1
|
Jose J, Yadav A, Tripathi CB. Photoinduced [4+2] cycloaddition of dienes and quinonemethides. Chem Commun (Camb) 2024; 60:11315-11318. [PMID: 39295578 DOI: 10.1039/d4cc03778b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
A visible light-induced cycloaddition of 1,3-dienes and p-quinonemethides through EDA complexation is reported. The reaction does not require any external photocatalyst, oxidant or additive. The generality of the method is established through a broad substrate scope. This newly developed strategy presents an exciting prospect for the development of metal-free photocatalytic [4+2] cycloaddition reactions.
Collapse
Affiliation(s)
- Jobsy Jose
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Arun Yadav
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Chandra Bhushan Tripathi
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
2
|
Tian JS, Yi-Gong, Wu ZW, Yu JS, Zhou J. H-Bond Donor-Directed Switch of Diastereoselectivity in the Enantioselective Intramolecular Aza-Henry Reaction of Ketimines. Chemistry 2024:e202402488. [PMID: 39120485 DOI: 10.1002/chem.202402488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/10/2024]
Abstract
We report an H-bond donor controlled diastereoselective switchable intramolecular aza-Henry reaction of ketimines derived from α-ketoesters and 2-(2-nitroethyl)anilines, allowing facile access to chiral tetrahydroquinolines bearing an aza-quaternary carbon stereocenter, which are privileged scaffold for medicinal researches. While newly developed cinchona alkaloid derived phosphoramide-bearing quaternary ammonium salt C2 selectively give cis-adducts in up to 20 : 1 dr and 99 % ee, the corresponding urea-bearing analogue C8 preferentially give trans-adducts in up to 20 : 1 dr and 99 % ee.
Collapse
Affiliation(s)
- Jun-Song Tian
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Yi-Gong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Zhong-Wei Wu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Jin-Sheng Yu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
| | - Jian Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
3
|
Li Y, Shi H, Yin G. Synthetic techniques for thermodynamically disfavoured substituted six-membered rings. Nat Rev Chem 2024; 8:535-550. [PMID: 38822206 DOI: 10.1038/s41570-024-00612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 06/02/2024]
Abstract
Six-membered rings are ubiquitous structural motifs in bioactive compounds and multifunctional materials. Notably, their thermodynamically disfavoured isomers, like disubstituted cyclohexanes featuring one substituent in an equatorial position and the other in an axial position, often exhibit enhanced physical and biological activities in comparison with their opposite isomers. However, the synthesis of thermodynamically disfavoured isomers is, by its nature, challenging, with only a limited number of possible approaches. In this Review, we summarize and compare synthetic methodologies that produce substituted six-membered rings with thermodynamically disfavoured substitution patterns. We place particular emphasis on elucidating the crucial stereoinduction factors within each transformation. Our aim is to stimulate interest in the synthesis of these unique structures, while simultaneously providing synthetic chemists with a guide to approaching this synthetic challenge.
Collapse
Affiliation(s)
- Yangyang Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, China
| | - Hongjin Shi
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, China
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
4
|
Liang Y, Bian T, Yadav K, Zhou Q, Zhou L, Sun R, Zhang Z. Selective 1,4-syn-Addition to Cyclic 1,3-Dienes via Hybrid Palladium Catalysis. ACS CENTRAL SCIENCE 2024; 10:1191-1200. [PMID: 38947211 PMCID: PMC11212138 DOI: 10.1021/acscentsci.4c00094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 07/02/2024]
Abstract
1,4-cis-Disubstituted cyclic compounds play a pivotal role in pharmaceutical development, offering enhanced potency and bioavailability. However, their stereoselective and modular synthesis remains a long-standing challenge. Here, we report an innovative strategy for accessing these structures via mild conditions employing cyclic 1,3-dienes/alkyl(aryl)halides and amines. This procedure exhibits a wide substrate scope that tolerates various functional groups. The utility of this method is demonstrated in the efficient synthesis of a TRPV6 inhibitor, CFTR modulator, and other bioactive molecules. Combined experimental and computational studies suggest that the hybrid palladium-catalyzed radical-polar crossover mechanism is crucial for achieving exceptional 1,4-syn-addition selectivity (dr > 20:1).
Collapse
Affiliation(s)
- Yan Liang
- Key
Laboratory of the Ministry of Education for Advanced Catalysis Materials,
College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321017, China
| | - Tiancen Bian
- Department
of Chemistry, University of Hawai’i
at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Komal Yadav
- Department
of Chemistry, University of Hawai’i
at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Qixin Zhou
- Key
Laboratory of the Ministry of Education for Advanced Catalysis Materials,
College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321017, China
| | - Liejin Zhou
- Key
Laboratory of the Ministry of Education for Advanced Catalysis Materials,
College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321017, China
| | - Rui Sun
- Department
of Chemistry, University of Hawai’i
at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Zuxiao Zhang
- Key
Laboratory of the Ministry of Education for Advanced Catalysis Materials,
College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321017, China
- Department
of Chemistry, University of Hawai’i
at Ma̅noa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
5
|
Wei XP, Wang XC, Ma T, Qiao XX, Li G, He Y, Zhao XJ. B(C 6F 5) 3/CPA-Catalyzed Aza-Diels-Alder Reaction of 3,3-Difluoro-2-Aryl-3H-indoles and Unactivated Dienes. Chemistry 2024; 30:e202401008. [PMID: 38624085 DOI: 10.1002/chem.202401008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Here we report B(C6F5)3/CPA-catalyzed enantioselective aza-Diels-Alder reaction of 3,3-difluoro-2-Aryl-3H-indoles with unactivated dienes to access chiral 10,10-difluoro-tetrahydropyrido[1,2-a]indoles. This protocol allows the formation of pyrazole-based C2-quaternary indolin-3-ones with high enantioselectivities and regioselectivities. Moreover, gram-scale synthesis of the 10,10-difluoro-tetrahydropyrido[1,2-a]indole skeleton was successfully achieved without any reduction in both yield and enantioselectivity.
