1
|
Yesilay G, Dos Santos OAL, A BR, Hazeem LJ, Backx BP, J JV, Kamel AH, Bououdina M. Impact of pathogenic bacterial communities present in wastewater on aquatic organisms: Application of nanomaterials for the removal of these pathogens. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106620. [PMID: 37399782 DOI: 10.1016/j.aquatox.2023.106620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/05/2023]
Abstract
Contaminated wastewater (WW) can cause severe hazards to numerous delicate ecosystems and associated life forms. In addition, human health is negatively impacted by the presence of microorganisms in water. Multiple pathogenic microorganisms in contaminated water, including bacteria, fungi, yeast, and viruses, are vectors for several contagious diseases. To avoid the negative impact of these pathogens, WW must be free from pathogens before being released into stream water or used for other reasons. In this review article, we have focused on pathogenic bacteria in WW and summarized the impact of the different types of pathogenic bacteria on marine organisms. Moreover, we presented a variety of physical and chemical techniques that have been developed to provide a pathogen-free aquatic environment. Among the techniques, membrane-based techniques for trapping hazardous biological contaminants are gaining popularity around the world. Besides, novel and recent advancements in nanotechnological science and engineering suggest that many waterborne pathogens could be inactivated using nano catalysts, bioactive nanoparticles, nanostructured catalytic membranes, nanosized photocatalytic structures, and electrospun nanofibers and processes have been thoroughly examined.
Collapse
Affiliation(s)
- Gamze Yesilay
- Molecular Biology and Genetics Department, Hamidiye Institute of Health Sciences, University of Health Sciences-Türkiye, Istanbul 34668, Türkiye; Experimental Medicine Application & Research Center, University of Health Sciences, Validebag Research Park, Uskudar, Istanbul 34662, Türkiye
| | | | - Bevin Roger A
- Department of Chemistry, Catalysis and Nanomaterials Research Laboratory, Loyola College, Chennai 600 034, India
| | - Layla J Hazeem
- Department of Biology, College of Science, University of Bahrain, 32038, Bahrain
| | | | - Judith Vijaya J
- Department of Chemistry, Catalysis and Nanomaterials Research Laboratory, Loyola College, Chennai 600 034, India
| | - Ayman H Kamel
- Department of Chemistry, College of Science, University of Bahrain, 32038, Bahrain; Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia, Cairo 11566, Egypt
| | - Mohamed Bououdina
- Department of Mathematics and Science, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Li QC, Wang B, Zeng YH, Cai ZH, Zhou J. The Microbial Mechanisms of a Novel Photosensitive Material (Treated Rape Pollen) in Anti-Biofilm Process under Marine Environment. Int J Mol Sci 2022; 23:ijms23073837. [PMID: 35409199 PMCID: PMC8998240 DOI: 10.3390/ijms23073837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Marine biofouling is a worldwide problem in coastal areas and affects the maritime industry primarily by attachment of fouling organisms to solid immersed surfaces. Biofilm formation by microbes is the main cause of biofouling. Currently, application of antibacterial materials is an important strategy for preventing bacterial colonization and biofilm formation. A natural three-dimensional carbon skeleton material, TRP (treated rape pollen), attracted our attention owing to its visible-light-driven photocatalytic disinfection property. Based on this, we hypothesized that TRP, which is eco-friendly, would show antifouling performance and could be used for marine antifouling. We then assessed its physiochemical characteristics, oxidant potential, and antifouling ability. The results showed that TRP had excellent photosensitivity and oxidant ability, as well as strong anti-bacterial colonization capability under light-driven conditions. Confocal laser scanning microscopy showed that TRP could disperse pre-established biofilms on stainless steel surfaces in natural seawater. The biodiversity and taxonomic composition of biofilms were significantly altered by TRP (p < 0.05). Moreover, metagenomics analysis showed that functional classes involved in the antioxidant system, environmental stress, glucose−lipid metabolism, and membrane-associated functions were changed after TRP exposure. Co-occurrence model analysis further revealed that TRP markedly increased the complexity of the biofilm microbial network under light irradiation. Taken together, these results demonstrate that TRP with light irradiation can inhibit bacterial colonization and prevent initial biofilm formation. Thus, TRP is a potential nature-based green material for marine antifouling.
