1
|
Shoukat J, Abd-Ur-Rahman HM, Jan Muhammad A, Obaid S, Imtiaz F, Kanwal N, Mnif W, Ali A, Nazir A, Ahmad N, Iqbal M. The interaction between formylphenoxyacetic acid derivatives (chalcone and flavones) and ionic surfactants: Insights into binding constants, solubilisation and physiochemical properties. Colloids Surf B Biointerfaces 2024; 240:113976. [PMID: 38795585 DOI: 10.1016/j.colsurfb.2024.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
In this study, UV-vis spectroscopy was employed to investigate the interaction between formylphenoxyacetic acid (FPAA) and its derivatives (chalcone and flavones) with ionic surfactants (SDS, CTAB, and DTAB) in different physiological environments. Changes in the physiochemical properties of FPAA chalcone and flavones including binding constants, partitioning constants, and Gibbs free energy were observed which were influenced by the presence of ionic surfactants computed using mathematical models. The solubilization of the targeted compounds in the ionic surfactants was determined through the binding constant (Kb). The results of the present study indicated that electrostatic interactions played a significant role in the solubilization of the targeted compounds in SDS, CTAB, and DTAB. At pH 4.1, FPAA chalcone exhibited stronger binding affinity with SDS compared to CTAB and DTAB. However, at pH 7.4, chalcone showed stronger binding with DTAB compared to SDS, while negligible interaction with CTAB was observed at pH 7.4. The flavones demonstrated stronger binding with DTAB at pH 7.4 compared to SDS and CTAB and it exhibited strong bonding with CTAB at pH 4.1. The negative values of the Gibbs free energy for binding (ΔGb˚) and partitioning (ΔGp˚) constants displayed the spontaneity of the process. However, FPAA chalcone with SDS and FPAA flavones with DTAB furnished positive ΔGb˚, indicating a non-spontaneous process.
Collapse
Affiliation(s)
- Jawad Shoukat
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | | | - Amber Jan Muhammad
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Saherah Obaid
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Faiza Imtiaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Nosheen Kanwal
- Department of Chemistry, College of Science, Qassim University, Almolaydah, Buraydah 51452, Saudi Arabia
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences at Bisha, University of Bisha, P.O. BOX 199, Bisha 61922, Saudi Arabia
| | - Abid Ali
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Arif Nazir
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Naveed Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan.
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan.
| |
Collapse
|
2
|
Abdul Ajiz H, Widiyastuti W, Setyawan H, Nurtono T. Amine-functionalized porous silica production via ex- and in-situ method using silicate precursors as a selective adsorbent for CO 2 capture applications. Heliyon 2024; 10:e26691. [PMID: 38455574 PMCID: PMC10918157 DOI: 10.1016/j.heliyon.2024.e26691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
A comparison of the amine-modified silica particle's characteristics via ex- and in-situ routes and their application as a CO2 gas adsorbent is reported. Modifying silica particles via ex-situ involves two separate steps: forming porous silica particles with sodium lauryl sulfate (SLS) as a template and impregnation using ultrasound assistance. In contrast to ex-situ modification, in-situ modification of silica particles is carried out in one step by mixing directly between the silica source and the modifying agent. Controlling the characteristics of modified silica particles via in-situ is carried out by adding an SLS template removed simultaneously with particle formation to increase the surface area and porosity. Increasing the SLS template concentration shows a linear relationship between increasing particle surface area and amine loading. However, two different modification routes exert a direct influence on aminopropyl distribution. Silanization via in-situ which involves a simultaneous condensation reaction produces a higher amine loading reaching 1.2845 mmol/g of silica than via ex-situ which is only 0.9610 mmol/g of silica. The amount of aminopropyl that can be grafted on the silica surface shows a linear relationship to the quantity of CO2 gas adsorption capacity. Amine-modified silica particles obtained the highest adsorption capability via the in-situ route with an SLS 3 CMC template of 2.32 mmol/g silica at an operating pressure of 6 bar.
Collapse
Affiliation(s)
- Hendrix Abdul Ajiz
- Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - W. Widiyastuti
- Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - Heru Setyawan
- Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - Tantular Nurtono
- Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| |
Collapse
|
3
|
Comès A, Theissen J, Dallemagne S, Morena A, Aprile C. Imidazolium-Containing Hybrid Organic-Inorganic Materials for the Conversion of CO 2: Unveiling the Key Role of the Ionic Template. Inorg Chem 2023; 62:21003-21013. [PMID: 38060352 DOI: 10.1021/acs.inorgchem.3c02447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
A straightforward synthesis of a series of hybrid organic-inorganic materials (HOIMs) containing imidazolium moieties was achieved. The preparation of the imidazolium acetate precursor was performed in a single-step procedure using the Debus-Radziszewski reaction. The as-synthesized alkoxysilane was employed in combination with tetraethyl orthosilicate to generate an HOIM presenting a high specific surface area. Two different structure-directing agents (SDAs), an anionic (sodium dodecyl sulfate (SDS)) or a cationic (cetyltrimethylammonium bromide) surfactant, were used to investigate the role played by the SDA on the distribution of the imidazolium-based active sites within the silica structure. After the synthesis, the acetate ion was replaced with Cl- and Br- via a simple acid treatment. This procedure favors also the removal of the surfactant, thus releasing the porosity of the solids. The HOIMs synthesized were fully characterized via low-angle X-ray diffraction, N2 physisorption, transmission electron microscopy, 13C and 29Si MAS NMR, combustion chemical analysis, X-ray photoelectron spectroscopy, and CO2 physisorption to assess their physicochemical and structural features, as well as the successful incorporation of imidazolium salts. Their catalytic activity in the conversion of CO2 was tested over different epoxides to produce the corresponding cyclic carbonates. The key role of the SDS (anionic surfactant) as a templating agent was proved. The best material was stable under the selected reaction conditions, reusable over multiple cycles, and active on a series of different epoxides, thus proving its versatility.
Collapse
Affiliation(s)
- Adrien Comès
- Laboratoire de Chimie des Matériaux Appliqués, Department of Chemistry, Namur Institute of Structured Matter (NISM), University of Namur, 5000 Namur, Belgium
| | - Jennifer Theissen
- Laboratoire de Chimie des Matériaux Appliqués, Department of Chemistry, Namur Institute of Structured Matter (NISM), University of Namur, 5000 Namur, Belgium
| | - Sandrine Dallemagne
- Laboratoire de Chimie des Matériaux Appliqués, Department of Chemistry, Namur Institute of Structured Matter (NISM), University of Namur, 5000 Namur, Belgium
| | - Anthony Morena
- Laboratoire de Chimie des Matériaux Appliqués, Department of Chemistry, Namur Institute of Structured Matter (NISM), University of Namur, 5000 Namur, Belgium
| | - Carmela Aprile
- Laboratoire de Chimie des Matériaux Appliqués, Department of Chemistry, Namur Institute of Structured Matter (NISM), University of Namur, 5000 Namur, Belgium
| |
Collapse
|
4
|
Xu B, Li S, Shi R, Liu H. Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduct Target Ther 2023; 8:435. [PMID: 37996406 PMCID: PMC10667354 DOI: 10.1038/s41392-023-01654-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 11/25/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are recognized as a prime example of nanotechnology applied in the biomedical field, due to their easily tunable structure and composition, diverse surface functionalization properties, and excellent biocompatibility. Over the past two decades, researchers have developed a wide variety of MSNs-based nanoplatforms through careful design and controlled preparation techniques, demonstrating their adaptability to various biomedical application scenarios. With the continuous breakthroughs of MSNs in the fields of biosensing, disease diagnosis and treatment, tissue engineering, etc., MSNs are gradually moving from basic research to clinical trials. In this review, we provide a detailed summary of MSNs in the biomedical field, beginning with a comprehensive overview of their development history. We then discuss the types of MSNs-based nanostructured architectures, as well as the classification of MSNs-based nanocomposites according to the elements existed in various inorganic functional components. Subsequently, we summarize the primary purposes of surface-functionalized modifications of MSNs. In the following, we discuss the biomedical applications of MSNs, and highlight the MSNs-based targeted therapeutic modalities currently developed. Given the importance of clinical translation, we also summarize the progress of MSNs in clinical trials. Finally, we take a perspective on the future direction and remaining challenges of MSNs in the biomedical field.
