1
|
Paolillo M, Ferraro G, Pisanu F, Maréchal JD, Sciortino G, Garribba E, Merlino A. Protein-Protein Stabilization in V IVO/8-Hydroxyquinoline-Lysozyme Adducts. Chemistry 2024; 30:e202401712. [PMID: 38923243 DOI: 10.1002/chem.202401712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The binding of the potential drug [VIVO(8-HQ)2], where 8-HQ is 8-hydroxyquinolinato, with hen egg white lysozyme (HEWL) was evaluated through spectroscopic (electron paramagnetic resonance, EPR, and UV-visible), spectrometric (electrospray ionization-mass spectrometry, ESI-MS), crystallographic (X-ray diffraction, XRD), and computational (DFT and docking) studies. ESI-MS indicates the interaction of [VIVO(8-HQ)(H2O)]+ and [VIVO(8-HQ)2(H2O)] species with HEWL. Room temperature EPR spectra suggest both covalent and non-covalent binding of the two different V-containing fragments. XRD analyses confirm these findings, showing that [VIVO(8-HQ)(H2O)]+ interacts covalently with the solvent exposed Asp119, while cis-[VIVO(8-HQ)2(H2O)] non-covalently with Arg128 and Lys96 from a symmetry mate. The covalent binding of [VIVO(8-HQ)(H2O)]+ to Asp119 is favored by a π-π contact with Trp62 and a H-bond with Asn103 of a symmetry-related molecule. Additionally, the covalent binding of VVO2 + to Asp48 and non-covalent binding of other V-containing fragments to Arg5, Cys6, and Glu7 are revealed. Molecular docking indicates that, in the absence of the interactions occurring at the protein-protein interface close to Asp119, the covalent binding to Glu35 or Asp52 should be preferred. Such a protein-protein stabilization could be more common than what believed up today, at least in the solid state, and should be considered in the characterization of metal-protein adducts.
Collapse
Affiliation(s)
- Maddalena Paolillo
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100, Sassari, Italy
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallés, Barcelona, Spain
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallés, Barcelona, Spain
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100, Sassari, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| |
Collapse
|
2
|
Santos MFA, Pessoa JC. Interaction of Vanadium Complexes with Proteins: Revisiting the Reported Structures in the Protein Data Bank (PDB) since 2015. Molecules 2023; 28:6538. [PMID: 37764313 PMCID: PMC10536487 DOI: 10.3390/molecules28186538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The structural determination and characterization of molecules, namely proteins and enzymes, is crucial to gaining a better understanding of their role in different chemical and biological processes. The continuous technical developments in the experimental and computational resources of X-ray diffraction (XRD) and, more recently, cryogenic Electron Microscopy (cryo-EM) led to an enormous growth in the number of structures deposited in the Protein Data Bank (PDB). Bioinorganic chemistry arose as a relevant discipline in biology and therapeutics, with a massive number of studies reporting the effects of metal complexes on biological systems, with vanadium complexes being one of the relevant systems addressed. In this review, we focus on the interactions of vanadium compounds (VCs) with proteins. Several types of binding are established between VCs and proteins/enzymes. Considering that the V-species that bind may differ from those initially added, the mentioned structural techniques are pivotal to clarifying the nature and variety of interactions of VCs with proteins and to proposing the mechanisms involved either in enzymatic inhibition or catalysis. As such, we provide an account of the available structural information of VCs bound to proteins obtained by both XRD and/or cryo-EM, mainly exploring the more recent structures, particularly those containing organic-based vanadium complexes.
Collapse
Affiliation(s)
- Marino F. A. Santos
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
3
|
Côrte-Real L, Pósa V, Martins M, Colucas R, May NV, Fontrodona X, Romero I, Mendes F, Pinto Reis C, Gaspar MM, Pessoa JC, Enyedy ÉA, Correia I. Cu(II) and Zn(II) Complexes of New 8-Hydroxyquinoline Schiff Bases: Investigating Their Structure, Solution Speciation, and Anticancer Potential. Inorg Chem 2023. [PMID: 37441730 PMCID: PMC10369496 DOI: 10.1021/acs.inorgchem.3c01066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
We report the synthesis and characterization of three novel Schiff bases (L1-L3) derived from the condensation of 2-carbaldehyde-8-hydroxyquinoline with amines containing morpholine or piperidine moieties. These were reacted with CuCl2 and ZnCl2 yielding six new coordination compounds, with the general formula ML2, where M = Cu(II) or Zn(II) and L = L1-L3, which were all characterized by analytical, spectroscopic (Fourier transform infrared (FTIR), UV-visible absorption, nuclear magnetic resonance (NMR), or electron paramagnetic resonance (EPR)), and mass spectrometric techniques, as well as by single-crystal X-ray diffraction. In the solid state, two Cu(II) complexes, with L1 and L2, are obtained as dinuclear compounds, with relatively short Cu-Cu distances (3.146 and 3.171 Å for Cu2(L1)4 and Cu2(L2)4, respectively). The free ligands show moderate lipophilicity, while their complexes are more lipophilic. The pKa values of L1-L3 and formation constants of the complex (for ML and ML2) species were determined by spectrophotometric titrations, with the Cu(II) complexes showing higher stability than the Zn(II) complexes. EPR indicated the presence of several species in solution as pH varied and binding modes were proposed. The binding of the complexes to bovine serum albumin (BSA) was evaluated by fluorescence and circular dichroism (CD) spectroscopies. All complexes bind BSA, and as demonstrated by CD, the process takes several hours to reach equilibrium. The antiproliferative activity was evaluated in malignant melanoma cells (A375) and in noncancerous keratinocytes (HaCaT). All complexes display significant cytotoxicity (IC50 < 10 μM) but modest selectivity. The complexes show higher activity than the free ligands, the Cu(II) complexes being more active than the Zn(II) complexes, and approximately twice more cytotoxic than cisplatin. A Guava ViaCount assay corroborated the antiproliferative activity.