Collapse
Affiliation(s)
- Xing-Pin Wei
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xin-Chun Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Tao Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal, Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| |
Collapse
|
6
|
Liang P, Wei J, Wei Y, Wang X, Liu F, Wang T. Hetero Diels-Alder reactions of isolable N-borylenamines. Chem Commun (Camb) 2024; 60:5964-5967. [PMID: 38767204 DOI: 10.1039/d4cc01645a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
A new strategy for N-borylenamines by reaction of 2-alkynyl benzyl azides with B(C6F5)3 was developed. This novel 1,3-carboboration reaction proceeded via a 5-exo-dig cyclization/formal 1,1-carboboration/B(C6F5)2 shift reaction sequence. Additionally, N-borylenamines can undergo hetero Diels-Alder (HDA) reactions with a variety of dienophiles. Our results are an attractive complement to HDA reactions.
Collapse
Affiliation(s)
- Pei Liang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Junhui Wei
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Yongliang Wei
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Xue Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Fei Liu
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Tongdao Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
7
|
Jin Y, Li M, Chen Y, Li J, Wu W, Jiang H. Synthesis of Dienamides via Palladium-catalyzed Oxidative N-α,β-Dehydrogenation of Amides. Org Lett 2024; 26:4218-4223. [PMID: 38747898 DOI: 10.1021/acs.orglett.4c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Enamides and their derivatives are prominent bioactive pharmacophores found in various bioactive molecules. Herein we report a palladium-catalyzed oxidative N-α,β-dehydrogenation of amides to produce a range of enamides with high yields and excellent tolerance toward different functional groups. Mechanistic studies indicate that the reaction involves allylic C(sp3)-H activation followed by β-H elimination. The effectiveness of this approach is demonstrated through late-stage functionalization of bioactive molecules and the synthesis of valuable compounds through product elaboration.
Collapse
Affiliation(s)
- Yangbin Jin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mingda Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yupeng Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiarui Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Zhang Y, Chen SS, Li KD, Huang HM. Cyclic Amine Synthesis via Catalytic Radical-Polar Crossover Cycloadditions. Angew Chem Int Ed Engl 2024; 63:e202401671. [PMID: 38418423 DOI: 10.1002/anie.202401671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/01/2024]
Abstract
The rapid assembly of valuable cyclic amine architectures in a single step from simple precursors has been recognized as an ideal platform in term of efficiency and sustainability. Although a vast number of studies regarding cyclic amine synthesis has been reported, new synthetic disconnection approaches are still high in demand. Herein, we report a catalytic radical-polar crossover cycloaddition to cyclic amine synthesis triggered from primary sulfonamide under photoredox condition. This newly developed disconnection, comparable to established synthetic approaches, will allow to construct β, β-disubstituted cyclic amine and β-monosubstituted cyclic amine derivatives efficiently. This study highlights the unique utility of primary sulfonamide as a bifunctional reagent, which acts as a radical precursor and a nucleophile. The open-shell methodology demonstrates broad tolerance to various functional groups, drug derivatives and natural products in an economically and sustainable fashion.
Collapse
Affiliation(s)
- Ying Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210, Shanghai, China
| | - Shu-Sheng Chen
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210, Shanghai, China
| | - Kai-Dian Li
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210, Shanghai, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, 201210, Shanghai, China
| |
Collapse
|
9
|
Liu Z, Qian QC, Chen LM, Li X. B(C 6F 5) 3/Chiral Phosphoric Acid Catalyzed Asymmetric Aza-Diels-Alder Reaction of Imines and Unactivated Dienes. Org Lett 2024; 26:3247-3251. [PMID: 38557202 DOI: 10.1021/acs.orglett.4c00874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein, we report an asymmetric aza-Diels-Alder reaction of quinoxalinones or benzoxazinones with unactivated dienes by utilizing a B(C6F5)3/chiral phosphoric acid catalyst to construct chiral six-membered N-heterocycles. Various quinoxalinones or benzoxazinones with electron-withdrawing and electron-donating groups and unactivated dienes were tolerated (up to 99% yield and 99% ee) in the methodology with only 2 mol % catalyst loading. Moreover, the luminescence mechanism and photophysical properties of the product were tested and used for anticounterfeiting of QR codes.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qing-Chun Qian
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Li-Ming Chen
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
10
|
Kong W, Bao Y, Lu L, Han Z, Zhong Y, Zhang R, Li Y, Yin G. Base-Modulated 1,3-Regio- and Stereoselective Carboboration of Cyclohexenes. Angew Chem Int Ed Engl 2023; 62:e202308041. [PMID: 37428115 DOI: 10.1002/anie.202308041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/11/2023]
Abstract
While chain-walking stimulates wide interest in both polymerization and organic synthesis, site- and stereoselective control of chain-walking on rings is still a challenging task in the realm of organometallic catalysis. Inspired by a controllable chain-walking on cyclohexane rings in olefin polymerization, we have developed a set of chain-walking carboborations of cyclohexenes based on nickel catalysis. Different from the 1,4-trans-selectivity disclosed in polymer science, a high level of 1,3-regio- and cis-stereoselectivity is obtained in our reactions. Mechanistically, we discovery that the base affects the reduction ability of B2 pin2 and different bases lead to different catalytic cycles and different regioselective products (1,2- Vs 1,3-addition). This study provides a concise and modular method for the synthesis of 1,3-disubstituted cyclohexylboron compounds. The incorporation of a readily modifiable boronate group greatly enhances the value of this method, the synthetic potential of which was highlighted by the synthesis of a series of high-valued commercial chemicals and pharmaceutically interesting molecules.