Collapse
Affiliation(s)
- Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Rui Shi
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, 100035, Beijing, China.
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
5
|
Lv H, Wang Y, Sun L, Yamauchi Y, Liu B. A general protocol for precise syntheses of ordered mesoporous intermetallic nanoparticles. Nat Protoc 2023; 18:3126-3154. [PMID: 37710021 DOI: 10.1038/s41596-023-00872-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/12/2023] [Indexed: 09/16/2023]
Abstract
Intermetallic nanomaterials consist of two or more metals in a highly ordered atomic arrangement. There are many possible combinations and morphologies, and exploring their properties is an important research area. Their strict stoichiometry requirement and well-defined atom binding environment make intermetallic compounds an ideal research platform to rationally optimize catalytic performance. Making mesoporous intermetallic materials is a further advance; crystalline mesoporosity can expose more active sites, facilitate the mass and electron transfer, and provide the distinguished mesoporous nanoconfinement environment. In this Protocol, we describe how to prepare ordered mesoporous intermetallic nanomaterials with controlled compositions, morphologies/structures and phases by a general concurrent template strategy. In this approach, the concurrent template used is a hybrid of mesoporous platinum or palladium and Korea Advanced Institute of Science and Technology-6 (KIT-6) (meso-Pt/KIT-6 or meso-Pd/KIT-6) that can be transformed by the second precursors under reducing conditions. The second precursor can either be a second metal or a metalloid/non-metal, e.g., boron/phosphorus. KIT-6 is a silica scaffold that is removed using NaOH or HF to form the mesoporous product. Procedures for example catalytic applications include the 3-nitrophenylacetylene semi-hydrogenation reaction, p-nitrophenol reduction reaction and electrochemical hydrogen evolution reaction. The synthetic strategy for preparation of ordered mesoporous intermetallic nanoparticles would take almost 5 d; the physical characterization by electron microscope, X-ray diffraction and inductively coupled plasma-mass spectrometry takes ~2 days and the function characterization depends on the research question, but for catalysis it takes 1-5 h.
Collapse
Affiliation(s)
- Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Yanzhi Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Herranz M, Pedrosa C, Martínez-Fernández D, Foteinopoulou K, Karayiannis NC, Laso M. Fine-tuning of colloidal polymer crystals by molecular simulation. Phys Rev E 2023; 107:064605. [PMID: 37464607 DOI: 10.1103/physreve.107.064605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/04/2023] [Indexed: 07/20/2023]
Abstract
Through extensive molecular simulations we determine a phase diagram of attractive, fully flexible polymer chains in two and three dimensions. A rich collection of distinct crystal morphologies appear, which can be finely tuned through the range of attraction. In three dimensions these include the face-centered cubic, hexagonal close packed, simple hexagonal, and body-centered cubic crystals and the Frank-Kasper phase. In two dimensions the dominant structures are the triangular and square crystals. A simple geometric model is proposed, based on the concept of cumulative neighbors of ideal crystals, which can accurately predict most of the observed structures and the corresponding transitions. The attraction range can thus be considered as an adjustable parameter for the design of colloidal polymer crystals with tailored morphologies.
Collapse
Affiliation(s)
- Miguel Herranz
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Clara Pedrosa
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Daniel Martínez-Fernández
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Katerina Foteinopoulou
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Nikos Ch Karayiannis
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Manuel Laso
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM) C. José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
7
|
Sun L, Lv H, Feng J, Guselnikova O, Wang Y, Yamauchi Y, Liu B. Noble-Metal-Based Hollow Mesoporous Nanoparticles: Synthesis Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201954. [PMID: 35695354 DOI: 10.1002/adma.202201954] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 06/15/2023]
Abstract
As second-generation mesoporous materials, mesoporous noble metals (NMs) are of significant interest for their wide applications in catalysis, sensing, bioimaging, and biotherapy owing to their structural and metallic features. The introduction of interior hollow cavity into NM-based mesoporous nanoparticles (MNs), which subtly integrate hierarchical hollow and mesoporous structure into one nanoparticle, produces a new type of hollow MNs (HMNs). Benefiting from their higher active surface, better electron/mass transfer, optimum electronic structure, and nanoconfinement space, NM-based HMNs exhibit their high efficiency in enhancing catalytic activity and stability and tuning catalytic selectivity. In this review, recent progress in the design, synthesis, and catalytic applications of NM-based HMNs is summarized, including the findings of the groups. Five main strategies for synthesizing NM-based HMNs, namely silica-assisted surfactant-templated nucleation, surfactant-templated sequential nucleation, soft "dual"-template, Kirkendall effect in synergistic template, and galvanic-replacement-assisted surfactant template, are described in detail. In addition, the applications in ethanol oxidation electrocatalysis and hydrogenation reactions are discussed to highlight the high activity, enhanced stability, and optimal selectivity of NM-based HMNs in (electro)catalysis. Finally, the further outlook that may lead the directions of synthesis and applications of NM-based HMNs is prospected.
Collapse
Affiliation(s)
- Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Ji Feng
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Olga Guselnikova
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yanzhi Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishi-Waseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
8
|
Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev 2022; 51:5365-5451. [PMID: 35642539 PMCID: PMC9252171 DOI: 10.1039/d1cs00659b] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 12/12/2022]
Abstract
The present review details a chronological description of the events that took place during the development of mesoporous materials, their different synthetic routes and their use as drug delivery systems. The outstanding textural properties of these materials quickly inspired their translation to the nanoscale dimension leading to mesoporous silica nanoparticles (MSNs). The different aspects of introducing pharmaceutical agents into the pores of these nanocarriers, together with their possible biodistribution and clearance routes, would be described here. The development of smart nanocarriers that are able to release a high local concentration of the therapeutic cargo on-demand after the application of certain stimuli would be reviewed here, together with their ability to deliver the therapeutic cargo to precise locations in the body. The huge progress in the design and development of MSNs for biomedical applications, including the potential treatment of different diseases, during the last 20 years will be collated here, together with the required work that still needs to be done to achieve the clinical translation of these materials. This review was conceived to stand out from past reports since it aims to tell the story of the development of mesoporous materials and their use as drug delivery systems by some of the story makers, who could be considered to be among the pioneers in this area.