Collapse
Affiliation(s)
- Leonor Côrte-Real
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Vivien Pósa
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Matilde Martins
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Raquel Colucas
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Nóra V May
- Centre for Structural Science, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary
| | - Xavier Fontrodona
- Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, Campus de Montilivi, E-17071 Girona, Spain
| | - Isabel Romero
- Departament de Química and Serveis Tècnics de Recerca, Universitat de Girona, Campus de Montilivi, E-17071 Girona, Spain
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares and Department of Nuclear Sciences and Engineering, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km139,7), 2695-066 Bobadela LRS, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Éva A Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Isabel Correia
- Centro de Química Estrutural, Institute of Molecular Sciences, and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
4
|
Zhang Q, Ma Y, Liu H, Gu J, Sun X. Comparison of the Effects on Bovine Serum Albumin Induced by Different Forms of Vanadium. Biol Trace Elem Res 2023; 201:3088-3098. [PMID: 35915278 DOI: 10.1007/s12011-022-03373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 11/02/2022]
Abstract
Various forms of vanadium coexist in vivo, and the behavior mechanism is different. An investigation of the separate and simultaneous binding of three vanadium forms with bovine serum albumin (BSA) was performed. VO(acac)2/NaVO3/VOSO4 bound to site I of BSA, and their binding constants were 4.26 × 105, 9.18 × 103, and 4.31 × 102 L mol-1 at 298 K, respectively. VO(acac)2 had the strongest binding ability to BSA and had the most influence on the secondary structure of BSA and the microenvironment of around amino acid residues. The effect of NaVO3 and VOSO4 coexistence on the binding of VO(acac)2 to BSA was therefore further investigated. Both NaVO3 and VOSO4 had an effect on the binding of VO(acac)2 and BSA, with NaVO3 having the most noticeable effect. NaVO3 interfered with the binding process of VO(acac)2 and BSA, increased the binding constant, and changed the binding forces between them. Competition and allosteric effect may be responsible for the change of binding process between VO(acac)2 and BSA in the presence of NaVO3/VOSO4.
Collapse
Affiliation(s)
- Qionghua Zhang
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, Liaoning Province, 121013, People's Republic of China
| | - Yanxuan Ma
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, Liaoning Province, 121013, People's Republic of China
| | - Hongrui Liu
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, Liaoning Province, 121013, People's Republic of China
| | - Jiali Gu
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, Liaoning Province, 121013, People's Republic of China.
| | - Xuekai Sun
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China
| |
Collapse
|
5
|
Merlino A. Metallodrug binding to serum albumin: Lessons from biophysical and structural studies. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Therapeutic Properties of Vanadium Complexes. INORGANICS 2022. [DOI: 10.3390/inorganics10120244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vanadium is a hard, silver-grey transition metal found in at least 60 minerals and fossil fuel deposits. Its oxide and other vanadium salts are toxic to humans, but the toxic effects depend on the vanadium form, dose, exposure duration, and route of intoxication. Vanadium is used by some life forms as an active center in enzymes, such as the vanadium bromoperoxidase of ocean algae and nitrogenases of bacteria. The structure and biochemistry of vanadate resemble those of phosphate, hence vanadate can be regarded as a phosphate competitor in a variety of biochemical enzymes such as kinases and phosphatases. In this review, we describe the biochemical pathways regulated by vanadium compounds and their potential therapeutic benefits for a range of disorders including type 2 diabetes, cancer, cardiovascular disease, and microbial pathology.
Collapse
|
7
|
Ferraro G, Paolillo M, Sciortino G, Garribba E, Merlino A. Multiple and Variable Binding of Pharmacologically Active Bis(maltolato)oxidovanadium(IV) to Lysozyme. Inorg Chem 2022; 61:16458-16467. [PMID: 36205235 PMCID: PMC9579999 DOI: 10.1021/acs.inorgchem.2c02690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The interaction with
proteins of metal-based drugs plays a crucial
role in their transport, mechanism, and activity. For an active MLn complex, where L is the organic carrier,
various binding modes (covalent and non-covalent, single or multiple)
may occur and several metal moieties (M, ML, ML2, etc.)
may interact with proteins. In this study, we have evaluated the interaction
of [VIVO(malt)2] (bis(maltolato)oxidovanadium(IV)
or BMOV, where malt = maltolato, i.e., the common name for 3-hydroxy-2-methyl-4H-pyran-4-onato) with the model protein hen egg white lysozyme
(HEWL) by electrospray ionization mass spectrometry, electron paramagnetic
resonance, and X-ray crystallography. The multiple binding of different
V-containing isomers and enantiomers to different sites of HEWL is
observed. The data indicate both non-covalent binding of cis-[VO(malt)2(H2O)] and [VO(malt)(H2O)3]+ and covalent binding of [VO(H2O)3–4]2+ and cis-[VO(malt)2] and other V-containing fragments to the side chains of Glu35,
Asp48, Asn65, Asp87, and Asp119 and to the C-terminal carboxylate.