Collapse
Affiliation(s)
- Qing-Chao Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
| | - Bo Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Yan-Hua Zeng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
- Correspondence:
| |
Collapse
|
3
|
Abstract
World is facing two major problems, day by day demand of energy and pollution on the planet increasing with the advancement of human activities. These are real problems not only for developing countries but also for developed civilization. Present energy sources are not enough to fulfill the demand of modern world these sources are limited and number of side effects from these. Other major problem pollution that is discussed in this article, very alarming number of population every year affected from pollution and death rate from pollution is very high. In this article, briefly review how photocatalytic technique help us to resolve these problem by environmental friendly, cost effective, less energy consumption and minimum side effect approach. This article cover the main concept about photo-catalysis technique and its related terms. The main feature of efficient photocatalytic activity is selection of photo-catalyst, briefly presentation for which types of nanomaterials are suitable for cost effective and efficient catalytic activity. An overview of application of photocatalytic activity for waste water splitting for H2 production, waste water treatment and air disinfection, which types of catalyst are for these application and briefly discussed factor affecting the catalytic activity.
Collapse
|
4
|
Kumar S, Ye F, Dobretsov S, Dutta J. Nanocoating Is a New Way for Biofouling Prevention. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.771098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biofouling is a major concern to the maritime industry. Biofouling increases fuel consumption, accelerates corrosion, clogs membranes and pipes, and reduces the buoyancy of marine installations, such as ships, platforms, and nets. While traditionally marine installations are protected by toxic biocidal coatings, due to recent environmental concerns and legislation, novel nanomaterial-based anti-fouling coatings are being developed. Hybrid nanocomposites of organic-inorganic materials give a possibility to combine the characteristics of both groups of material generating opportunities to prevent biofouling. The development of bio-inspired surface designs, progress in polymer science and advances in nanotechnology is significantly contributing to the development of eco-friendly marine coatings containing photocatalytic nanomaterials. The review mainly discusses photocatalysis, antifouling activity, and formulation of coatings using metal and metal oxide nanomaterials (nanoparticles, nanowires, nanorods). Additionally, applications of nanocomposite coatings for inhibition of micro- and macro-fouling in marine environments are reviewed.
Collapse
|
5
|
Ma J, Feng Z, Wei J, Li F, Li T, Zhang D. Facile synthetic routes for photocatalytic Pb 3(BTC) 2·H 2O coordination polymers. RSC Adv 2021; 11:21979-21985. [PMID: 35480840 PMCID: PMC9034130 DOI: 10.1039/d1ra03346h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
Herein, we report on the successful synthesis of photocatalytic Pb3(BTC)2·H2O polymers via different methods including the surfactant-assisted hydrothermal method, ultrasonic method and reflux method. As the crystal growth is subjected to preparation atmosphere, changes in reaction conditions do not alter the crystal structures of products, but vary their morphology. High ultraviolet-light-driven photocatalytic abilities are attributed to the stable Pb3(BTC)2·H2O, and the effective productions of h+ and ˙OH on the catalysts.
Collapse
Affiliation(s)
- Jinxiu Ma
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University Xiangtan 411105 China
| | - Zhijuan Feng
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University Xiangtan 411105 China
| | - Jianyu Wei
- China Tobacco Guangxi Industrial Co., Ltd Nanning Guangxi 530001 PR China
| | - Feng Li
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University Xiangtan 411105 China
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu P. O. Box 3000 FIN-90014 Finland
| | - Taohai Li
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University Xiangtan 411105 China
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu P. O. Box 3000 FIN-90014 Finland
| | - Dabin Zhang
- School of Mechanical Engineering, Guizhou University Guiyang Guizhou 550025 China
| |
Collapse
|
6
|
Uheida A, Mejía HG, Abdel-Rehim M, Hamd W, Dutta J. Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124299. [PMID: 33131945 DOI: 10.1016/j.jhazmat.2020.124299] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 05/06/2023]
Abstract
Microplastic pollution of water and ecosystem is attracting continued attention worldwide. Due to their small sizes (≤5 mm) microplastic particles can be discharged to the environment from treated wastewater effluents. As microplastics have polluted most of our aquatic ecosystems, often finding its way into drinking water, there is urgent need to find new solutions for tackling the menace of microplastic pollution. In this work, sustainable green photocatalytic removal of microplastics from water activated by visible light is proposed as a tool for the removal of microplastics from water. We propose a novel strategy for the elimination of microplastics using glass fiber substrates to trap low density microplastic particles such as polypropylene (PP) which in parallel support the photocatalyst material. Photocatalytic degradation of PP microplastics spherical particles suspended in water by visible light irradiation of zinc oxide nanorods (ZnO NRs) immobilized onto glass fibers substrates in a flow through system is demonstrated. Upon irradiation of PP microplastics for two weeks under visible light reduced led to a reduction of the average particle volume by 65%. The major photodegradation by-products were identified using GC/MS and found to be molecules that are considered to be mostly nontoxic in the literature.