Collapse
Affiliation(s)
- María Vallet-Regí
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Ferdi Schüth
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Daniel Lozano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Montserrat Colilla
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Miguel Manzano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
9
|
Medium controlled aggregative growth as a key step in mesoporous silica nanoparticle formation. J Colloid Interface Sci 2022; 615:236-247. [DOI: 10.1016/j.jcis.2022.01.166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/20/2022]
|
10
|
Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214309] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Manasi I, Andalibi MR, Atri RS, Hooton J, King SM, Edler KJ. Self-assembly of ionic and non-ionic surfactants in type IV cerium nitrate and urea based deep eutectic solvent. J Chem Phys 2021; 155:084902. [PMID: 34470344 DOI: 10.1063/5.0059238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Understanding and manipulating micelle morphology are key to exploiting surfactants in various applications. Recent studies have shown surfactant self-assembly in a variety of Deep Eutectic Solvents (DESs) where both the nature of surfactants and the interaction of the surfactant molecule with the solvent components influence the size, shape, and morphology of the micelles formed. So far, micelle formation has only been reported in type III DESs, consisting solely of organic species. In this work, we have explored the self-assembly of cationic surfactant dodecyl trimethylammonium nitrate/bromide (C12TANO3/C12TAB), anionic surfactant sodium dodecyl sulfate (SDS), and non-ionic surfactants hexaethylene glycol monododecyl ether (C12EO6) and octaethylene glycol monohexadecyl ether (C16EO8) in a type IV DES comprising metal salt, cerium (III) nitrate hexahydrate, and a hydrogen bond donor, urea, in the molar ratio 1:3.5. C12TANO3, C12TAB, C12EO6, and C16EO8 form spherical micelles in the DES with the micelle size dependent on both the surfactant alkyl chain length and the head group, whereas SDS forms cylindrical micelles. We hypothesize that the difference in the micelle shape can be explained by counterion stabilization of the SDS headgroup by polycations in the DES compared to the nitrate/bromide anion interaction in the case of cationic surfactants or molecular interaction of the urea and the salting out effect of (CeNO3)3 in the DES on the alkyl chains/polyethoxy headgroup for non-ionic surfactants. These studies deepen our understanding of amphiphile self-assembly in this novel, ionic, and hydrogen-bonding solvent, raising the opportunity to use these structures as liquid crystalline templates to generate porosity in metal oxides (ceria) that can be synthesized using these DESs.
Collapse
Affiliation(s)
- Iva Manasi
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| | - Mohammad R Andalibi
- Department of Chemical Engineering and Biotechnology, West Cambridge Site, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Ria S Atri
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| | - Jake Hooton
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| | - Stephen M King
- ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Karen J Edler
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AX, United Kingdom
| |
Collapse
|
12
|
Song T, Gao F, Guo S, Zhang Y, Li S, You H, Du Y. A review of the role and mechanism of surfactants in the morphology control of metal nanoparticles. NANOSCALE 2021; 13:3895-3910. [PMID: 33576356 DOI: 10.1039/d0nr07339c] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although great progress has been made in the synthesis of metal nanoparticles, good repeatability and accurate predictability are still difficult to achieve. This difficulty can be attributed to the synthetic method based primarily on observation and subjective experience, and the role of many surfactants remains unclear. It should be noted that surfactants play an important role in the synthetic process. Understanding their function and mechanism in the synthetic process is a prerequisite for the rational design of nanocatalysts with ideal morphology and performance. In this review article, the function of surfactants is introduced first, and then the mechanism of action of surfactants in controlling the morphology of nanoparticles is discussed according to the types of surfactants, and the promoting and sealing effects of surfactants on the crystal surface is revealed. The relationship between surfactants and the morphology structure of nanoparticles is studied. The removal methods of surfactants are discussed, and the existing problems in the current development strategy are summarized. Finally, the application of surfactants in controlling the morphology of metal nanocrystals is prospected. It is hoped that the review can open up new avenues for the synthesis of nanocrystals.
Collapse
Affiliation(s)
- Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Siyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Shujin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Huaming You
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
13
|
Xiong W, Lv Y, Peng B, Fu S, Duan A, Zhang M, Yuan L. Enantioselective resolutions by high‐performance liquid choromatography using chiral inorganic mesoporous silica. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.202000086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wan‐Qi Xiong
- Department of Chemistry Yunnan Normal University Kunming P.R. China
| | - Yun Lv
- Department of Chemistry Yunnan Normal University Kunming P.R. China
| | - Bo Peng
- Department of Chemistry Yunnan Normal University Kunming P.R. China
| | - Shi‐Guo Fu
- Department of Chemistry Yunnan Normal University Kunming P.R. China
| | - Ai‐Hong Duan
- Department of Chemistry Yunnan Normal University Kunming P.R. China
| | - Mei Zhang
- Department of Traditional Chinese Medicine Yunnan University of Traditional Chinese Medicine Kunming P.R. China
| | - Li‐Ming Yuan
- Department of Chemistry Yunnan Normal University Kunming P.R. China
| |
Collapse
|
14
|
Zhang W, Li B, Sun YG, Cao AM, Wan LJ. Spherical Mesoporous Metal Oxides with Tunable Orientation Enabled by Growth Kinetics Control. J Am Chem Soc 2020; 142:17897-17902. [PMID: 33044819 DOI: 10.1021/jacs.0c07938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent advances in spherical mesoporous metal oxides (SMMOs) have demonstrated their enormous potential in a large variety of research fields. However, a direct creation of these materials with precise control on their key shape features, particularly pore architectures, remains a major challenge as compared to the widely explored counterpart of silica. Here, using Al2O3 as an example, we identified that deposition kinetics in solution played an essential role in the construction of different SMMOs. Specifically, a controlled Al3+ precipitation is critical to maintaining the electrostatic interaction between the inorganic precursors and the molecular templates, thereby achieving a designable assembly of these two components toward uniform mesoporous Al2O3-based nanospheres. We demonstrated that such a synthesis strategy is not only able to precisely control the channel orientations from concentric to radial and dendritic, a synthesis capability impeded so far for SMMOs, but is readily applicable to other metal oxides. Our study showed that the growth-kinetics control is a simple but powerful synthesis protocol and opened up a multifunctional platform to achieve systematic design of SMMOs for their future applications.
Collapse
Affiliation(s)
- Wei Zhang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Li
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yong-Gang Sun
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - An-Min Cao
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Dement’eva OV. Mesoporous Silica Container Particles: New Approaches and New Opportunities. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x20050038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Jennings J, Carter MCD, Son CY, Cui Q, Lynn DM, Mahanthappa MK. Protonation-Driven Aqueous Lyotropic Self-Assembly of Synthetic Six-Tail Lipidoids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8240-8252. [PMID: 32649210 DOI: 10.1021/acs.langmuir.0c01369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report the aqueous lyotropic mesophase behaviors of protonated amine-based "lipidoids," a class of synthetic lipid-like molecules that mirrors essential structural features of the multitail bacterial amphiphile lipid A. Small-angle X-ray scattering (SAXS) studies demonstrate that the protonation of the tetra(amine) headgroups of six-tail lipidoids in aqueous HCl, HNO3, H2SO4, and H3PO4 solutions variably drives their self-assembly into lamellar (Lα) and inverse micellar (III) lyotropic liquid crystals (LLCs), depending on acid identity and concentration, amphiphile tail length, and temperature. Lipidoid assemblies formed in H2SO4(aq) exhibit rare inverse body-centered cubic (BCC) and inverse face-centered cubic (FCC) micellar morphologies, the latter of which unexpectedly coexists with zero mean curvature Lα phases. Complementary atomistic molecular dynamics (MD) simulations furnish detailed insights into this unusual self-assembly behavior. The unique aqueous lyotropic mesophase behaviors of ammonium lipidoids originate in their dichotomous ability to adopt both inverse conical and chain-extended molecular conformations depending on the number of counterions and their identity, which lead to coexisting supramolecular assemblies with remarkably different mean interfacial curvatures.