Our results suggest that the multiple and variable interactions of
potential VIVOL2 drugs with proteins can help
to better understand their solution chemistry and contribute to define
the molecular basis of the mechanism of action of these intriguing
molecules. The interaction of [VIVO(malt)2] (BMOV,
malt = maltolato) with hen egg white lysozyme (HEWL) reveals the multiple
binding of different V-containing isomers and enantiomers to different
sites and non-covalent and covalent binding of cis-[VO(malt)2(H2O)], [VO(malt)(H2O)3]+, [VO(H2O)3−4]2+, and cis-[VO(malt)2] to Glu,
Asp, and Asn residues.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Maddalena Paolillo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126 Napoli, Italy
| |
Collapse
|
8
|
Ribeiro N, Bulut I, Pósa V, Sergi B, Sciortino G, Pessoa JC, Maia LB, Ugone V, Garribba E, Enyedy ÉA, Acilan C, Correia I. Solution chemical properties and anticancer potential of 8-hydroxyquinoline hydrazones and their oxidovanadium(IV) complexes. J Inorg Biochem 2022; 235:111932. [DOI: 10.1016/j.jinorgbio.2022.111932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/22/2022] [Accepted: 07/10/2022] [Indexed: 12/28/2022]
|
9
|
Ugone V, Pisanu F, Garribba E. Interaction of pharmacologically active pyrone and pyridinone vanadium(IV,V) complexes with cytochrome c. J Inorg Biochem 2022; 234:111876. [DOI: 10.1016/j.jinorgbio.2022.111876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/05/2022] [Accepted: 05/21/2022] [Indexed: 01/11/2023]
|
10
|
Ferraro G, Demitri N, Vitale L, Sciortino G, Sanna D, Ugone V, Garribba E, Merlino A. Spectroscopic/Computational Characterization and the X-ray Structure of the Adduct of the V IVO-Picolinato Complex with RNase A. Inorg Chem 2021; 60:19098-19109. [PMID: 34847328 PMCID: PMC8693189 DOI: 10.1021/acs.inorgchem.1c02912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 12/12/2022]
Abstract
The structure, stability, and enzymatic activity of the adduct formed upon the reaction of the V-picolinato (pic) complex [VIVO(pic)2(H2O)], with an octahedral geometry and the water ligand in cis to the V═O group, with the bovine pancreatic ribonuclease (RNase A) were studied. While electrospray ionization-mass spectrometry, circular dichroism, and ultraviolet-visible absorption spectroscopy substantiate the interaction between the metal moiety and RNase A, electron paramagnetic resonance (EPR) allows us to determine that a carboxylate group, stemming from Asp or Glu residues, and imidazole nitrogen from His residues are involved in the V binding at acidic and physiological pH, respectively. Crystallographic data demonstrate that the VIVO(pic)2 moiety coordinates the side chain of Glu111 of RNase A, by substituting the equatorial water molecule at acidic pH. Computational methods confirm that Glu111 is the most affine residue and interacts favorably with the OC-6-23-Δ enantiomer establishing an extended network of hydrogen bonds and van der Waals stabilizations. By increasing the pH around neutrality, with the deprotonation of histidine side chains, the binding of the V complex to His105 and His119 could occur, with that to His105 which should be preferred when compared to that to the catalytically important His119. The binding of the V compound affects the enzymatic activity of RNase A, but it does not alter its overall structure and stability.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department
of Chemical Sciences, University of Naples
Federico II, I-80126 Napoli, Italy
| | - Nicola Demitri
- Elettra−Sincrotrone
Trieste, S.S. 14 km 163.5
in Area Science Park, 34149 Trieste, Italy
| | - Luigi Vitale
- Department
of Chemical Sciences, University of Naples
Federico II, I-80126 Napoli, Italy
| | - Giuseppe Sciortino
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, 43007 Tarragona, Spain
| | - Daniele Sanna
- Istituto
di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Valeria Ugone
- Istituto
di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento
di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Antonello Merlino
- Department
of Chemical Sciences, University of Naples
Federico II, I-80126 Napoli, Italy
| |
Collapse
|
11
|
Pessoa JC, Santos MF, Correia I, Sanna D, Sciortino G, Garribba E. Binding of vanadium ions and complexes to proteins and enzymes in aqueous solution. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214192] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Copper(II) and oxidovanadium(IV) complexes of chromone Schiff bases as potential anticancer agents. J Biol Inorg Chem 2021; 27:89-109. [PMID: 34817681 DOI: 10.1007/s00775-021-01913-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
We report the synthesis, characterization and biological screening of new chromone Schiff bases derived from the condensation of three 6-substituted-3-formyl-chromones with pyridoxal (HL1-3) and its Cu(II) complexes [Cu(L1-3)Cl], 1-3. For the 6-methyl derivative, HL2, the VIVO-complex [VO(L2)Cl] (5), as well as ternary Cu and VIVO complexes with 1,10-phenanthroline (phen), [Cu(L2)(phen)Cl] (4) and [VO(L2)(phen)Cl] (6), were also prepared and evaluated. Their stability in aqueous medium and radical scavenging activity toward DPPH are screened, with [Cu(L2)(phen)Cl] (4) showing hydrolytic stability and [VO(L2)(phen)Cl] (6) high radical scavenging activity. Spectroscopic studies establish bovine serum albumin (BSA), a model for HSA, as a potential reversible carrier of [Cu(L2)(phen)Cl] in blood with KBC ≈ 105 M-1. The cytotoxic activity of a group of compounds is evaluated against a panel of human cancer cell lines of different origin (ovary, cervix, brain and breast) and compared to normal cells. Our results indicate that Cu complexes are more cytotoxic than the ligands but not selective towards cancer cells. The most potent complexes (4 and 6) are further evaluated for their apoptotic potential, induction of reactive oxygen species (ROS) and genotoxicity. Both complexes efficiently triggered cell death through apoptosis as evaluated by DNA morphology and TUNEL assay, increased ROS formation as determined by DCFDA (2',7'-dichlorodihydrofluorescein diacetate) analysis, and induced genotoxic damage as visualized via COMET assay in all cancer cells under study. Therefore, 4 and 6 may be potential precursor anticancer molecules, yet they need to be targeted toward cancer cells.