Collapse
Affiliation(s)
- Abdusalam Uheida
- Functional Materials, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 114 19 Stockholm, Sweden
| | - Hugo Giraldo Mejía
- Functional Materials, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 114 19 Stockholm, Sweden; Advanced Mining Technology Center (AMTC), Santiago de Chile, Región Metropolitana, Chile
| | - Mohamed Abdel-Rehim
- Functional Materials, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 114 19 Stockholm, Sweden; Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, SE-171 76 Solna, Sweden
| | - Wael Hamd
- Department of Petrochemical Engineering, Faculty of Engineering, Lebanese University, Campus Rafic Hariri, Hadat, Lebanon
| | - Joydeep Dutta
- Functional Materials, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 114 19 Stockholm, Sweden.
| |
Collapse
|
7
|
Paulkumar K, Jesi Reeta T, Emmanuel Joshua Jebasingh S, Mangalanagasundari S, Muthu K, Murugan K. Potential utilization of zinc nanoparticles for wastewater treatment. AQUANANOTECHNOLOGY 2021:437-466. [DOI: 10.1016/b978-0-12-821141-0.00026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
8
|
Laxman K, Sathe P, Al Abri M, Dobretsov S, Dutta J. Disinfection of Bacteria in Water by Capacitive Deionization. Front Chem 2020; 8:774. [PMID: 33110910 PMCID: PMC7489198 DOI: 10.3389/fchem.2020.00774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/24/2020] [Indexed: 11/27/2022] Open
Abstract
Clean water is one of the primary UN sustainable development goals for 2,030 and sustainable water deionization and disinfection is the backbone of that goal. Capacitive deionization (CDI) is an upcoming technique for water deionization and has shown substantial promise for large scale commercialization. In this study, activated carbon cloth (ACC) electrode based CDI devices are used to study the removal of ionic contaminants in water and the effect of ion concentrations on the electrosorption and disinfection functions of the CDI device for mixed microbial communities in groundwater and a model bacterial strain Escherichia coli. Up to 75 % of microbial cells could be removed in a single pass through the CDI unit for both synthetic and groundwater, while maintaining the salt removal activity. Mortality of the microbial cells were also observed during the CDI cell regeneration and correlated with the chloride ion concentrations. The power consumption and salt removal capacity in the presence and absence of salt were mapped and shown to be as low as 0.1 kWh m−3 and 9.5 mg g−1, respectively. The results indicate that CDI could be a viable option for single step deionization and microbial disinfection of brackish water.
Collapse
Affiliation(s)
- Karthik Laxman
- Functional Materials Group, Department of Applied Physics, School of Engineering Sciences (SCI), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Priyanka Sathe
- Nanotechnology Research Centre, Sultan Qaboos University, Muscat, Oman.,Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mohammed Al Abri
- Nanotechnology Research Centre, Sultan Qaboos University, Muscat, Oman.,Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman.,Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat, Oman
| | - Joydeep Dutta
- Functional Materials Group, Department of Applied Physics, School of Engineering Sciences (SCI), KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
9
|
Abstract
As the nanotechnological applications have taken over in different fields, their applications for water and wastewater treatment is also surfacing as a fast-developing and very promising area. Recent advancements in nanotechnological science and engineering advise that many of the waterborne pathogens could be culminated or debilitated using nanobiosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes, nanobioreactors, nanoparticle-enhanced filtration among other products, and processes resulting from the development of nanotechnology. A detailed insight has been provided for advanced techniques such as photochemical (photocatalytic and advanced oxidation processes) applications of metal oxide nanoparticles, nanomembrane technology, bioinspired nanomaterials, and nanotechnological innovations (nano-Ag, fullerenes, nanotubes, and molecularly imprinted polymers, etc.), which prove to be highly potential as well as promising and cost-effective. However, there are still some shortcomings and challenges that must be overcome which will be looked upon in this chapter.