Collapse
Affiliation(s)
- Weiyu Kong
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Yang Bao
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Liguo Lu
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Zhipeng Han
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Yifan Zhong
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Ran Zhang
- Core Facility of Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Yuqiang Li
- Shanghai AI Laboratory, Shanghai, 200030, P. R. China
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
11
|
Sonawane HR, Vibhute BT, Aghav BD, Deore JV, Patil SK. Versatile applications of transition metal incorporating quinoline Schiff base metal complexes: An overview. Eur J Med Chem 2023; 258:115549. [PMID: 37321110 DOI: 10.1016/j.ejmech.2023.115549] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Since the last decade, research on quinoline Schiff base metal complexes has risen substantially due to their versatile applications across many significant fields. Schiff bases are also known as azomethines, aldimines, and imines. Quinoline Schiff base-derived metal complexes are intriguing to study topics. These complexes are employed in biological, analytical, and catalytic fields. Researchers have found that Schiff bases are more biologically active when coordinated with metal ions. Research in the biological sciences has shown that heterocyclic compounds like quinoline and its derivatives are important. Because of their broad spectrum of activity, quinoline derivatives have been discovered to be effective therapeutic agents for various disorders. Even though various classical synthetic pathways mentioned in the literature are still in use, there is an urgent need for a new, more effective method that is safer for the environment, has a higher yield, generates less hazardous waste, and is easier to use. This highlights the critical need for a safe, eco-friendly approach to quinoline scaffold synthesis. This review focuses exclusively on Schiff base metal complexes derived from quinoline, fabricated and studied in the past ten years, and having anticancer, antibacterial, antifungal, antioxidant, antidiabetic, antiproliferative, DNA-intercalation, and cytotoxic activities.
Collapse
Affiliation(s)
- Harshad R Sonawane
- Department of Chemistry, Changu Kana Thakur A.C.S. College, New panvel(Autonomous), New Panvel, 410206, University of Mumbai, Maharashtra, India; Department of Chemistry, G. M. Vedak College of Science, Tala-Raigad, 402111, Maharashtra, India.
| | - Baliram T Vibhute
- Department of Chemistry Doshi Vakil Arts and G.C.U.B. Science and Commerce College, Goregaon, Raigad, 402103, Maharashtra, India
| | - Balasaheb D Aghav
- Department of Chemistry, Changu Kana Thakur A.C.S. College, New panvel(Autonomous), New Panvel, 410206, University of Mumbai, Maharashtra, India
| | - Jaydeep V Deore
- Department of Chemistry, G. M. Vedak College of Science, Tala-Raigad, 402111, Maharashtra, India
| | - Sanjay K Patil
- Department of Chemistry, Changu Kana Thakur A.C.S. College, New panvel(Autonomous), New Panvel, 410206, University of Mumbai, Maharashtra, India.
| |
Collapse
|
12
|
Tang S, Cheng Z, Zhang P, Shao Y, Sun J. Access to Chiral Tetrahydroquinazolines/1,3-Benzoxazines via Iridium-Catalyzed Asymmetric [4 + 2] Cycloaddition. Org Lett 2023; 25:3639-3643. [PMID: 37191318 DOI: 10.1021/acs.orglett.3c01004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
An iridium-catalyzed asymmetric [4 + 2] cycloaddition of 1,3,5-triazinanes with 2-(1-hydroxyallyl)anilines/2-(1-hydroxyallyl)phenols has been developed, providing a straightforward and efficient approach to a wide range of tetrahydroquinazolines in good yields and excellent enantioselectivities (up to >99% ee). Typically, chiral 1,3-benzoxazines, which are challenging substrates in asymmetric [4 + 2] cycloaddition, could be obtained in excellent enantioselectivities via this protocol.
Collapse
Affiliation(s)
- Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zhangru Cheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Peng Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
13
|
Zhu F, Xue J, Yin P. Cu-Catalyzed Polychloromethylamination of Styrenes through C(sp 3 )-H Bond Cleavage. Chemistry 2023; 29:e202203079. [PMID: 36573558 DOI: 10.1002/chem.202203079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 12/28/2022]
Abstract
A copper-catalyzed three-component coupling reaction has been developed allowing the rapid building of valuable complex highly functionalized β-polychloromethyl amines from simple styrenes, arylamines, and dichloromethane/chloroform. Using aryldiazonium salts as a radical initiator, a series of corresponding products are obtained with moderate to good yields under a carbon dioxide or nitrogen atmosphere (50 psi). In addition, good functional group tolerance can be observed.
Collapse
Affiliation(s)
- Fengxiang Zhu
- School of Chemistry and Chemical Engineering, Shanxi University, 92 Wucheng Rd S., Taiyuan, 030006, P. R. China)
| | - Jianxin Xue
- School of Chemistry and Chemical Engineering, Shanxi University, 92 Wucheng Rd S., Taiyuan, 030006, P. R. China)
| | - Pengpeng Yin
- School of Chemistry and Chemical Engineering, Shanxi University, 92 Wucheng Rd S., Taiyuan, 030006, P. R. China)
| |
Collapse
|
14
|
Zhou H, Pan R, Xu M, Ma J, Lin A, Yao H. Construction of oxygenated 2-azabicyclo[2.2.1]heptanes via palladium-catalyzed 1,2-aminoacyloxylation of cyclopentenes. Chem Commun (Camb) 2023; 59:3574-3577. [PMID: 36880405 DOI: 10.1039/d2cc06581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Herein, we describe a palladium-catalyzed 1,2-aminoacyloxylation of cyclopentenes to synthesize oxygenated 2-azabicyclo[2.2.1]heptanes. This reaction proceeds efficiently with a broad array of substrates. The products could be further functionalized to build up a library of bridged aza-bicyclic structures.