Collapse
|
13
|
Sanna D, Lubinu G, Ugone V, Garribba E. Influence of temperature on the equilibria of oxidovanadium(IV) complexes in solution. Dalton Trans 2021; 50:16326-16335. [PMID: 34734597 DOI: 10.1039/d1dt02680a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The equilibria in the solution of three different oxidovanadium(IV) complexes, VO(dhp)2 (dhp = 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonato), VO(ma)2 (ma = maltolato) and VO(pic)2(H2O) (pic = picolinato), were examined in the temperature range of 120-352 K through a combination of instrumental (EPR spectroscopy) and computational techniques (DFT methods). The results revealed that a general equilibrium exists: VOL2 + H2O ⇄ cis-VOL2(H2O) ⇄ trans-VOL2(H2O), where cis and trans refer to the relative position of H2O and the oxido ligand. The equilibrium is more or less shifted to the right depending on the ligand, the temperature, the ionic strength and the coordinating properties of the solvent. With VO(dhp)2, only the square pyramidal species exists at 298 K in aqueous solution, while at 120 K the cis- and trans-VO(dhp)2(H2O) species are also present. The complex of maltol exists almost exclusively in the form cis-VO(ma)2(H2O) in aqueous solution at 298 K, while the trans species can be revealed only at higher temperatures, where the EPR linewidth significantly decreases. The equilibria involving 1-methylimidazole (MeIm), a model for the side chain His coordination, are also influenced by temperature, with its coordination being favored by decreasing the temperature. The implications of these results in the study of the (vanadium complex)-protein systems are discussed and the interaction with myoglobin (Mb) is examined as a representative example.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy.
| | - Giuseppe Lubinu
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Valeria Ugone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07100 Sassari, Italy.
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| |
Collapse
|
14
|
Therapeutic potential of vanadium complexes with 1,10-phenanthroline ligands, quo vadis? Fate of complexes in cell media and cancer cells. J Inorg Biochem 2021; 217:111350. [PMID: 33477088 DOI: 10.1016/j.jinorgbio.2020.111350] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
VIVO-complexes formulated as [VIVO(OSO3)(phen)2] (1) (phen = 1,10-phenanthroline), [VIVO(OSO3)(Me2phen)2] (2) (Me2phen = 4,7-dimethyl-1,10-phenanthroline) and [VIVO(OSO3)(amphen)2] (3) (amphen = 5-amino-1,10-phenanthroline) were prepared and stability in cell incubation media evaluated. Their cytotoxicity was determined against the A2780 (ovarian), MCF7 (breast) and PC3 (prostate) human cancer cells at different incubation times. While at 3 and 24 h the cytotoxicity differs for complexes and corresponding free ligands, at 72 h incubation all compounds are equally active presenting low IC50 values. Upon incubation of A2780 cells with 1-3, cellular distribution of vanadium in cytosol, membranes, nucleus and cytoskeleton, indicate that the uptake of V is low, particularly for 1, and that the uptake pattern depends on the ligand. Nuclear microscopic techniques are used for imaging and elemental quantification in whole PC3 cells incubated with 1. Once complexes are added to cell culture media, they decompose, and with time most VIV oxidizes to VV-species. Modeling of speciation when [VIVO(OSO3)(phen)2] (1) is added to cell media is presented. At lower concentrations of 1, VIVO- and phen-containing species are mainly bound to bovine serum albumin, while at higher concentrations [VIVO(phen)n]2+-complexes become relevant, being predicted that the species taken up and mechanisms of action operating depend on the total concentration of complex. This study emphasizes that for these VIVO-systems, and probably for many others involving oxidovanadium or other labile metal complexes, it is not possible to identify active species or propose mechanisms of cytotoxic action without evaluating speciation occurring in cell media.
Collapse
|
15
|
Sciortino G, Maréchal JD, Garribba E. Integrated experimental/computational approaches to characterize the systems formed by vanadium with proteins and enzymes. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01507e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An integrated instrumental/computational approach to characterize metallodrug–protein adducts at the molecular level is reviewed. A series of applications are described, focusing on potential vanadium drugs with a generalization to other metals.
Collapse
Affiliation(s)
- Giuseppe Sciortino
- Departament de Química
- Universitat Autònoma de Barcelona
- Cerdanyola del Vallès
- Barcelona 08193
- Spain
| | - Jean-Didier Maréchal
- Departament de Química
- Universitat Autònoma de Barcelona
- Cerdanyola del Vallès
- Barcelona 08193
- Spain
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- 07100 Sassari
- Italy
| |
Collapse
|
16
|
Ugone V, Sanna D, Ruggiu S, Sciortino G, Garribba E. Covalent and non-covalent binding in vanadium–protein adducts. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01308k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An integrated method, generalizable to any metals and proteins, based on ESI-MS, EPR and molecular modelling was applied to study the covalent and non-covalent binding of the potential drug [VIVO(nalidixato)2(H2O)] to lysozyme and cytochrome c.