Collapse
|
10
|
Bifunctional TiO2/AlZr Thin Films on Steel Substrate Combining Corrosion Resistance and Photocatalytic Properties. COATINGS 2019. [DOI: 10.3390/coatings9090564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel multi-functional bilayer coating combining an anti-corrosion Al–Zr (4 at.% Zr) underlayer and an anti-biofouling TiO2 top layer was deposited on high-speed steel (HSS) substrates. Al–Zr (4 at.% Zr) film, deposited by DC magnetron sputtering, which is a single phased supersaturated solid solution of Zr in Al, is used to provide sacrificial corrosion resistance of steels and TiO2 is added as a top layer to induce photocatalytic activity and hydrophilic behavior which can generate antifouling properties in order to slow down the biofouling process. The top TiO2 films, deposited at 550 °C by AACVD (aerosol-assisted chemical vapor deposition), consisting of anatase TiO2 microflowers physically attached to the TiO2 thin films present a high decomposition rate of Orange G dye (780 × 10−10 mol L−1·min−1). The enhanced photocatalytic performance is associated with the rough network and the presence of TiO2 microflowers capable of supporting the enhanced loading of organic contaminants onto the film surface. Electrochemical tests in saline solution have revealed that bilayer films provide cathodic protection for the steel substrate. The Al–Zr/TiO2 bilayer presents a lower corrosion current density of 4.01 × 10−7 A/cm2 and a corrosion potential of −0.61 V vs Ag/AgCl, offering good protection through the preferential oxidation of the bilayer and an increased pitting resistance. The proposed functionalized coating combining anticorrosion and photocatalytic properties is a promising candidate for an anti-fouling system in sea water.
Collapse
|
11
|
Achouri F, Merlin C, Corbel S, Alem H, Mathieu L, Balan L, Medjahdi G, Ben Said M, Ghrabi A, Schneider R. ZnO Nanorods with High Photocatalytic and Antibacterial Activity under Solar Light Irradiation. MATERIALS 2018; 11:ma11112158. [PMID: 30388867 PMCID: PMC6266891 DOI: 10.3390/ma11112158] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022]
Abstract
ZnO nanorods (NRs) with an average length and diameter of 186 and 20 nm, respectively, were prepared through a mild solvothermal route and used as photocatalysts either as dispersed powder or immobilized on glass slides. The ZnO NRs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Dispersed ZnO NRs and, to a lesser extent, immobilized ZnO NRs were demonstrated to exhibit high photocatalytic activity under simulated sunlight of low intensity (5.5 mW/cm2) both for the degradation of the Orange II dye and for Escherichia coli bacterial decontamination (2.5-fold survival decrease after 180 min irradiation for immobilized NRs). SEM, atomic force microscopy (AFM), fluorescence spectroscopy, and epifluorescence microscopy demonstrate that cell surface damages are responsible of bacterial inactivation. The immobilized ZnO NRs could be reused up to five times for bacterial decontamination at comparable efficiency and therefore have great potential for real environmental applications.
Collapse
Affiliation(s)
- Faouzi Achouri
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
- Centre de Recherches et Technologies des Eaux (CERTE), Laboratoire Eaux Usées et Environnement, P.O. Box 273, Soliman, Tunis 8020, Tunisia.
- Faculté des Sciences de Bizerte, Université de Carthage, Jarzouna, Bizerte 7021, Tunisia.
| | | | - Serge Corbel
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | - Halima Alem
- Université de Lorraine, CNRS, IJL, F-54000 Nancy, France.
| | - Laurence Mathieu
- Université de Lorraine, CNRS, LCPME, F-5v4000 Nancy, France.