Collapse
Affiliation(s)
| | | | | | | | | | - Mahesh K Mahanthappa
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Atri RS, Sanchez-Fernandez A, Hammond OS, Manasi I, Doutch J, Tellam JP, Edler KJ. Morphology Modulation of Ionic Surfactant Micelles in Ternary Deep Eutectic Solvents. J Phys Chem B 2020; 124:6004-6014. [PMID: 32551622 PMCID: PMC7467713 DOI: 10.1021/acs.jpcb.0c03876] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Deep eutectic solvents
(DES) are potentially greener solvents obtained
through the complexation of simple precursors which, among other applications,
have been investigated in recent years for their ability to support
the self-assembly of amphiphilic molecules. It is crucial to understand
the factors which influence surfactant solubility and self-assembly
with respect to the interaction of the surfactant molecule with the
DES components. In this work, small-angle neutron scattering (SANS)
has been used to investigate the micellization of cationic (CnTAB) and anionic (SDS) surfactants in a ternary
DES comprising choline chloride, urea, and glycerol, where the hydrogen
bond donors are mixed in varying molar ratios. The results show that
in each case either globular or rodlike micelles are formed with the
degree of elongation being directly dependent on the composition of
the DES. It is hypothesized that this composition dependence arises
largely from the poor solubility of the counterions in the DES, especially
at low glycerol content, leading to a tighter binding of the counterion
to the micelle surface and giving rise to micelles with a high aspect
ratio. This potential for accurate control over micelle morphology
presents unique opportunities for rheology control or to develop templated
syntheses of porous materials in DES, utilizing the solvent composition
to tailor micelle shape and size, and hence the pore structure of
the resulting material.
Collapse
Affiliation(s)
- Ria S Atri
- EPSRC Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.,Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Adrian Sanchez-Fernandez
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.,Food Technology, Engineering and Nutrition, Lund University, Box 124, 221 00 Lund, Sweden
| | - Oliver S Hammond
- EPSRC Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.,Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.,Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69007, France
| | - Iva Manasi
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - James Doutch
- ISIS Neutron and Muon Source, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - James P Tellam
- ISIS Neutron and Muon Source, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Karen J Edler
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
18
|
Kankala RK, Han YH, Na J, Lee CH, Sun Z, Wang SB, Kimura T, Ok YS, Yamauchi Y, Chen AZ, Wu KCW. Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907035. [PMID: 32319133 DOI: 10.1002/adma.201907035] [Citation(s) in RCA: 261] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 05/19/2023]
Abstract
Mesoporous silica nanoparticles (MSNs), one of the important porous materials, have garnered interest owing to their highly attractive physicochemical features and advantageous morphological attributes. They are of particular importance for use in diverse fields including, but not limited to, adsorption, catalysis, and medicine. Despite their intrinsic stable siliceous frameworks, excellent mechanical strength, and optimal morphological attributes, pristine MSNs suffer from poor drug loading efficiency, as well as compatibility and degradability issues for therapeutic, diagnostic, and tissue engineering purposes. Collectively, the desirable and beneficial properties of MSNs have been harnessed by modifying the surface of the siliceous frameworks through incorporating supramolecular assemblies and various metal species, and through incorporating supramolecular assemblies and various metal species and their conjugates. Substantial advancements of these innovative colloidal inorganic nanocontainers drive researchers in promoting them toward innovative applications like stimuli (light/ultrasound/magnetic)-responsive delivery-associated therapies with exceptional performance in vivo. Here, a brief overview of the fabrication of siliceous frameworks, along with discussions on the significant advances in engineering of MSNs, is provided. The scope of the advancement in terms of structural and physicochemical attributes and their effects on biomedical applications with a particular focus on recent studies is emphasized. Finally, interesting perspectives are recapitulated, along with the scope toward clinical translation.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- College of Chemical Engineering, Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Ya-Hui Han
- College of Chemical Engineering, Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Jongbeom Na
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, QLD, 4072, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Chia-Hung Lee
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Ziqi Sun
- Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Shi-Bin Wang
- College of Chemical Engineering, Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Tatsuo Kimura
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, 463-8560, Japan
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, QLD, 4072, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Ai-Zheng Chen
- College of Chemical Engineering, Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
19
|
Dement’eva OV, Senchikhin IN, Rudoy VM. Sodium Oleate as a Templating Agent for the Synthesis of Mesoporous SiO2 Containers: from Capsules to “Monolithic” Particles. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x20030023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Baez-Cotto CM, Jackson GL, Mahanthappa MK. Aqueous Lyotropic Mesophase Behavior of Gemini Dicarboxylate Surfactants Swollen with n-Decane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2307-2321. [PMID: 32101436 DOI: 10.1021/acs.langmuir.9b03408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report detailed small-angle X-ray scattering (SAXS) studies of the impact of variable n-decane loadings on the lyotropic liquid crystalline (LLC) phase behaviors of homologous bis(tetramethylammonium) gemini didecanoate surfactants TMA-7x, which derive from dimerizing decanoic acid through its α-carbon with hydrocarbyl linkers -(CH2)x- where x = 3, 4, 5, and 6. TMA-7x amphiphiles with x = 3 or 5 exhibit a strong propensity to form normal double gyroid (G) LLC network mesophases over wide surfactant hydration ranges, as compared to homologues with x = 4 or 6. On swelling aqueous TMA-7x LLC mesophases with up to 35 wt % n-decane, we demonstrate that odd-carbon linked surfactants (x = 3 or 5) form G and normal double diamond (D) phases over wide water concentration windows with T = 22-100 °C. Complementary studies of decane-swollen TMA-7x (x = 4 or 6) aqueous LLCs instead demonstrate significantly diminished network phase stability, in favor of hexagonally-packed cylinder phases and a zoo of complex quasispherical micelle packings, which include micellar C14 and C15 Laves phases (P63/mmc and Fd3(-)m symmetries, respectively) and high-symmetry hexagonally close packed (HCP) and body-centered cubic (BCC) arrangements. These rich phase behaviors are rationalized in terms of linker length parity-dependent surfactant conformations and the delicate free energy balance that guides the packing of these geometrically anisotropic amphiphiles by minimizing unfavorable water-hydrophobic contacts, maximizing ionic surfactant-headgroup counterion solvation with minimal local variations, and maximizing electrostatic cohesion within these supramolecular assemblies.
Collapse
Affiliation(s)
- Carlos M Baez-Cotto
- Department of Chemistry, University of Minnesota, 207 Pleasant St. S. E., Minneapolis, Minnesota 55455, United States
| | - Grayson L Jackson
- Department of Chemistry, University of Wisconsin, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Mahesh K Mahanthappa
- Department of Chemistry, University of Minnesota, 207 Pleasant St. S. E., Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave. S. E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Shi C, Du G, Wang J, Sun P, Chen T. Polyelectrolyte-Surfactant Mesomorphous Complex Templating: A Versatile Approach for Hierarchically Porous Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1851-1863. [PMID: 32036669 DOI: 10.1021/acs.langmuir.9b03513] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hierarchically porous materials have attracted great attention because of their potential applications in the fields of adsorption, catalysis, and biomedical systems. The art of manipulating different templates that are used for pore construction is the key to fabricating desired hierarchically porous structures. In this feature article, the polyelectrolyte-surfactant mesomorphous complex templating (PSMCT) approach, which was first developed by our group, is elaborated on. During the organic-inorganic self-assembly, the mesomorphous complex of the polyelectrolyte and oppositely charged surfactants would undergo in situ phase separation, which is the key to fabricating hierarchically porous materials. The recent progress in the utilization of the PSMCT method for the synthesis of hierarchically porous materials with tunable morphologies, mesophases, pore structures, and compositions is reviewed. Meanwhile, the functions of the hierarchically porous materials synthesized by the PSMCT method and their applications in adsorption, catalysis, drug delivery, and nanocasting are also briefly summarized.