Collapse
Affiliation(s)
- Valeria Ugone
- Istituto CNR di Chimica Biomolecolare
- I-07100 Sassari
- Italy
| | - Daniele Sanna
- Istituto CNR di Chimica Biomolecolare
- I-07100 Sassari
- Italy
| | - Simone Ruggiu
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| | - Giuseppe Sciortino
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
- Institute of Chemical Research of Catalonia (ICIQ)
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| |
Collapse
|
17
|
Sciortino G, Sanna D, Lubinu G, Maréchal J, Garribba E. Unveiling VIVO2+Binding Modes to Human Serum Albumins by an Integrated Spectroscopic–Computational Approach. Chemistry 2020; 26:11316-11326. [DOI: 10.1002/chem.202001492] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/02/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Giuseppe Sciortino
- Department de QuímicaUniversitat Autònoma de Barcelona 08193 Cerdanyola del Vallés, Barcelona Spain
- Dipartimento di Chimica e FarmaciaUniversità di Sassari Via Vienna 2 07100 Sassari Italy
| | - Daniele Sanna
- Istituto di Chimica BiomolecolareConsiglio Nazionale delle Ricerche Trav. La Crucca 3 07100 Sassari Italy
| | - Giuseppe Lubinu
- Dipartimento di Chimica e FarmaciaUniversità di Sassari Via Vienna 2 07100 Sassari Italy
| | - Jean‐Didier Maréchal
- Department de QuímicaUniversitat Autònoma de Barcelona 08193 Cerdanyola del Vallés, Barcelona Spain
| | - Eugenio Garribba
- Dipartimento di Chimica e FarmaciaUniversità di Sassari Via Vienna 2 07100 Sassari Italy
| |
Collapse
|
18
|
Ugone V, Sanna D, Sciortino G, Crans DC, Garribba E. ESI-MS Study of the Interaction of Potential Oxidovanadium(IV) Drugs and Amavadin with Model Proteins. Inorg Chem 2020; 59:9739-9755. [PMID: 32585093 PMCID: PMC8008395 DOI: 10.1021/acs.inorgchem.0c00969] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 01/13/2023]
Abstract
In this study, the binding to lysozyme (Lyz) of four important VIV compounds with antidiabetic and/or anticancer activity, [VIVO(pic)2(H2O)], [VIVO(ma)2], [VIVO(dhp)2], and [VIVO(acac)2], where pic-, ma-, dhp-, and acac- are picolinate, maltolate, 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate, and acetylacetonate anions, and of the vanadium-containing natural product amavadin ([VIV(hidpa)2]2-, with hidpa3- N-hydroxyimino-2,2'-diisopropionate) was investigated by ElectroSpray Ionization-Mass Spectrometry (ESI-MS). Moreover, the interaction of [VIVO(pic)2(H2O)], chosen as a representative VIVO2+ complex, was examined with two additional proteins, myoglobin (Mb) and ubiquitin (Ub), to compare the data. The examined vanadium concentration was in the range 15-150 μM, i.e., very close to that found under physiological conditions. With pic-, dhp-, and hidpa3-, the formation of adducts n[VIVOL2]-Lyz or n[VIVL2]-Lyz is favored, while with ma- and acac- the species n[VIVOL]-Lyz are detected, with n dependent on the experimental VIV/protein ratio. The behavior of the systems with [VIVO(pic)2(H2O)] and Mb or Ub is very similar to that of Lyz. The results suggested that under physiological conditions, the moiety cis-VIVOL2 (L = pic-, dhp-) is bound by only one accessible side-chain protein residue that can be Asp, Glu, or His, while VIVOL+ (L = ma-, acac-) can interact with the two equatorial and axial sites. If the VIV complex is thermodynamically stable and does not have available coordination positions, such as amavadin, the protein cannot interact with it through the formation of coordination bonds and, in such cases, noncovalent interactions are predicted. The formation of the adducts is dependent on the thermodynamic stability and geometry in aqueous solution of the VIVO2+ complex and affects the transport, uptake, and mechanism of action of potential V drugs.
Collapse
Affiliation(s)
- Valeria Ugone
- Dipartimento
di Chimica e Farmacia, Università
di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Daniele Sanna
- Istituto
CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Giuseppe Sciortino
- Dipartimento
di Chimica e Farmacia, Università
di Sassari, Via Vienna 2, I-07100 Sassari, Italy
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Debbie C. Crans
- Department
of Chemistry, Colorado State University, 1301 Center Avenue, Fort Collins, Colorado, United States
| | - Eugenio Garribba
- Dipartimento
di Chimica e Farmacia, Università
di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| |
Collapse
|
19
|
Nunes P, Correia I, Marques F, Matos AP, Dos Santos MMC, Azevedo CG, Capelo JL, Santos HM, Gama S, Pinheiro T, Cavaco I, Pessoa JC. Copper Complexes with 1,10-Phenanthroline Derivatives: Underlying Factors Affecting Their Cytotoxicity. Inorg Chem 2020; 59:9116-9134. [PMID: 32578983 DOI: 10.1021/acs.inorgchem.0c00925] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interpretation of in vitro cytotoxicity data of Cu(II)-1,10-phenanthroline (phen) complexes normally does not take into account the speciation that complexes undergo in cell incubation media and its implications in cellular uptake and mechanisms of action. We synthesize and test the activity of several distinct Cu(II)-phen compounds; up to 24 h of incubation, the cytotoxic activity differs for the Cu complexes and the corresponding free ligands, but for longer incubation times (e.g., 72 h), all compounds display similar activity. Combining the use of several spectroscopic, spectrometric, and electrochemical techniques, the speciation of Cu-phen compounds in cell incubation media is evaluated, indicating that the originally added complex almost totally decomposed and that Cu(II) and phen are mainly bound to bovine serum albumin. Several methods are used to disclose relationships between structure, activity, speciation in incubation media, cellular uptake, distribution of Cu in cells, and cytotoxicity. Contrary to what is reported in most studies, we conclude that interaction with cell components and cell death involves the separate action of Cu ions and phen molecules, not [Cu(phen)n] species. This conclusion should similarly apply to many other Cu-ligand systems reported to date.
Collapse
Affiliation(s)
- Patrique Nunes
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Isabel Correia
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares and Departamento de Ciências e Engenharia Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - António Pedro Matos
- Centro de Investigação Interdisciplinar Egas Moniz, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - Margarida M C Dos Santos
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Cristina G Azevedo
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - José-Luis Capelo
- LAVQ, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.,PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152 Caparica, Portugal
| | - Hugo M Santos
- LAVQ, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.,PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152 Caparica, Portugal
| | - Sofia Gama
- Department of Analytical Chemistry, Faculty of Chemistry, University of Białystok, ul. Ciołkowskiego 1K, 15-245 Białystok, Poland
| | - Teresa Pinheiro
- Institute for Bioengineering and Biosciences and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Isabel Cavaco
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal.,Departamento de Química e Farmácia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
20
|
Pokidova ОV, Luzhkov VB, Emel'yanova NS, Krapivin VB, Kotelnikov AI, Sanina NA, Aldoshin SM. Effect of albumin on the transformation of dinitrosyl iron complexes with thiourea ligands. Dalton Trans 2020; 49:12674-12685. [DOI: 10.1039/d0dt02452j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BSA binds the Fe(NO)2+ fragment of DNIC and multiple molecules of [Fe(SC(NH2)2)2(NO)2]+ that prolongs NO donation by this DNIC.