- EPHE, PSL Research University, LCPME, UMR 7564 Nancy, France.
| | - Lavinia Balan
- IS2M, CNRS UMR 7361, 15 Rue Jean Starcky, 68093 Mulhouse, France.
| | | | - Myriam Ben Said
- Centre de Recherches et Technologies des Eaux (CERTE), Laboratoire Eaux Usées et Environnement, P.O. Box 273, Soliman, Tunis 8020, Tunisia.
| | - Ahmed Ghrabi
- Centre de Recherches et Technologies des Eaux (CERTE), Laboratoire Eaux Usées et Environnement, P.O. Box 273, Soliman, Tunis 8020, Tunisia.
| | | |
Collapse
|
12
|
Antibacterial activity by ZnO nanorods and ZnO nanodisks: A model used to illustrate “Nanotoxicity Threshold”. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Sathe P, Laxman K, Myint MTZ, Dobretsov S, Richter J, Dutta J. Bioinspired nanocoatings for biofouling prevention by photocatalytic redox reactions. Sci Rep 2017; 7:3624. [PMID: 28620218 PMCID: PMC5472575 DOI: 10.1038/s41598-017-03636-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Aquaculture is a billion dollar industry and biofouling of aquaculture installations has heavy economic penalties. The natural antifouling (AF) defence mechanism of some seaweed that inhibits biofouling by production of reactive oxygen species (ROS) inspired us to mimic this process by fabricating ZnO photocatalytic nanocoating. AF activity of fishing nets modified with ZnO nanocoating was compared with uncoated nets (control) and nets painted with copper-based AF paint. One month experiment in tropical waters showed that nanocoatings reduce abundances of microfouling organisms by 3-fold compared to the control and had higher antifouling performance over AF paint. Metagenomic analysis of prokaryotic and eukaryotic fouling organisms using next generation sequencing platform proved that nanocoatings compared to AF paint were not selectively enriching communities with the resistant and pathogenic species. The proposed bio-inspired nanocoating is an important contribution towards environmentally friendly AF technologies for aquaculture.
Collapse
Affiliation(s)
- Priyanka Sathe
- Department of Marine Science & Fisheries, College of Agricultural & Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al Khoud, 123, Sultanate of Oman
- Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, Al Khoud, 123, Sultanate of Oman
| | - Karthik Laxman
- Functional Materials Division, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Isafjordsgatan 22, SE-164 40, Kista Stockholm, Sweden
| | - Myo Tay Zar Myint
- Department of Physics, College of Science, Sultan Qaboos University, PO Box 36, Al Khoudh, Muscat, 123, Sultanate of Oman
| | - Sergey Dobretsov
- Department of Marine Science & Fisheries, College of Agricultural & Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al Khoud, 123, Sultanate of Oman.
- Center of Excellence in Marine Biotechnology, Sultan Qaboos University, P.O. Box, 50 Al Khoud, 123, Sultanate of Oman.
| | - Jutta Richter
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Ammerländer Heerstraße 114, 26129, Oldenburg, Germany
| | - Joydeep Dutta
- Functional Materials Division, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Isafjordsgatan 22, SE-164 40, Kista Stockholm, Sweden.
