CNRS; 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
| | - Bernard Meunier
- Laboratoire de Chimie de Coordination du CNRS; 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
- Guangdong University of Technology; Department of Chemical Engineering; No. 100 Waihuan Xi road, Education Mega Center Guangzhou P. R. China
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS; 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
| |
Collapse
|
48
|
Biancalana L, Bortoluzzi M, Ferretti E, Hayatifar M, Marchetti F, Pampaloni G, Zacchini S. The reactions of α-amino acids and α-amino acid esters with high valent transition metal halides: synthesis of coordination complexes, activation processes and stabilization of α-ammonium acylchloride cations. RSC Adv 2017. [DOI: 10.1039/c7ra00073a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We describe the synthesis of rare coordination compounds of early transition metals with α-amino acids and α-amino acid esters, the unusual C–C dimerization ofl-proline, and the stabilization of reactive α-ammonium acylchloride cations.
Collapse
Affiliation(s)
- Lorenzo Biancalana
- University of Pisa
- Dipartimento di Chimica e Chimica Industriale
- I-56124 Pisa
- Italy
| | - Marco Bortoluzzi
- Ca' Foscari University of Venice
- Dipartimento di Scienze Molecolari e Nanosistemi
- I-30175 Mestre
- Italy
| | - Eleonora Ferretti
- University of Pisa
- Dipartimento di Chimica e Chimica Industriale
- I-56124 Pisa
- Italy
| | - Mohammad Hayatifar
- University of Pisa
- Dipartimento di Chimica e Chimica Industriale
- I-56124 Pisa
- Italy
| | - Fabio Marchetti
- University of Pisa
- Dipartimento di Chimica e Chimica Industriale
- I-56124 Pisa
- Italy
| | - Guido Pampaloni
- University of Pisa
- Dipartimento di Chimica e Chimica Industriale
- I-56124 Pisa
- Italy
| | - Stefano Zacchini
- University of Bologna
- Dipartimento di Chimica Industriale “Toso Montanari”
- I-40136 Bologna
- Italy
| |
Collapse
|
49
|
Santos MA, Chand K, Chaves S. Recent progress in multifunctional metal chelators as potential drugs for Alzheimer's disease. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Hecel A, De Ricco R, Valensin D. Influence of membrane environments and copper ions on the structural features of amyloidogenic proteins correlated to neurodegeneration. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|