Collapse
Affiliation(s)
- Оlesya V. Pokidova
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
| | - Victor B. Luzhkov
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Nina S. Emel'yanova
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Vladimir B. Krapivin
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
| | - Alexander I. Kotelnikov
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Natalia A. Sanina
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| | - Sergey M. Aldoshin
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS)
- Moscow Region
- Russian Federation
- Faculty of Fundamental Physicochemical Engineering
- Lomonosov Moscow State University
| |
Collapse
|
21
|
Maurya MR, Jangra N, Avecilla F, Ribeiro N, Correia I. Vanadium(V) and Molybdenum(VI) Complexes Containing ONO Tridentate Schiff Bases and Their Application as Catalysts for Oxidative Bromination of Phenols. ChemistrySelect 2019. [DOI: 10.1002/slct.201903678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mannar R. Maurya
- Department of ChemistryIndian Institute of Technology Roorkee Roorkee 247667 India
| | - Nancy Jangra
- Department of ChemistryIndian Institute of Technology Roorkee Roorkee 247667 India
| | - Fernando Avecilla
- Grupo XenomarCentro de Investigacións Científicas Avanzadas (CICA)Departamento de Química, Facultade de CienciasUniversidade da CoruñaCampus de A Coruña 15071 A Coruña Spain
| | - Nádia Ribeiro
- Centro de Química EstruturalDepartamento de Engenharia QuímicaInstituto Superior TécnicoUniversidade de Lisboa Av. Rovisco Pais 1,1049–001 Lisboa Portugal
| | - Isabel Correia
- Centro de Química EstruturalDepartamento de Engenharia QuímicaInstituto Superior TécnicoUniversidade de Lisboa Av. Rovisco Pais 1,1049–001 Lisboa Portugal
| |
Collapse
|
22
|
Banerjee A, Dash SP, Mohanty M, Sanna D, Sciortino G, Ugone V, Garribba E, Reuter H, Kaminsky W, Dinda R. Chemistry of mixed-ligand oxidovanadium(IV) complexes of aroylhydrazones incorporating quinoline derivatives: Study of solution behavior, theoretical evaluation and protein/DNA interaction. J Inorg Biochem 2019; 199:110786. [PMID: 31377474 DOI: 10.1016/j.jinorgbio.2019.110786] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/15/2023]
Abstract
A series of eight hexacoordinated mixed-ligand oxidovanadium(IV) complexes [VO(Lx)(LN-N)] (1-8), where Lx = L1 - L4 are four differently substituted ONO donor aroylhydrazone ligands and LN-N are N,N-donor bases like 2,2'-bipyridine (bipy) (1, 3, 5 and 7) and 1,10-phenanthroline (phen) (2, 4, 6 and 8), have been reported. All synthesized complexes have been characterized by various physicochemical techniques and molecular structures of 1 and 6 were determined by X-ray crystallography. With a view to evaluate the biological activity of the VIVO species, the behavior of the systems VIVO2+/Lx, VIVO2+/Lx/bipy and VIVO2+/Lx/phen was studied as a function of pH in a mixture of H2O/DMSO 50/50 (v/v). DFT calculations allowed finding out the relative stability of the tautomeric forms of the ligands, and predicting the structure of vanadium complexes and their EPR parameters. To study their interaction with proteins, firstly the ternary systems VIVO2+/L1,2 with 1-methylimidazole, which is a good model for histidine binding, were examined. Subsequently the interaction of the complexes with lysozyme (Lyz), cytochrome c (Cyt) and bovine serum albumin (BSA) was studied. The results indicate that the complexes showed moderate binding affinity towards BSA, while no interaction takes place with lysozyme and cytochrome c. This could be explained with the higher number of accessible coordinating and polar residues for BSA than for Lyz and Cyt. Further, the complexes were also evaluated for their DNA binding propensity through UV-vis absorption titration and fluorescence spectral studies. These results were consistent with BSA binding affinity and showed moderate binding affinity towards CT-DNA.
Collapse
Affiliation(s)
- Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Subhashree P Dash
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India; Department of Basic Sciences, Parala Maharaja Engineering College, Sitalapalli, Brahmapur, Odisha 761003, India
| | - Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain; Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy.
| | - Hans Reuter
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastraße 6, 49069 Osnabruck, Germany
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
23
|
Ugone V, Sanna D, Sciortino G, Maréchal JD, Garribba E. Interaction of Vanadium(IV) Species with Ubiquitin: A Combined Instrumental and Computational Approach. Inorg Chem 2019; 58:8064-8078. [PMID: 31140794 DOI: 10.1021/acs.inorgchem.9b00807] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The interaction of VIVO2+ ion and five VIVOL2 compounds with potential pharmacological application, where L indicates maltolate (ma), kojate (koj), acetylacetonate (acac), 1,2-dimethyl-3-hydroxy-4(1 H)-pyridinonate (dhp), and l-mimosinate (mim), with ubiquitin (Ub) was studied by EPR, ESI-MS, and computational (docking and DFT) methods. The free metal ion VIVO2+ interacts with Glu, Asp, His, Thr, and Leu residues, but the most stable sites (named 1 and 2) involve the coordination of (Glu16, Glu18) and (Glu24, Asp52). In the system with VIVOL2 compounds, the type of binding depends on the vanadium concentration. When the concentration is in the mM range, the binding occurs with cis-VOL2(H2O), L = ma, koj, dhp, and mim, or with VO(acac)2: in the first case, the equatorial coordination of His68, Glu16, Glu18, or Asp21 residues yields species with formula n[VOL2]-Ub where n = 2-3, while with VO(acac)2 only noncovalent surface interactions are revealed. When the concentration of V is on the order of micromolar, the mono-chelated species VOL(H2O)2+ with L = ma, koj, acac, dhp, and mim, favored by the hydrolysis, interact with Ub, and adducts with composition n[VOL]-Ub ( n = 1-2) are observed with the contemporaneous coordination of (Glu18, Asp21) or (Glu16, Glu18), and (Glu24, Asp52) or (Glu51, Asp52) donors. The results of this work suggest that the combined application of spectroscopic, spectrometric, and computational techniques allow the complete characterization of the ternary systems formed by a V compound and a model protein such as ubiquitin. The same approach can be applied, eventually changing the spectroscopic/spectrometric techniques, to study the interaction of other metal species with other proteins.