Collapse
Affiliation(s)
- Chengxiang Shi
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300350, P. R. China
| | - Guo Du
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300350, P. R. China
| | - Jingui Wang
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300350, P. R. China
| | - Pingchuan Sun
- Key Laboratory of Functional Polymer Materials (MOE), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China
| | - Tiehong Chen
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China
| |
Collapse
|
22
|
Wang N, Cheng K, Xu ZF, Li P, Geng G, Chen C, Wang D, Chen P, Liu M. High-performance natural-sunlight-driven Ag/AgCl photocatalysts with a cube-like morphology and blunt edges via a bola-type surfactant-assisted synthesis. Phys Chem Chem Phys 2020; 22:3940-3952. [PMID: 32016244 DOI: 10.1039/c9cp05273a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ag/AgCl-based structures have recently been receiving considerable attention as visible-light-driven plasmonic photocatalysts, wherein the fabrication of Ag/AgCl species shaped with an anisotropic morphology is considered to be an efficient way to enhance their performances. While the past decade has witnessed great progress in this direction, it is still strongly desired to initiate a green and low-cost protocol for the synthesis of Ag/AgCl based structures with high catalytic activity. Using a surfactant-assisted synthesis protocol, wherein a cationic bola-type surfactant of chloride counteranions serves both as a reactant (namely, source of chlorine) for the generation of AgCl structures and as a directing template to assist the formation of anisotropic structures, we herein report that cube-like Ag/AgCl with blunt edges could be fabricated simply by dropping an aqueous solution of silver nitrate into an ethanol solution of the hexane-1,6-bis(trimethylammonium chloride) surfactant. Importantly, compared to the sphere-like counterparts manufactured using a conventional tadpole surfactant, the as-fabricated cube-like structures exhibit substantially improved catalytic performances under visible-light or natural-sunlight irradiation. It has been revealed that photogenerated holes might serve as the main active species during the catalytic process. Meanwhile, our results have disclosed that in contrast to the sphere-like Ag/AgCl structures, the as-constructed cube-like structures are relatively enriched with high-index AgCl facets of smaller hole effective mass, which promote a faster carrier transfer, facilitate the migration of the photogenerated holes to the surface to be involved in photocatalytic reactions, and suppress carrier recombination, leading to their enhanced photocatalytic performances. Considering the tremendous diversity of surfactants (bola-, gemini-, polymeric surfactants etc.) with various halide counteranions and their sophisticated template effects, our new strategy might open up new opportunities for silver/silver halide (Ag/AgX, X = Cl, Br, and I)-based plasmonic structures with various morphologies and with superior light-to-chemical energy conversion capability.
Collapse
Affiliation(s)
- Nannan Wang
- Beijing National Laboratory for Molecular Science, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lv H, Sun L, Feng J, Na J, Xu D, Yamauchi Y, Liu B. Plasmonic mesoporous AuAg nanospheres with controllable nanostructures. Chem Commun (Camb) 2020; 56:9679-9682. [PMID: 32696766 DOI: 10.1039/d0cc02524k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Three kinds of plasmonic mesoporous AuAg (mesoAuAg) nanospheres, including well-alloyed mesoAuAg, hollow mesoAuAg, and core-shell Ag-mesoAu nanospheres, were successfully synthesized by carefully controlling the reduction kinetics of metal precursors in the presence of a functional surfactant, C22H45N+(CH3)2-C3H6-SH(Cl-). The resulting mesoAuAg exhibited a remarkable structure-dependent electrocatalytic performance toward methanol oxidation reaction.
Collapse
Affiliation(s)
- Hao Lv
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Lizhi Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ji Feng
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | - Jongbeom Na
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia and Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Ben Liu
- College of Chemistry, Sichuan University, Chengdu 610064, China. and Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
24
|
Jia W, Xu H, Yang Q, Ren S, Wang J. Synthesis of anionic gemini surfactant-templated mesoporous silica nanoparticles and its adsorption application for Pb 2+. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2018.1535979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Weihong Jia
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Haiyan Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Qiyi Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Sili Ren
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, P. R. China
| | - Jinqing Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China
| |
Collapse
|
25
|
Glycyrrhizic acid based self-assembled helical nanostructures as scaffolds for asymmetric Diels-Alder reaction. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Zhang L, Jin L, Liu B, He J. Templated Growth of Crystalline Mesoporous Materials: From Soft/Hard Templates to Colloidal Templates. Front Chem 2019; 7:22. [PMID: 30805330 PMCID: PMC6371053 DOI: 10.3389/fchem.2019.00022] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/10/2019] [Indexed: 11/13/2022] Open
Abstract
Mesoporous non-siliceous materials, in particular mesoporous transition metal oxides (m-TMOs), are of interest due to their fascinating electronic, redox, and magnetic properties for a wide range of applications in catalysis and energy storage. Control of the porosity (e.g., pore size, wall thickness, and surface area) and the crystalline degree (e.g., phase composition, crystallinity, and crystal grain size) of m-TMOs are critical for those applications. To crystallize TMOs, high temperature annealing is often needed to remove the amorphous defects and/or tune the compositions of different crystalline phases. This has brought many challenges to surfactant or block copolymer templates used in the process of evaporation-induced-self-assembly to prepare m-TMOs. In this review, we summarize the most recent achievements including the findings in our own laboratory on the use of organosilicate-containing colloids for the templated growth of mesoporous materials. We review a few key examples of preparing crystalline mesoporous oxides using different templating methods. The colloidal templating method by which mesoporous nanostructures can be stabilized up to 1,000°C is highlighted. The applications of m-TMOs and meso metal-oxide hybrids synthesized using organosilicate-containing colloidal templates in photocatalysis and high-temperature catalysis are also discussed.
Collapse
Affiliation(s)
- Lei Zhang
- Jiangsu Key Laboratory of New Power Batteries, Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
- Department of Chemistry, University of Connecticut, Mansfield, CT, United States
| | - Lei Jin
- Department of Chemistry, University of Connecticut, Mansfield, CT, United States
| | - Ben Liu
- Jiangsu Key Laboratory of New Power Batteries, Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Jie He
- Department of Chemistry, University of Connecticut, Mansfield, CT, United States
- Institute of Materials Science, University of Connecticut, Mansfield, CT, United States
| |
Collapse
|
27
|
Gawali SL, Zhang M, Kumar S, Aswal VK, Danino D, Hassan PA. Dynamically arrested micelles in a supercooled sugar urea melt. Commun Chem 2018. [DOI: 10.1038/s42004-018-0032-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
28
|
Wang P, Zhao Y, Liu J. Versatile design and synthesis of mesoporous sulfonic acid catalysts. Sci Bull (Beijing) 2018; 63:252-266. [PMID: 36659014 DOI: 10.1016/j.scib.2018.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 01/21/2023]
Abstract
Mesoporous sulfonic acid catalysts (MSAC) are widely used in acid-catalyzed reactions, including biomass conversions with plenty of polar solvents and precursors. The catalytic efficiency of MSAC is greatly affected by the microenvironment around the sulfonic acid sites. In this review, the progress on modification of microenvironment of MSAC is reviewed over the past decade. Hydrophobic modification allows MSAC prevent the adhesion of water molecules onto sulfonic acid sites, to abate the risk of reduced acid strength and catalytic efficiency. In comparison, hydrophilic properties can bring positive effect on acid-catalyzed reactions with the aid of hydrophilic interaction between polar functional groups on MSAC and hydrophilic groups of specific substrates. Amphiphilic MSAC with tunable wettability for specific substrates and solvents tend to improve the efficiency in certain reactions with mixed solvents or reactants of different polarity, especially for biphasic systems of immiscible liquids. Furthermore, much attention has been attracted on modification of surface to simulate the microenvironment of homogeneous solvents and enzyme biocatalysts in recent research. New trends of this field are also highlighted.