Collapse
Affiliation(s)
- Haipin Zhou
- College of Materials & Chemical Engineering, Chuzhou University, 1 West Huifeng Road, Chuzhou, 239000, P. R. China
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Rui Pan
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Menghua Xu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Jiao Ma
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| |
Collapse
|
15
|
Carbocation Catalysis in the Synthesis of Heterocyclic Compounds. Chem Heterocycl Compd (N Y) 2023. [DOI: 10.1007/s10593-023-03157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
16
|
Duan P, Sun J, Zhu Z, Zhang M. Selective access to fused tetrahydroquinolines via a copper-catalysed oxidative three-component annulation reaction. Org Biomol Chem 2023; 21:397-401. [PMID: 36524713 DOI: 10.1039/d2ob02066a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Via a copper-catalyzed three-component annulation reaction, we herein report a new method for the direct and syn-selective construction of cyclic ether-fused tetrahydroquinolines from readily available secondary anilines, saturated five or six-membered cyclic ethers, and paraformaldehyde. The synthesis features operational simplicity, excellent step and atom efficiency, good functionality and substrate compatibility. In comparison with the reported synthetic protocols capable of synthesizing N-alkyl fused tetrahydroquinolines, this newly developed chemistry allows access to both N-alkyl and N-aryl products. The current work complements the preparation of fused tetrahydroquinolines.
Collapse
Affiliation(s)
- Peng Duan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China.
| | - Jialu Sun
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China.
| | - Zhibo Zhu
- Clinical Research Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, P. R. China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China.
| |
Collapse
|
17
|
Ravi A, Srikanth G, Khanfar MA, Al-Qawasmeh RA, El-Gamal MI, Al-Tel TH. Blue Light-Driven [4+2]-Cycloaddition: Diastereoselective Synthesis of Chromeno[4,3- b]quinoline and Chromeno[4,3- b][1,8]naphthyridine Scaffolds. J Org Chem 2022; 87:16722-16735. [PMID: 36453755 DOI: 10.1021/acs.joc.2c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A one-pot, metal-free, light-driven [4+2]-cycloaddition reaction is described by accessing a diverse collection of chromeno[4,3-b]quinoline and chromeno[4,3-b][1,8]naphthyridine scaffolds in a diastereoselective manner. This process delivered stereoisomers, which were challenging to produce by an inverse-demand Diels-Alder reaction. The tetracyclic products were provided in good yields, promoted by rose bengal and blue light in a single operation. The developed protocol proceeded efficiently without the need for expensive photosensitizers such as Ir or Ru complexes. The cascade is modular and step-economic, and the substrate scope is wide. Polycyclic architectures can be assembled from readily available aniline, aminoazine, indole, and salicylaldehyde derivatives.
Collapse
Affiliation(s)
- Anil Ravi
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah27272, UAE
| | - Gourishetty Srikanth
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah26666, UAE
| | - Monther A Khanfar
- College of Science, Department of Chemistry, Pure and Applied Chemistry Group, University of Sharjah, P.O. Box 27272, Sharjah27272, UAE
| | - Raed A Al-Qawasmeh
- Department of Chemistry, College of Science, University of Sharjah, P.O. Box 27272, Sharjah27272, UAE
| | - Mohammed I El-Gamal
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah27272, UAE
| | | |
Collapse
|
18
|
Sachdeva G, Vaya D, Srivastava CM, Kumar A, Rawat V, Singh M, Verma M, Rawat P, Rao GK. Calix[n]arenes and its derivatives as organocatalysts. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Zeng Z, Gao H, Zhou Z, Yi W. Intermolecular Redox-Neutral Carboamination of C–C Multiple Bonds Initiated by Transition-Metal-Catalyzed C–H Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Zhongyi Zeng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| |
Collapse
|
20
|
Hu F, Chu Y, Cao Z, Li Y, Hui XP. Enantioselective Synthesis of Functionalized Tetrahydropyridines through Iridium-Catalyzed Formal [5+1] Annulation. Org Lett 2022; 24:6945-6950. [PMID: 36129810 DOI: 10.1021/acs.orglett.2c02750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient iridium-catalyzed asymmetric formal [5+1] annulation by in situ generation of enamines as N-nucleophiles for the synthesis of tetrahydropyridine derivatives is disclosed. The methodology offers direct access to a wide variety of chiral tetrahydropyridine derivatives in moderate to good yields and excellent enantioselectivity.
Collapse
Affiliation(s)
- Fang Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yunpeng Chu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhengqiang Cao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yucheng Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xin-Ping Hui
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
21
|
Ghosh B, Harariya MS, Mukherjee S. Catalytic Enantioselective
de novo
Construction of Chiral Arenes through Desymmetrizing Oxidative [4+2]‐Cycloaddition. Angew Chem Int Ed Engl 2022; 61:e202204523. [DOI: 10.1002/anie.202204523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Biki Ghosh
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| | | | - Santanu Mukherjee
- Department of Organic Chemistry Indian Institute of Science Bangalore 560 012 India
| |
Collapse
|
22
|
Mo NF, Zhang Y, Guan ZH. Highly Enantioselective Three-Component Povarov Reaction for Direct Construction of Azaspirocycles. Org Lett 2022; 24:6397-6401. [PMID: 36018318 DOI: 10.1021/acs.orglett.2c02421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An asymmetric organocatalyzed three-component Povarov reaction to construct azaspirocycles has been developed. A chiral phosphoric acid OCF-CPA bearing o-CF3-aryl on the H8-BINOL-framework is highly efficient in the reaction. The reaction was carried out under mind conditions for synthesis of a range of azaspirocycles in high yields and high to excellent enantioselectivities, thus expending the substrate scope of the traditional Povarov reaction.