Collapse
Affiliation(s)
- Valeria Ugone
- Dipartimento di Chimica e Farmacia , Università di Sassari , Via Vienna 2 , I-07100 Sassari , Italy
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare , Consiglio Nazionale delle Ricerche , Trav. La Crucca 3 , I-07040 Sassari , Italy
| | - Giuseppe Sciortino
- Dipartimento di Chimica e Farmacia , Università di Sassari , Via Vienna 2 , I-07100 Sassari , Italy.,Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallés , Barcelona , Spain
| | - Jean-Didier Maréchal
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallés , Barcelona , Spain
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia , Università di Sassari , Via Vienna 2 , I-07100 Sassari , Italy
| |
Collapse
|
24
|
Al-Harthi S, Lachowicz JI, Nowakowski ME, Jaremko M, Jaremko Ł. Towards the functional high-resolution coordination chemistry of blood plasma human serum albumin. J Inorg Biochem 2019; 198:110716. [PMID: 31153112 DOI: 10.1016/j.jinorgbio.2019.110716] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Human serum albumin (HSA) is a monomeric, globular, multi-carrier and the most abundant protein in the blood. HSA displays multiple ligand binding sites with extraordinary binding capacity for a wide range of ions and molecules. For decades, HSA's ability to bind to various ligands has led many scientists to study its physiological properties and protein structure; indeed, a better understanding of HSA-ligand interactions in human blood, at the atomic level, will likely foster the development of more potent, and overall more performant, diagnostic and therapeutic tools against serious human disorders such as diabetes, cardiovascular disorders, and cancer. Here, we present a concise overview of the current knowledge of HSA's structural characteristics, and its coordination chemistry with transition metal ions, within the scope and limitations of current techniques and biophysical methods to reach atomic resolution in solution and in blood serum. We also highlight the overwhelming need of a detailed atomistic understanding of HSA dynamic structures and interactions that are transient, weak, multi-site and multi-step, and allosterically affected by each other. Considering the fact that HSA is a current clinical tool for drug delivery systems and a potential contender as molecular cargo and nano-vehicle used in biophysical, clinical and industrial fields, we underline the emerging need for novel approaches to target the dynamic functional coordination chemistry of the human blood serum albumin in solution, at the atomic level.
Collapse
Affiliation(s)
- Samah Al-Harthi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), 23955-6900 Thuwal, Saudi Arabia
| | - Joanna Izabela Lachowicz
- Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| | - Michal Eligiusz Nowakowski
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), 23955-6900 Thuwal, Saudi Arabia; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Mariusz Jaremko
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), 23955-6900 Thuwal, Saudi Arabia
| | - Łukasz Jaremko
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), 23955-6900 Thuwal, Saudi Arabia.
| |
Collapse
|
25
|
Costa BC, Tokuhara CK, Rocha LA, Oliveira RC, Lisboa-Filho PN, Costa Pessoa J. Vanadium ionic species from degradation of Ti-6Al-4V metallic implants: In vitro cytotoxicity and speciation evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:730-739. [DOI: 10.1016/j.msec.2018.11.090] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/21/2018] [Accepted: 11/30/2018] [Indexed: 11/30/2022]
|
26
|
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res 2019; 188:68-98. [PMID: 30350272 PMCID: PMC6373340 DOI: 10.1007/s12011-018-1540-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Eduardo Sánchez-Lara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Brenda L. Sanchez-Gaytan
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Jose Manuel Perez-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Enrique González-Vergara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| |
Collapse
|
27
|
Sciortino G, Sanna D, Ugone V, Maréchal JD, Garribba E. Integrated ESI-MS/EPR/computational characterization of the binding of metal species to proteins: vanadium drug–myoglobin application. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00179d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An integrated strategy based on ESI-MS spectrometry, EPR spectroscopy and docking/QM computational methods is applied to the systems formed by VIVO2+ ions and four potential VIVOL2 drugs and myoglobin. This approach is generizable to other metals and proteins.
Collapse
Affiliation(s)
- Giuseppe Sciortino
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
- Departament de Química
| | - Daniele Sanna
- Istituto CNR di Chimica Biomolecolare
- I-07040 Sassari
- Italy
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| | | | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| |
Collapse
|
28
|
Sciortino G, Sanna D, Ugone V, Maréchal JD, Alemany-Chavarria M, Garribba E. Effect of secondary interactions, steric hindrance and electric charge on the interaction of VIVO species with proteins. NEW J CHEM 2019. [DOI: 10.1039/c9nj01956a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The effect of secondary interactions (hydrogen bonds and van der Waals contacts), steric hindrance and electric charge, on the binding of VIV complexes formed by pipemidic and 8-hydroxyquinoline-5-sulphonic acids with ubiquitin and lysozyme is studied.