Collapse
Affiliation(s)
- Peng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China.
| | - Yupei Zhao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Jian Liu
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| |
Collapse
|
29
|
Oriented Decoration in Metal-Functionalized Ordered Mesoporous Silicas and Their Catalytic Applications in the Oxidation of Aromatic Compounds. Catalysts 2018. [DOI: 10.3390/catal8020080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
30
|
Jayaraman A, Mahanthappa MK. Counterion-Dependent Access to Low-Symmetry Lyotropic Sphere Packings of Ionic Surfactant Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2290-2301. [PMID: 29381063 DOI: 10.1021/acs.langmuir.7b03833] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The water-driven self-assembly of homologous dianionic surfactants into lyotropic liquid crystals (LLCs) is investigated, with a focus on understanding how surfactant headgroup and counterion identities guide supramolecular spherical mesophase selection. Using temperature-dependent small-angle X-ray scattering (SAXS), we demonstrate that 2-alkylmalonate surfactants (CnMal-M2) with n = 8 (octyl) or 10 (decyl) and M = K+, Cs+, or (CH3)4N+ form both simple and complex micelle packings. Observed spherical morphologies include body-centered cubic (BCC), hexagonally closest-packed (HCP), and tetrahedrally closest-packed Frank-Kasper (FK) A15 and σ phases (Pm3(-)n and P42/mnm symmetries, respectively). Previously observed in only one other minimally hydrated surfactant, the σ phase is a rare LLC morphology comprising a low-symmetry unit cell containing 30 sub-2-nm quasispherical micelles, each of which belongs to one of five symmetry-equivalent classes with discrete aggregation numbers. Temperature versus water concentration phase maps for CnMal-M2 LLCs reveal that σ-phase formation depends sensitively on the size and polarizability of the surfactant counterion and the length of the surfactant alkyl tail. These observations are rationalized in terms of a delicate interplay between global packing symmetry and local particle symmetry, and the extent to which counterion-headgroup correlations enforce the latter structures in these LLC phases.
Collapse
Affiliation(s)
- Ashish Jayaraman
- Department of Chemical Engineering & Materials Science, 421 Washington Avenue SE, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Mahesh K Mahanthappa
- Department of Chemical Engineering & Materials Science, 421 Washington Avenue SE, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
31
|
Huang M, Yue K, Wang J, Hsu CH, Wang L, Cheng SZD. Frank-Kasper and related quasicrystal spherical phases in macromolecules. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9140-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Zhang K, Yang TQ, Shan BQ, Liu PC, Peng B, Xue QS, Yuan EH, Wu P, Albela B, Bonneviot L. Dendritic and Core-Shell-Corona Mesoporous Sister Nanospheres from Polymer-Surfactant-Silica Self-Entanglement. Chemistry 2017; 24:478-486. [PMID: 29105872 DOI: 10.1002/chem.201704714] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Indexed: 01/24/2023]
Abstract
Mesoporous nanospheres are highly regarded for their applications in nanomedicine, optical devices, batteries, nanofiltration, and heterogeneous catalysis. In the last field, the dendritic morphology, which favors molecular diffusion, is a very important morphology known for silica, but not yet for carbon. A one-pot, easy, and scalable co-sol-gel route by using the triphasic resol-surfactant-silica system is shown to yield the topologies of dendritic and core-shell-corona mesoporous sister nanospheres by inner radial phase speciation control on a mass-transfer-limited process, depending on the relative polycondensation rates of the resol polymer and silica phases. The trick was the use of polyolamines with different catalytic activities on each hard phase polycondensation. The self-entanglement of phases is produced at the {O- , S+ , I- } organic-surfactant-inorganic interface. Mono- and biphasic mesoporous sister nanospheres of carbon and/or silica are derivatized from each mother nanospheres and called "syntaxic" because of similar sizes and mirrored morphologies. Comparing these "false twins", or yin and yang mesoporous nanospheres, functionalized by sulfonic groups provides evidence of the superiority of the dendritic topologies and the absence of a shell on the diffusion-controlled catalytic alkylation of m-cresol.
Collapse
Affiliation(s)
- Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - Tai-Qun Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - Bing-Qian Shan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - Peng-Cheng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - Bo Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - Qing-Song Xue
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - En-Hui Yuan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - Peng Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P.R. China
| | - Belén Albela
- Laboratoire de chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Université de Lyon, 46 Allée d'italie, 69364, Lyon cedex 07, France
| | - Laurent Bonneviot
- Laboratoire de chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Université de Lyon, 46 Allée d'italie, 69364, Lyon cedex 07, France
| |
Collapse
|
33
|
Han H, Li L, Wang W, Tian Y, Wang Y, Wang J, von Klitzing R, Guo X. Core-Shell-Corona Silica Hybrid Nanoparticles Templated by Spherical Polyelectrolyte Brushes: A Study by Small Angle X-ray Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9857-9865. [PMID: 28836791 DOI: 10.1021/acs.langmuir.7b02239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Core-shell-corona silica/polymer hybrid nanoparticles with narrow size distribution were prepared in the template of spherical polyelectrolyte brushes (SPB) which consist of a solid polystyrene (PS) core densely grafted with linear poly(acrylic acid) (PAA) chains. The microstructure of obtained hybrid nanoparticles was studied by small-angle X-ray scattering (SAXS) and in combination with dynamic light scattering (DLS) and transmission electron microscopy (TEM). The generation of silica shell within the brush is confirmed by the significant increase of the electron density in the shell, and the silica shell showed a unique inner-loose-outer-dense structure, whose thickness is pH sensitive but is insensitive to ionic strength as revealed by fitting SAXS data. After dissolving the PS core, hollow silica nanoparticles were obtained and determined by SAXS, which should be ideal carriers for pH-triggered drug delivery. SAXS is confirmed to be a powerful method to characterize the core-shell-corona silica/polymer hybrid and hollow silica nanoparticles.
Collapse
Affiliation(s)
- Haoya Han
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology , 200237 Shanghai, P.R. China
- Department of Physics, Technical University Darmstadt , Alarich-Weiss-Strasse 10, 64287 Darmstadt, Germany
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology , 200237 Shanghai, P.R. China
| | - Weihua Wang
- Sinopec Shanghai Research Institute of Petrochemical Technology , 201208 Shanghai, P.R. China
| | - Yuchuan Tian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology , 200237 Shanghai, P.R. China
| | - Yunwei Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology , 200237 Shanghai, P.R. China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology , 200237 Shanghai, P.R. China
| | - Regine von Klitzing
- Department of Physics, Technical University Darmstadt , Alarich-Weiss-Strasse 10, 64287 Darmstadt, Germany
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology , 200237 Shanghai, P.R. China
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University , 832000 Xinjiang, P.R. China
| |
Collapse
|
34
|
Lotz B, Miyoshi T, Cheng SZD. 50th Anniversary Perspective: Polymer Crystals and Crystallization: Personal Journeys in a Challenging Research Field. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00907] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bernard Lotz
- Institut Charles
Sadron (CNRS − Université de Strasbourg), 23, Rue du Lœss, 67034 Strasbourg, France
| | - Toshikazu Miyoshi
- Department
of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Stephen Z. D. Cheng
- Department
of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
35
|
Li J, Guo Y, Li H, Shang L, Li S. Superiority of amino-modified chiral mesoporous silica nanoparticles in delivering indometacin. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1085-1094. [PMID: 28776393 DOI: 10.1080/21691401.2017.1360326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The present study established indometacin (IMC) delivery system with chiral mesoporous silica nanoparticles (CMSNs) and amino-modified chiral mesoporous silica nanoparticles (Amino-CMSNs) that previously reported as pharmaceutical excipients, and their systemic biological effects, mainly consisting of in vitro drug intestinal permeability, haemolysis assay, in vivo pharmacokinetics, anti-inflammation pharmacodynamics and gastric irritation, were addressed. It turned out that the two IMC delivery systems established by CMSN and Amino-CMSN significantly improved drug intestinal permeability due to the improved drug dissolution caused by conversion of drug crystalline state to amorphous phase. Further, IMC-loaded Amino-CMSN was the superior choice because of its higher dissolution rate. Furthermore, CMSN and Amino-CMSN were safe to be circulated in blood, and Amino-CMSN with significant lower haemolysis ratio than CMSN was better for the minimum haemolytic behaviour. Oral bioavailability and anti-inflammation effect of IMC delivery systems established by CMSN and Amino-CMSN were enhanced compared with IMC, which was attributed to the primary cause of the improvement of IMC dissolution, and Amino-CMSN exhibited better biological effect. As a result of these facts, it is believed that the effective delivery of IMC by Amino-CMSN will provide a new candidate to formulate poorly soluble drugs so as to significantly develop pharmaceutical application.