Collapse
Affiliation(s)
- Nan-Fang Mo
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Ying Zhang
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| |
Collapse
|
23
|
Shirazian TS, Zahedian Tejeneki H, Nikbakht A, Rominger F, Balalaie S. Sequential Base‐Promoted Formal [4+2] Allenoate Based Cycloaddition: An Efficient Strategy for the Synthesis of Functionalized Acridines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Toktam S. Shirazian
- KN Toosi University of Technology Department of Chemistry Tehran IRAN (ISLAMIC REPUBLIC OF)
| | | | - Ali Nikbakht
- KN Toosi University of Technology Department of Chemistry Tehran IRAN (ISLAMIC REPUBLIC OF)
| | - Frank Rominger
- Heidelberg University Organisch-Chemisches Institut Heidelberg GERMANY
| | - Saeed Balalaie
- K N Toosi University of Technology Faculty of General Science Chemistry Department PO Box 15875-4416 15875-4416 Tehran IRAN (ISLAMIC REPUBLIC OF)
| |
Collapse
|
24
|
Sarkar S, Sarkar P, Samanta D, Pati SK, Rath SP. Cooperativity in Diiron(III)porphyrin Dication Diradical-Catalyzed Oxa-Diels–Alder Reactions: Spectroscopic and Mechanistic Insights. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sabyasachi Sarkar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Pallavi Sarkar
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore 560064, India
| | - Deepannita Samanta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore 560064, India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
25
|
Ghosh B, Harariya MS, Mukherjee S. Catalytic Enantioselective de novo Construction of Chiral Arenes through Desymmetrizing Oxidative [4+2]‐Cycloaddition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Biki Ghosh
- IISc: Indian Institute of Science Department of Organic Chemistry C V Raman Road 560012 Bangalore INDIA
| | - Mahesh Singh Harariya
- IISc: Indian Institute of Science Department of Organic Chemistry C V Raman Road 560012 Bangalore INDIA
| | - Santanu Mukherjee
- Indian Institute of Science Department of Organic Chemistry C V Raman Avenue 560012 Bangalore INDIA
| |
Collapse
|
26
|
Miao YH, Hua YZ, Gao HJ, Mo NN, Wang MC, Mei GJ. Catalytic asymmetric inverse-electron-demand aza-Diels-Alder reaction of 1,3-diazadienes with 3-vinylindoles. Chem Commun (Camb) 2022; 58:7515-7518. [PMID: 35687078 DOI: 10.1039/d2cc02458f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A facile chiral phosphoric-acid catalyzed asymmetric inverse-electron-demand aza-Diels-Alder reaction of 1,3-diazadienes with 3-vinylindoles was established. By using this mild and practical protocol, a broad range of benzothiazolopyrimidines with three contiguous stereogenic centers were prepared in good yields and excellent diastereo- and enantio-selectivities (43 examples, up to 83% yield, >99% ee and all >20 : 1 dr). A plausible concerted reaction pathway enabled by the dual hydrogen-bonding effect was proposed to account for the observed excellent enantioselectivity and specific trans-trans diastereoselectivity.
Collapse
Affiliation(s)
- Yu-Hang Miao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yuan-Zhao Hua
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Hao-Jie Gao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Nan-Nan Mo
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Min-Can Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Guang-Jian Mei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
27
|
Li Y, Li Y, Shi H, Wei H, Li H, Funes-Ardoiz I, Yin G. Modular access to substituted cyclohexanes with kinetic stereocontrol. Science 2022; 376:749-753. [PMID: 35549424 DOI: 10.1126/science.abn9124] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Substituted six-membered cyclic hydrocarbons are common constituents of biologically active compounds. Although methods for the synthesis of thermodynamically favored, disubstituted cyclohexanes are well established, a reliable and modular protocol for the synthesis of their stereoisomers is still elusive. Herein, we report a general strategy for the modular synthesis of disubstituted cyclohexanes with excellent kinetic stereocontrol from readily accessible substituted methylenecyclohexanes by the implementation of chain-walking catalysis. Mechanistically, the initial introduction of a sterically demanding boron ester group adjacent to the cyclohexane is key to guiding the stereochemical outcome. The synthetic potential of this methodology has been highlighted in late-stage modification of complex bioactive molecules and in comparison with current cross-coupling techniques.