| |
Collapse
|
14
|
Bora T, Sathe P, Laxman K, Dobretsov S, Dutta J. Defect engineered visible light active ZnO nanorods for photocatalytic treatment of water. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.09.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Fabrication of FDTS-modified PDMS-ZnO nanocomposite hydrophobic coating with anti-fouling capability for corrosion protection of Q235 steel. J Colloid Interface Sci 2016; 484:220-228. [DOI: 10.1016/j.jcis.2016.08.064] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 01/12/2023]
|
16
|
Removal and regrowth inhibition of microalgae using visible light photocatalysis with ZnO nanorods: A green technology. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Sathe P, Richter J, Myint MTZ, Dobretsov S, Dutta J. Self-decontaminating photocatalytic zinc oxide nanorod coatings for prevention of marine microfouling: a mesocosm study. BIOFOULING 2016; 32:383-95. [PMID: 26930216 DOI: 10.1080/08927014.2016.1146256] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The antifouling (AF) properties of zinc oxide (ZnO) nanorod coated glass substrata were investigated in an out-door mesocosm experiment under natural sunlight (14:10 light: dark photoperiod) over a period of five days. The total bacterial density (a six-fold reduction) and viability (a three-fold reduction) was significantly reduced by nanocoatings in the presence of sunlight. In the absence of sunlight, coated and control substrata were colonized equally by bacteria. MiSeq Illumina sequencing of 16S rRNA genes revealed distinct bacterial communities on the nanocoated and control substrata in the presence and absence of light. Diatom communities also varied on nanocoated substrata in the presence and the absence of light. The observed AF activity of the ZnO nanocoatings is attributed to the formation of reactive oxygen species (ROS) through photocatalysis in the presence of sunlight. These nanocoatings are a significant step towards the production of an environmentally friendly AF coating that utilizes a sustainable supply of sunlight.
Collapse
Affiliation(s)
- Priyanka Sathe
- a Department of Marine Science & Fisheries, College of Agricultural & Marine Sciences , Sultan Qaboos University , Muscat , Sultanate of Oman
- b Chair in Nanotechnology, Water Research Center , Sultan Qaboos University , Muscat , Sultanate of Oman
| | - Jutta Richter
- a Department of Marine Science & Fisheries, College of Agricultural & Marine Sciences , Sultan Qaboos University , Muscat , Sultanate of Oman
- c Hochschule Bremerhaven , Bremerhaven , Germany
| | - Myo Tay Zar Myint
- b Chair in Nanotechnology, Water Research Center , Sultan Qaboos University , Muscat , Sultanate of Oman
- d Department of Physics, College of Science , Sultan Qaboos University , Muscat , Sultanate of Oman
| | - Sergey Dobretsov
- a Department of Marine Science & Fisheries, College of Agricultural & Marine Sciences , Sultan Qaboos University , Muscat , Sultanate of Oman
| | - Joydeep Dutta
- b Chair in Nanotechnology, Water Research Center , Sultan Qaboos University , Muscat , Sultanate of Oman
- e Functional Materials Division, Materials and Nano-Physics Department , ICT School, KTH Royal Institute of Technology , Kista Stockholm , Sweden
| |
Collapse
|
18
|
Kushwaha OS, Avadhani C, Singh R. Preparation and characterization of self-photostabilizing UV-durable bionanocomposite membranes for outdoor applications. Carbohydr Polym 2015; 123:164-73. [DOI: 10.1016/j.carbpol.2014.12.062] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/25/2014] [Accepted: 12/26/2014] [Indexed: 11/17/2022]
|
19
|
|
20
|
Meidanchi A, Akhavan O, Khoei S, Shokri AA, Hajikarimi Z, Khansari N. ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 46:394-9. [PMID: 25492003 DOI: 10.1016/j.msec.2014.10.062] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 08/10/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
Nanoparticles of high-Z elements exhibit stronger photoelectric effects than soft tissues under gamma irradiation. Hence, they can be used as effective radiosensitizers for increasing the efficiency of current radiotherapy. In this work, superparamagnetic zinc ferrite spinel (ZnFe2O4) nanoparticles were synthesized by a hydrothermal reaction method and used as radiosensitizers in cancer therapy. The magnetic nanoparticles showed fast separation from solutions (e.g., ~1 min for 2 mg mL(-1) of the nanoparticles in ethanol) by applying an external magnetic field (~1T). The ZnFe2O4 nanoparticles were applied in an in vitro radiotherapy of lymph node carcinoma of prostate cells (as high radioresistant cells) under gamma irradiation of (60)Co source. The nanoparticles exhibited no significant effects on the cancer cells up to the high concentration of 100 μg mL(-1), in the absence of gamma irradiation. The gamma irradiation alone (2Gy dose) also showed no significant effects on the cells. However, gamma irradiation in the presence of 100 μg mL(-1) ZnFe2O4 nanoparticles resulted in ~53% inactivation of the cells (~17 times higher than the inactivation that occurred under gamma irradiation alone) after 24h. The higher cell inactivation was assigned to interaction of gamma radiation with nanoparticles (photoelectric effect), resulting in a high level electron release in the media of the radioresistant cells. Our results indicated that ZnFe2O4 nanoparticles not only can be applied in increasing the efficiency of radiotherapy, but also can be easily separated from the cell environment by using an external magnetic field after the radiotherapy.