Collapse
Affiliation(s)
- Jing Li
- a Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , China
| | - Yingyu Guo
- b School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| | - Heran Li
- a Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , China
| | - Lei Shang
- c College of basic medical sciences , Shenyang medical college , Shenyang , China
| | - Sanming Li
- b School of Pharmacy , Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|
36
|
Highly ordered Nanomaterial Functionalized Copper Schiff Base Framework: Synthesis, Characterization, and Hydrogen Peroxide Decomposition Performance. Catalysts 2017. [DOI: 10.3390/catal7070216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
37
|
Han H, Li L, Tian Y, Wang Y, Ye Z, Yang Q, Wang Y, von Klitzing R, Guo X. Spherical polyelectrolyte nanogels as templates to prepare hollow silica nanocarriers: observation by small angle X-ray scattering and TEM. RSC Adv 2017. [DOI: 10.1039/c7ra10011f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hollow silica nanoparticles were prepared through generating a silica layer in spherical polyelectrolyte nanogels, which consisted of a solid core of polystyrene and a shell of crosslinked poly(acrylic acid), followed by removing the core via solvent dissolution.
Collapse
Affiliation(s)
- Haoya Han
- State Key Laboratory of Chemical Engineering
- East China University of Science and Technology
- 200237 Shanghai
- P. R. China
| | - Li Li
- State Key Laboratory of Chemical Engineering
- East China University of Science and Technology
- 200237 Shanghai
- P. R. China
| | - Yuchuan Tian
- State Key Laboratory of Chemical Engineering
- East China University of Science and Technology
- 200237 Shanghai
- P. R. China
| | - Yunwei Wang
- State Key Laboratory of Chemical Engineering
- East China University of Science and Technology
- 200237 Shanghai
- P. R. China
| | - Zhishuang Ye
- State Key Laboratory of Chemical Engineering
- East China University of Science and Technology
- 200237 Shanghai
- P. R. China
| | - Qingsong Yang
- State Key Laboratory of Chemical Engineering
- East China University of Science and Technology
- 200237 Shanghai
- P. R. China
| | - Yiming Wang
- State Key Laboratory of Chemical Engineering
- East China University of Science and Technology
- 200237 Shanghai
- P. R. China
- Department of Chemical Engineering
| | | | - Xuhong Guo
- State Key Laboratory of Chemical Engineering
- East China University of Science and Technology
- 200237 Shanghai
- P. R. China
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan
| |
Collapse
|
38
|
Chekini M, Guénée L, Marchionni V, Sharma M, Bürgi T. Twisted and tubular silica structures by anionic surfactant fibers encapsulation. J Colloid Interface Sci 2016; 477:166-75. [PMID: 27267039 DOI: 10.1016/j.jcis.2016.05.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
Organic molecules imprinting can be used for introducing specific properties and functionalities such as chirality to mesoporous materials. Particularly organic self-assemblies can work as a scaffold for templating inorganic materials such as silica. During recent years chiral imprinting of anionic surfactant for fabrication of twisted rod-like silica structures assisted by co-structuring directing agent were thoroughly investigated. The organic self-assemblies of anionic surfactants can also be used for introducing other shapes in rod-like silica structures. Here we report the formation of amphiphilic N-miristoyl-l-alanine self-assemblies in aqueous solution upon stirring and at presence of l-arginine. These anionic surfactant self-assemblies form fibers that grow by increasing the stirring duration. The fibers were studied using transmission electron microscopy, infra-red spectroscopy and vibrational circular dichroism. Addition of silica precursor 1,2-bis(triethoxysilyl)ethylene and co-structuring directing agent N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride at different stages of fibers' growth leads to formation of different silica structures. By controlling stirring duration, we obtained twisted tubular silica structures as a result of fibers encapsulation. We decorated these structures with gold nanoparticles by different methods and measured their optical activity.
Collapse
Affiliation(s)
- Mahshid Chekini
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Laure Guénée
- Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | | | - Manish Sharma
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland.
| |
Collapse
|
39
|
Gao S, Zhou S, Yang F, Long S, Kong Y. A Facile Method for the Direct Introduction of FeOxin Mesoporous AMS Through A Templating Route (S−[MN]+I−) and Its Catalytic Application. ChemistrySelect 2016. [DOI: 10.1002/slct.201600184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shuying Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Chemistry and Chemical Engineering; Nanjing Tech University; Nanjing 210009 Jiangsu P. R. China
| | - Shijian Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Chemistry and Chemical Engineering; Nanjing Tech University; Nanjing 210009 Jiangsu P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing Tech University; Nanjing 210009 Jiangsu P. R. China
| | - Fu Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Chemistry and Chemical Engineering; Nanjing Tech University; Nanjing 210009 Jiangsu P. R. China
| | - Saifu Long
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Chemistry and Chemical Engineering; Nanjing Tech University; Nanjing 210009 Jiangsu P. R. China
| | - Yan Kong
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Chemistry and Chemical Engineering; Nanjing Tech University; Nanjing 210009 Jiangsu P. R. China
| |
Collapse
|
40
|
Sorenson GP, Mahanthappa MK. Unexpected role of linker position on ammonium gemini surfactant lyotropic gyroid phase stability. SOFT MATTER 2016; 12:2408-2415. [PMID: 26806651 DOI: 10.1039/c5sm02671g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Arising from the water-driven self-assembly of amphiphiles over generally narrow temperature and composition phase windows, aqueous lyotropic liquid crystal (LLC) network phases are useful in applications as therapeutic delivery vehicles and templates for mesoporous material syntheses. While a clear set of amphiphile design rules that enables access to these intricate three-dimensional structures has yet to emerge, recent work indicates that bis(ammonium), bis(phosphonium), and dicarboxylate gemini ("twin tail") surfactants enable enhanced access to LLC network phases such as the double gyroid (G). In order to better understand the scope of this amphiphile design strategy, we investigated the synthesis and aqueous LLC self-assembly behaviors of a homologous series of quaternary gemini bis(ammonium) dichloride surfactants, in which we varied the position of the hydrophobic linker that connects the constituent single tail surfactants. These experiments demonstrate that the position of the linker directly impacts the maximum counterion-headgroup hydration capacity and the extent of counterion-headgroup association, all of which contribute to the aqueous lyotropic double gyroid network phase stability. Thus, judicious selection of the linker position in ionic gemini surfactants provides a new molecular design tool for manipulating LLC network phase stability.