Collapse
Affiliation(s)
- Yangyang Li
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yuqiang Li
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Hongjin Shi
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Hong Wei
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Haoyang Li
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ignacio Funes-Ardoiz
- Department of Chemistry, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
28
|
Ma W, Montinho‐Inacio E, Iorga BI, Retailleau P, Moreau X, Neuville L, Masson G. Chiral Phosphoric Acid‐Catalyzed Enantioselective Formal [4+2] Cycloaddition Between Dienecarbamates and 2‐Benzothioazolimines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Wei‐Yang Ma
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Emeric Montinho‐Inacio
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Bogdan I. Iorga
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Xavier Moreau
- Institut Lavoisier de Versailles (ILV) UMR CNRS 8180 Université Versailles-St-Quentin-en-Yvelines, Université Paris-Saclay 45 avenue des États-Unis, Bâtiment Lavoisier 78035 Versailles Cedex France
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
- Labcom HITCAT joint lab CNRS-SEQENS ZI de Limay 2 8 rue de Rouen 78440 Porcheville France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS UPR 2301 Université Paris-Saclay 1, avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
- Labcom HITCAT joint lab CNRS-SEQENS ZI de Limay 2 8 rue de Rouen 78440 Porcheville France
| |
Collapse
|
29
|
de Fátima Â, Fernandes SA, Ferreira de Paiva W, de Freitas Rego Y. The Povarov Reaction: A Versatile Method to Synthesize Tetrahydroquinolines, Quinolines and Julolidines. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1794-8355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe multicomponent Povarov reaction represents a powerful approach for the construction of substances containing N-heterocyclic frameworks. By using the Povarov reaction, in addition to accessing tetrahydroquinolines, quinolines and julolidines in a single step, it is possible to form the following new bonds: two Csp
3–Csp
3 and one Csp
3–Nsp
3, two Csp
2–Csp
2 and one Csp
2–Nsp
2, and four Csp
3–Csp
3 and two Csp
3–Nsp
1, respectively. This short review discusses the main features of the Povarov reaction, including its mechanism, the reaction scope by employing different catalysts and substrates, as well as stereoselective versions.1 Introduction2 Mechanism of the Povarov Reaction3 Tetrahydroquinolines4 Quinolines5 Julolidines6 Concluding Remarks
Collapse
Affiliation(s)
- Ângelo de Fátima
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais
| | | | | | | |
Collapse
|
30
|
Biswas A, Kundu S, Maji MS, Pal D, Pal A. Organocatalyzed Oxa-Diels–Alder Reactions: Recent Progress. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1514-1049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe oxa-Diels–Alder reaction is a straightforward, atom-economical process for the construction of six-membered oxacycles, which are privileged structures due to their very common occurrence in several pharmaceuticals and natural products. As with many other asymmetric transformations, organocatalysis provides an elegant pathway to their synthesis via [4+2] annulation under mild reaction conditions. The oxa-Diels–Alder reaction utilizes either an α,β-unsaturated carbonyl as an oxa-diene with a suitable dienophile or a simple carbonyl as a dienophile with other dienes. A range of organocatalysts has been explored in the past decade to execute this strategy. The catalysts induce stereoselectivities via two basic reactivities: (1) The formation of chiral intermediates, or (2) selectively activating suitable reactants via a transition state. The present short review compiles organocatalyzed asymmetric oxa-Diels–Alder reactions published over the last ten years, along with detailed discussions on mechanistic approaches.1 Introduction2 Catalysis through Covalent Activation2.1 N-Heterocyclic Carbenes2.2 Amines2.3 Isothiourea Catalysis2.4 Phosphines3 Catalysis through Non-Covalent Activation3.1 Bifunctional Amines3.2 Brønsted Acids3.3 Guanidines4 Multicatalysis through Both Covalent and Non-Covalent Activation5 Conclusion
Collapse
Affiliation(s)
- Anup Biswas
- Department of Chemistry, Hooghly Women’s College
| | - Samrat Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur
| | - Dhananjoy Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur
| | - Amit Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur
| |
Collapse
|
31
|
Lemos BC, Venturini Filho E, Fiorot RG, Medici F, Greco SJ, Benaglia M. Enantioselective Povarov Reactions: An Update of a Powerful Catalytic Synthetic Methodology. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Bárbara C. Lemos
- Chemistry Department Federal University of Espírito Santo Vitória Espírito Santo CEP.: 29075-910 Brazil
| | - Eclair Venturini Filho
- Chemistry Department Federal University of Espírito Santo Vitória Espírito Santo CEP.: 29075-910 Brazil
| | - Rodolfo G. Fiorot
- Chemistry Institute Federal Fluminense University Outeiro de São João Batista RJ, 24020-141 Niteroi Brazil
| | - Fabrizio Medici
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 Milano Italy
| | - Sandro J. Greco
- Chemistry Department Federal University of Espírito Santo Vitória Espírito Santo CEP.: 29075-910 Brazil
| | - Maurizio Benaglia
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 Milano Italy
| |
Collapse
|
32
|
Ma JT, Chen T, Chen XL, Zhou Y, Yu ZC, Zhuang SY, Alimu M, Wu YD, Xiang JC, Wu AX. One-step synthesis of azepino[3,4- b]indoles by cooperative aza-[4 + 3] cycloaddition from readily available feedstocks. Org Chem Front 2022. [DOI: 10.1039/d2qo00816e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate the feasibility of obtaining azepino[3,4-b]indoles by one-step synthesis from a four-component reaction system comprising readily available starting materials. This transformation affords a diverse range of azepino[3,4-b]indoles in a highly efficient manner.
Collapse
Affiliation(s)
- Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ting Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiang-Long Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhi-Cheng Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shi-Yi Zhuang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Maierhaba Alimu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jia-Chen Xiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
33
|
Yan K, Liu M, Wen J, Liu X, Wang X, Sui X, Shang W, Wang X. Synthesis of 3-substituted quinolines by ruthenium-catalyzed aza-Michael addition and intramolecular annulation of enaminones with anthranils. NEW J CHEM 2022. [DOI: 10.1039/d2nj00663d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for the synthesis of 3-substituted quinolines by ruthenium-catalyzed aza-Michael addition and intramolecular annulation of enaminones with anthranils has been developed.
Collapse
Affiliation(s)
- Kelu Yan
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Min Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Jiangwei Wen
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xiao Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xiaoyu Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xinlei Sui
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Wenda Shang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xiu Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| |
Collapse
|
34
|
Nanda SK, Mallik R. Transition Metal‐Catalyzed Carboamination of Alkenes and Allenes: Recent Progress. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Santosh Kumar Nanda
- Department of Chemistry, School of Applied Science Centurion University of Technology and Management Paralakhemundi Odisha 761211 India
| | - Rosy Mallik
- Department of Chemistry, School of Applied Science Centurion University of Technology and Management Paralakhemundi Odisha 761211 India
| |
Collapse
|
35
|
Yuan SP, Dou PH, Jia YQ, Zhao JQ, You Y, Wang ZH, Zhou MQ, Yuan WC. Catalytic asymmetric aromatizing inverse electron-demand [4+2] cycloaddition of 1-thioaurones and 1-azaaurones. Chem Commun (Camb) 2021; 58:553-556. [PMID: 34908046 DOI: 10.1039/d1cc06357j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using 1-thioaurones and 1-azaaurones as electron-deficient oxa-dienes, an organocatalytic asymmetric aromatizing inverse electron-demand [4+2] cycloaddition with γ-deconjugated butenolides and azlactones was developed. A wide range of optically active benzothiophene-fused δ-lactones and indole-fused δ-lactones were obtained with desirable outcomes (up to 94% yield, >99 : 1 dr and 99% ee).