Collapse
Affiliation(s)
- Alireza Meidanchi
- Department of Physics, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran, Iran.
| | - Samideh Khoei
- Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran
| | - Ali A Shokri
- Department of Physics, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran; Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran, Iran
| | - Zahra Hajikarimi
- Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran
| | - Nakisa Khansari
- Department of Cardiology, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
21
|
Al-Fori M, Dobretsov S, Myint MTZ, Dutta J. Antifouling properties of zinc oxide nanorod coatings. BIOFOULING 2014; 30:871-882. [PMID: 25115521 DOI: 10.1080/08927014.2014.942297] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In laboratory experiments, the antifouling (AF) properties of zinc oxide (ZnO) nanorod coatings were investigated using the marine bacterium Acinetobacter sp. AZ4C, larvae of the bryozoan Bugula neritina and the microalga Tetraselmis sp. ZnO nanorod coatings were fabricated on microscope glass substrata by a simple hydrothermal technique using two different molar concentrations (5 and 10 mM) of zinc precursors. These coatings were tested for 5 h under artificial sunlight (1060 W m(-2) or 530 W m(-2)) and in the dark (no irradiation). In the presence of light, both the ZnO nanorod coatings significantly reduced the density of Acinetobacter sp. AZ4C and Tetraselmis sp. in comparison to the control (microscope glass substratum without a ZnO coating). High mortality and low settlement of B. neritina larvae was observed on ZnO nanorod coatings subjected to light irradiation. In darkness, neither mortality nor enhanced settlement of larvae was observed. Larvae of B. neritina were not affected by Zn(2+) ions. The AF effect of the ZnO nanorod coatings was thus attributed to the reactive oxygen species (ROS) produced by photocatalysis. It was concluded that ZnO nanorod coatings effectively prevented marine micro and macrofouling in static conditions.
Collapse
Affiliation(s)
- Marwan Al-Fori
- a Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences , Sultan Qaboos University , PO Box 17, Postal Code - 123, Al Khoud, Muscat , Sultanate of Oman
| | | | | | | |
Collapse
|
22
|
Danwittayakul S, Jaisai M, Koottatep T, Dutta J. Enhancement of Photocatalytic Degradation of Methyl Orange by Supported Zinc Oxide Nanorods/Zinc Stannate (ZnO/ZTO) on Porous Substrates. Ind Eng Chem Res 2013. [DOI: 10.1021/ie4019726] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Supamas Danwittayakul
- National Metal and Materials Technology Center, 114 Thailand Science
Park, Klong Nueng, Klong Luang, Pathumthani 12120, Thailand
| | - Mayuree Jaisai
- Center of Excellence in Nanotechnology, Asian Institute of Technology, P.O. Box 4, Klong Luang,
Pathumthani 12120, Thailand
| | - Thammarat Koottatep
- Center of Excellence in Nanotechnology, Asian Institute of Technology, P.O. Box 4, Klong Luang,
Pathumthani 12120, Thailand
| | - Joydeep Dutta
- Center of Excellence in Nanotechnology, Asian Institute of Technology, P.O. Box 4, Klong Luang,
Pathumthani 12120, Thailand
- Chair in Nanotechnology, Water
Research Center, Sultan Qaboos University, P.O. Box 17, 123 Al-Khoudh, Sultanate of Oman
| |
Collapse
|
23
|
Zhang Q, Xu J, Yan D, Li S, Lu J, Cao X, Wang B. The in situ shape-controlled synthesis and structure–activity relationship of Pd nanocrystal catalysts supported on layered double hydroxide. Catal Sci Technol 2013. [DOI: 10.1039/c3cy00143a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Ochiai T, Fujishima A. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2012. [DOI: 10.1016/j.jphotochemrev.2012.07.001] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|