Collapse
Affiliation(s)
- Gregory P Sorenson
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53703, USA
| | - Mahesh K Mahanthappa
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53703, USA and Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Ave., S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
41
|
Kimura T. Evaporation-induced Self-assembly Process Controlled for Obtaining Highly Ordered Mesoporous Materials with Demanded Morphologies. CHEM REC 2016; 16:445-57. [PMID: 26806104 DOI: 10.1002/tcr.201500262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Indexed: 12/26/2022]
Abstract
A large number of periodic mesoporous materials have been reported using amphiphilic organic molecules with increasing development of synthetic methods for mesostructural, morphological, and compositional designs. The evaporation-induced self-assembly (ESIA) process to fabricate ordered mesoporous films is one of the most essential synthetic methods, which has extensively been applied for obtaining a wide variety of samples (e.g., films and monoliths, including powders). It contains complicated physical variations and chemical reactions, but has been simply explained by several research groups. However, a current, exact understanding of such complicated systems should be given with respect to all the variations and reactions. In this article, I have mainly surveyed the exact EISA process by considering the difference between simple and controlled EISA processes on the basis of my own experiments. I believe that the insights are consequently helpful for obtaining highly ordered mesoporous materials with demanded morphologies.
Collapse
Affiliation(s)
- Tatsuo Kimura
- Inorganic Functional Materials Research Institute National Institute of Advanced Industrial Science and Technology (AIST), Shimoshidami Moriyama-ku, Nagoya, 463-8560, Japan
| |
Collapse
|
42
|
Gai F, Zhou T, Chu G, Li Y, Liu Y, Huo Q, Akhtar F. Mixed anionic surfactant-templated mesoporous silica nanoparticles for fluorescence detection of Fe3+. Dalton Trans 2016; 45:508-14. [DOI: 10.1039/c5dt03052h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work demonstrates the design and synthesis of large pore mesoporous silica nanoparticles by using mixed anionic surfactants as soft templates to introduce amino group for Fe3+ fluorescent detection.
Collapse
Affiliation(s)
- Fangyuan Gai
- Department of Petroleum and Chemical Engineering
- Dalian University of Technology
- Panjin 124221
- China
- Division of Materials Science
| | - Tianlei Zhou
- Chemical & Materials Engineering Department
- University of Nevada at Reno
- Reno
- USA
| | - Guang Chu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Ye Li
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Sichuan 621900
- People's Republic of China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Qisheng Huo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Farid Akhtar
- Division of Materials Science
- Luleå University of Technology
- SE-97187 Luleå
- Sweden
| |
Collapse
|
43
|
Li J, Xu L, Yang B, Wang H, Bao Z, Pan W, Li S. Facile synthesis of functionalized ionic surfactant templated mesoporous silica for incorporation of poorly water-soluble drug. Int J Pharm 2015; 492:191-8. [DOI: 10.1016/j.ijpharm.2015.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/27/2015] [Accepted: 07/06/2015] [Indexed: 11/15/2022]
|
44
|
Alfredsson V, Wennerström H. The dynamic association processes leading from a silica precursor to a mesoporous SBA-15 material. Acc Chem Res 2015; 48:1891-900. [PMID: 26107533 DOI: 10.1021/acs.accounts.5b00165] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During the last two decades, the synthesis of silica with an ordered mesoporous structure has been thoroughly explored. The basis of the synthesis is to let silica monomers polymerize in the presence of an amphiphilic template component. In the first studies, cationic surfactants were used as structure inducer. Later it was shown that pluronic copolymers also could have the role. One advantage with the pluronics copolymers is that they allow for a wider variation in the radius of pores in the resulting silica material. Another advantage lies in the higher stability resulting from the thicker walls between the pores. Mesoporous silica has a very high area to volume ratio, and the ordered structure ensures surface homogeneity. There are a number of applications of this type of material. It can be used as support for catalysts, as templates to produces other mesoporous inorganic materials, or in controlled release applications. The synthesis of mesoporous silica is, from a practical point of view, simple, but there are significant possibilities to vary synthesis conditions with a concomitant effect on the properties of the resulting material. It is clear that the structural properties on the nanometer scale are determined by the self-assembly properties of the amphiphile, and this knowledge has been used to optimize pore geometry and pore size. To have a practical functional material it is desirable to also control the structure on a micrometer scale and larger. In practice, one has largely taken an empirical approach in optimizing reaction conditions, paying less attention to underlying chemical and physicochemical mechanisms that lead from starting conditions to the final product. In this Account, we present our systematic studies of the processes involved not only in the formation of the mesoporous structure as such, but also of the formation of structures on the micrometer scale. The main point is to show how the ongoing silica polymerization triggers a sequence of structural changes through the action of colloidal interactions. Our approach is to use a multitude of experimental methods to characterize the time evolution of the same highly reproducible synthesis process. It is the silica polymerization reactions that set the time scale, and the block copolymer self-assembly responds to the progress of the polymerization through a basically hydrophobic interaction between silica and ethylene oxide units. The progression of the silica polymerization leads to an increased hydrophobicity triggering an aggregation process resulting in the formation of silica-copolymer composite particles of increasing size. The particle growth occurs in a stepwise way caused by intricate shifts between colloidal stability and instability. By tuning reaction conditions one can have an end product of hexagonal prism composite particles with single crystal 2D hexagonal order.
Collapse
Affiliation(s)
- Viveka Alfredsson
- Division of Physical Chemistry,
Department of Chemistry, Lund University P.O.Box 124, SE 22100 Lund, Sweden
| | - Håkan Wennerström
- Division of Physical Chemistry,
Department of Chemistry, Lund University P.O.Box 124, SE 22100 Lund, Sweden
| |
Collapse
|
45
|
Etienne M, Zhang L, Vilà N, Walcarius A. Mesoporous Materials-Based Electrochemical Enzymatic Biosensors. ELECTROANAL 2015. [DOI: 10.1002/elan.201500172] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Muraoka K, Chaikittisilp W, Yanaba Y, Yoshikawa T, Okubo T. Highly nanoporous silicas with pore apertures near the boundary between micro- and mesopores through an orthogonal self-assembly approach. Chem Commun (Camb) 2015; 51:10718-21. [PMID: 26051853 DOI: 10.1039/c5cc02801a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanoporous silicas having some periodicity, high surface area (up to 1230 m(2) g(-1)), and pore diameters near the boundary between micro- and mesopores are synthesized using aromatic compounds bearing anionic end-groups as novel structure-directing agents (SDAs) that can facilitate multiple interactions between SDAs, co-SDAs and silica frameworks orthogonally.
Collapse
Affiliation(s)
- Koki Muraoka
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Giese M, Blusch LK, Khan MK, MacLachlan MJ. Functional Materials from Cellulose-Derived Liquid-Crystal Templates. Angew Chem Int Ed Engl 2014; 54:2888-910. [DOI: 10.1002/anie.201407141] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Indexed: 01/24/2023]
|
49
|
Giese M, Blusch LK, Khan MK, MacLachlan MJ. Funktionsmaterialien mit Cellulose-basierten Flüssigkristall-Templaten. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Zhang JH, Xie SM, Zhang M, Zi M, He PG, Yuan LM. Novel Inorganic Mesoporous Material with Chiral Nematic Structure Derived from Nanocrystalline Cellulose for High-Resolution Gas Chromatographic Separations. Anal Chem 2014; 86:9595-602. [DOI: 10.1021/ac502073g] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jun-Hui Zhang
- Department
of Chemistry, East China Normal University, Shanghai 200241, People’s Republic of China
| | - Sheng-Ming Xie
- Department
of Chemistry, Yunnan Normal University, Kunming 650500, People’s Republic of China
| | - Mei Zhang
- Department
of Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming 650500, People’s Republic of China
| | - Min Zi
- Department
of Chemistry, Yunnan Normal University, Kunming 650500, People’s Republic of China
| | - Pin-Gang He
- Department
of Chemistry, East China Normal University, Shanghai 200241, People’s Republic of China
| | - Li-Ming Yuan
- Department
of Chemistry, East China Normal University, Shanghai 200241, People’s Republic of China
- Department
of Chemistry, Yunnan Normal University, Kunming 650500, People’s Republic of China
| |
Collapse
|