Collapse
Affiliation(s)
- Shu-Pei Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China. .,Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei-Hao Dou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China. .,Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Qing Jia
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China. .,Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China. .,Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
36
|
Xu X, Zheng X, Xu X. Synthesis of Tetrahydroquinolines by Scandium-Catalyzed [3 + 3] Annulation of Anilines with Allenes and Dienes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xian Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xizhou Zheng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
37
|
Aza-Diels-Alder reaction of both electron-deficient azoalkenes with electron-deficient 3-phencaylideneoxindoles and 3-aryliminooxindol-2-ones. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
38
|
Genet M, Takfaoui A, Marrot J, Greck C, Moreau X. Construction of Enantioenriched 4,5,6,7‐Tetrahydrofuro[2,3‐
b
]pyridines through a Multicatalytic Sequence Merging Gold and Amine Catalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Manon Genet
- Institut Lavoisier de Versailles (ILV) Univ. Versailles-St-Quentin-en-Yvelines, Univ Paris Saclay UMR CNRS 8180 78035 Versailles Cedex France
| | - Abdelilah Takfaoui
- Institut Lavoisier de Versailles (ILV) Univ. Versailles-St-Quentin-en-Yvelines, Univ Paris Saclay UMR CNRS 8180 78035 Versailles Cedex France
| | - Jérôme Marrot
- Institut Lavoisier de Versailles (ILV) Univ. Versailles-St-Quentin-en-Yvelines, Univ Paris Saclay UMR CNRS 8180 78035 Versailles Cedex France
| | - Christine Greck
- Institut Lavoisier de Versailles (ILV) Univ. Versailles-St-Quentin-en-Yvelines, Univ Paris Saclay UMR CNRS 8180 78035 Versailles Cedex France
| | - Xavier Moreau
- Institut Lavoisier de Versailles (ILV) Univ. Versailles-St-Quentin-en-Yvelines, Univ Paris Saclay UMR CNRS 8180 78035 Versailles Cedex France
| |
Collapse
|
39
|
Electrocyclizations of Conjugated Azapolyenes Produced in Reactions of Azaheterocycles with Metal Carbenes. ORGANICS 2021. [DOI: 10.3390/org2030017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Conjugated azapolyenes (azabuta-1,3-dienes, aza-/diaza-/oxaza-/oxadiazahexa-1,3,5-trienes) are highly reactive in electrocyclization reactions, which makes them convenient precursors for the synthesis of a wide range of four-, five-, and six-membered nitrogen heterocycles that are of relevance for medicinal chemistry. Ring opening reactions of 2H-azirines and azoles containing an N–N or N–O bond, initiated by a transition metal carbene, have become increasingly important in recent years, since they easily allow the generation of azapolyenes with different numbers of double bonds and heteroatoms in various positions. This review summarizes the literature, published mainly in the last decade, on the synthetic and mechanistic aspects of electrocyclizations of azapolyenes generated by the carbene method.
Collapse
|
40
|
Zhao Q, Li Y, Zhang QX, Cheng JP, Li X. Catalytic Asymmetric Aza-Diels-Alder Reaction of Ketimines and Unactivated Dienes. Angew Chem Int Ed Engl 2021; 60:17608-17614. [PMID: 34036702 DOI: 10.1002/anie.202104788] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/11/2021] [Indexed: 12/19/2022]
Abstract
The enantioselective aza-Diels-Alder reaction is efficient for constructing chiral tetrahydropyridines, but the catalytic asymmetric aza-Diels-Alder reaction of ketimines with unactivated dienes is still a challenging topic. Herein, guided by computational screening, a highly enantioselective aza-Diels-Alder reaction of 2-aryl-3H-indol-3-ones with unactivated dienes was realized by using a B(C6 F5 )3 /chiral phosphoric acid catalyst system under mild conditions. The reaction has a broad scope with respect to both aza-Diels-Alder reaction partners and hence offers rapid access to an array of tetrahydropyridine derivatives with pretty outcomes (up to 99 % yield, >20:1 dr and 98:2 er). The reaction is very efficient: lowering catalyst loadings for the model reaction to 0.1 mol %, enantioselectivity is still maintained. The synthetic utility was confirmed by transformations of the products. DFT calculations provide convincing evidence for the interpretation of stereoselection.
Collapse
Affiliation(s)
- Qun Zhao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yao Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Qing-Xia Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jin-Pei Cheng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.,Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
41
|
Zhao Q, Li Y, Zhang Q, Cheng J, Li X. Catalytic Asymmetric Aza‐Diels–Alder Reaction of Ketimines and Unactivated Dienes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qun Zhao
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yao Li
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Qing‐Xia Zhang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Jin‐Pei Cheng
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
42
|
Yu S, Bickelhaupt FM, Hamlin TA. Switch From Pauli-Lowering to LUMO-Lowering Catalysis in Brønsted Acid-Catalyzed Aza-Diels-Alder Reactions. ChemistryOpen 2021; 10:784-789. [PMID: 34351072 PMCID: PMC8340067 DOI: 10.1002/open.202100172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Brønsted acid-catalyzed inverse-electron demand (IED) aza-Diels-Alder reactions between 2-aza-dienes and ethylene were studied using quantum chemical calculations. The computed activation energy systematically decreases as the basic sites of the diene progressively become protonated. Our activation strain and Kohn-Sham molecular orbital analyses traced the origin of this enhanced reactivity to i) "Pauli-lowering catalysis" for mono-protonated 2-aza-dienes due to the induction of an asynchronous, but still concerted, reaction pathway that reduces the Pauli repulsion between the reactants; and ii) "LUMO-lowering catalysis" for multi-protonated 2-aza-dienes due to their highly stabilized LUMO(s) and more concerted synchronous reaction path that facilitates more efficient orbital overlaps in IED interactions. In all, we illustrate how the novel concept of "Pauli-lowering catalysis" can be overruled by the traditional concept of "LUMO-lowering catalysis" when the degree of LUMO stabilization is extreme as in the case of multi-protonated 2-aza-dienes.
Collapse
Affiliation(s)
- Song Yu
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands) and
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands) and
- Institute for Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands) and
| |
Collapse
|
43
|
|
44
|
Das S, Goswami G, Halder S, Ghorai MK. Domino imino-aldol-aza-Michael and imino-aldol-aza-Michael-imino-aldol reactions: Diastereoselective synthesis of highly functionalized 2,6-disubstituted piperidines. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Strelnikova JO, Koronatov AN, Rostovskii NV, Khlebnikov AF, Khoroshilova OV, Kryukova MA, Novikov MS. Rhodium-Catalyzed Denitrogenative Diazole-Triazole Coupling toward Aza-Bridged Structures and Imidazole-Based Chelating Ligands. Org Lett 2021; 23:4173-4178. [PMID: 33999636 DOI: 10.1021/acs.orglett.1c01092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
1,4,8-Triazaocta-1,3,5,7-tetraenes, generated in situ by Rh2(Piv)4-catalyzed denitrogenative coupling of pyrazoles with 1-sulfonyl-1,2,3-triazoles, smoothly form 2,6,8-triazabicyclo[3.2.1]octa-3,6-dienes via intramolecular aza-Diels-Alder cycloaddition. This domino reaction, combined with the subsequent thermal or acid-catalyzed rearrangement of the cycloadducts, provides direct and flexible access to N-sulfonylated (Z)-2-(2-aminovinyl)imidazoles.
Collapse
Affiliation(s)
- Julia O Strelnikova
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexander N Koronatov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Nikolai V Rostovskii
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexander F Khlebnikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Olesya V Khoroshilova
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Mariya A Kryukova
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Mikhail S Novikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
46
|
Gold-catalyzed C–H functionalization reactions involving carbene intermediate: Recent advances. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Abstract
This review collects for the first time enantioselective one-pot processes promoted
by green chiral zinc catalysts. It illustrates how much these cheap, non-toxic and environmentally
benign catalysts allow unprecedented asymmetric domino and tandem reactions of many
types to be achieved, allowing direct access to a wide variety of very complex chiral molecules.
Collapse
Affiliation(s)
- Hélène Pellissier
- Aix-Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| |
Collapse
|
48
|
Zhang Y, Wei Y, Shi M. A silver-catalyzed domino inverse electron-demand oxo-Diels-Alder reaction of 3-cyclopropylideneprop-2-en-1-ones with 2,3-dioxopyrrolidines via cyclobutane-fused furan. Chem Commun (Camb) 2021; 57:3599-3602. [PMID: 33710234 DOI: 10.1039/d1cc00707f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A silver-catalyzed diastereoselective one-pot domino cyclization-migration/inverse electron-demand oxo-Diels-Alder reaction has been disclosed in this communication through the in situ generated cyclobutane-fused furan intermediate with 4-vinyl-2,3-dioxopyrrolidine for the construction of 2-oxopyrrolidine-fused tricyclic compounds in moderate to good yields with a broad substrate scope under mild conditions. This new synthetic protocol features good efficiency and atom- and step-economy. A plausible reaction mechanism has also been proposed on the basis of previous reports, NMR tracing and control experiments.
Collapse
Affiliation(s)
- Yanshun Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China.
| | | | | |
Collapse
|
49
|
Borodkin GI, Elanov IR, Shubin VG. Carbocation Catalysis of Organic Reactions. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021030015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Zheng H, Wang R, Wang K, Wherritt D, Arman H, Doyle MP. Formal [4 + 4]-, [4 + 3]-, and [4 + 2]-cycloaddition reactions of donor-acceptor cyclobutenes, cyclopropenes and siloxyalkynes induced by Brønsted acid catalysis. Chem Sci 2021; 12:4819-4824. [PMID: 34168758 PMCID: PMC8179600 DOI: 10.1039/d1sc00158b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 02/04/2023] Open
Abstract
Brønsted acid catalyzed formal [4 + 4]-, [4 + 3]-, and [4 + 2]-cycloadditions of donor-acceptor cyclobutenes, cyclopropenes, and siloxyalkynes with benzopyrylium ions are reported. [4 + 2]-cyclization/deMayo-type ring-extension cascade processes produce highly functionalized benzocyclooctatrienes, benzocycloheptatrienes, and 2-naphthols in good to excellent yields and selectivities. Moreover, the optical purity of reactant donor-acceptor cyclobutenes is fully retained during the cascade. The 1,3-dicarbonyl product framework of the reaction products provides opportunities for salen-type ligand syntheses and the construction of fused pyrazoles and isoxazoles that reveal a novel rotamer-diastereoisomerism.
Collapse
Affiliation(s)
- Haifeng Zheng
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Rui Wang
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Kan Wang
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Daniel Wherritt
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Michael P Doyle
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|