Collapse
Affiliation(s)
- Giuseppe Sciortino
- Departament de Química
- Universitat Autònoma de Barcelona
- Barcelona
- Spain
- Dipartimento di Chimica e Farmacia
| | - Daniele Sanna
- Istituto CNR di Chimica Biomolecolare
- I-07040 Sassari
- Italy
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| | | | | | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- I-07100 Sassari
- Italy
| |
Collapse
|
29
|
Adam N, Adam C, Keskitalo M, Pfeuffer-Rooschüz J, Panak PJ. Interaction of Cm(III) with human serum albumin studied by time-resolved laser fluorescence spectroscopy and NMR. J Inorg Biochem 2018; 192:45-51. [PMID: 30594865 DOI: 10.1016/j.jinorgbio.2018.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/16/2018] [Accepted: 12/15/2018] [Indexed: 10/27/2022]
Abstract
The complexation of Cm(III) with human serum albumin (HSA) was investigated using time-resolved laser fluorescence spectroscopy (TRLFS). The Cm(III) HSA species is dominating the speciation between pH 7.0 and 9.3. The first coordination sphere is composed by three to four H2O molecules and five to six coordinating ligands from the protein. For the complex formation at pH 8.0 a conditional stability constant of logK = 6.16 ± 0.50 was determined. Furthermore, information on the Cm(III) HSA binding site were obtained. With increasing Cu(II) concentration the Cm(III) HSA complexation is suppressed whereas the addition of Zn(II) has no effect. This points to the complexation of Cm(III) at the N-terminal binding site (NTS) which is the primary Cu(II) binding site. NMR experiments with Cu(II), Eu(III) and Am(III) HSA show a decrease of the peak assigned to the His C2 proton of His 3, which is part of the NTS, with increasing metal ion concentration. This confirms the complexation of Eu(III) and Am(III) at the Cu(II) binding site NTS. The results presented in this study contribute to a better understanding of relevant biochemical reactions of incorporated actinides.
Collapse
Affiliation(s)
- Nicole Adam
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany.
| | - Christian Adam
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Markus Keskitalo
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany; Department of Chemistry - Radiochemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| | - Jonathan Pfeuffer-Rooschüz
- University of Heidelberg, Institute of Physical Chemistry, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Petra J Panak
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany; University of Heidelberg, Institute of Physical Chemistry, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
30
|
Del Carpio E, Hernández L, Ciangherotti C, Villalobos Coa V, Jiménez L, Lubes V, Lubes G. Vanadium: History, chemistry, interactions with α-amino acids and potential therapeutic applications. Coord Chem Rev 2018; 372:117-140. [PMID: 32226092 PMCID: PMC7094547 DOI: 10.1016/j.ccr.2018.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 06/03/2018] [Indexed: 12/11/2022]
Abstract
In the last 30 years, since the discovery that vanadium is a cofactor found in certain enzymes of tunicates and possibly in mammals, different vanadium-based drugs have been developed targeting to treat different pathologies. So far, the in vitro studies of the insulin mimetic, antitumor and antiparasitic activity of certain compounds of vanadium have resulted in a great boom of its inorganic and bioinorganic chemistry. Chemical speciation studies of vanadium with amino acids under controlled conditions or, even in blood plasma, are essential for the understanding of the biotransformation of e.g. vanadium antidiabetic complexes at the physiological level, providing clues of their mechanism of action. The present article carries out a bibliographical research emphaticizing the chemical speciation of the vanadium with different amino acids and reviewing also some other important aspects such as its chemistry and therapeutical applications of several vanadium complexes.
Collapse
Key Words
- 2,2′-bipy, 2,2-bipyridine
- 6-mepic, 6-methylpicolinic acid
- Ad, adenosine
- Ala, alanine
- Ala-Gly, alanylglycine
- Ala-His, alanylhistidine
- Ala-Ser, alanylserine
- Amino acids
- Antidiabetics
- Antitumors
- Asp, aspartic acid
- BEOV, bis(ethylmaltolate)oxovanadium(IV)
- Chemical speciation
- Cys, cysteine
- Cyt, citrate
- DMF, N,N-dimethylformamide
- DNA, deoxyribonucleic acid
- EPR, Electron Paramagnetic Resonance
- G, Gauss
- Glu, glutamic acid
- Gly, glycine
- GlyAla, glycylalanine
- GlyGly, glycylglycine
- GlyGlyCys, glycylglycylcysteine
- GlyGlyGly, glycylglycylglycine
- GlyGlyHis, glycylglycylhistidine
- GlyPhe, glycylphenylalanine
- GlyTyr, glycyltyrosine
- GlyVal, glycylvaline
- HIV, human immunodeficiency virus
- HSA, albumin
- Hb, hemoglobin
- His, histidine
- HisGlyGly, histidylglycylglycine
- Ig, immunoglobulins
- Im, imidazole
- L-Glu(γ)HXM, l-glutamic acid γ-monohydroxamate
- LD50, the amount of a toxic agent (such as a poison, virus, or radiation) that is sufficient to kill 50 percent of population of animals
- Lac, lactate
- MeCN, acetonitrile
- NADH and NAD+, nicotinamide adenine dinucleotide
- NEP, neutral endopeptidas
- NMR, Nuclear Magnetic Resonance
- Ox, oxalate
- PI3K, phosphoinositide 3-kinase
- PTP1B, protein tyrosine phosphatase 1B
- Pic, picolinic acid
- Pro, proline
- Pro-Ala, prolylalanine
- RNA, ribonucleic acid
- SARS, severe acute respiratory syndrome
- Sal-Ala, N-salicylidene-l-alaninate
- SalGly, salicylglycine
- SalGlyAla, salicylglycylalanine
- Ser, serine
- T, Tesla
- THF, tetrahydrofuran
- Thr, threonine
- VBPO, vanadium bromoperoxidases
- VanSer, Schiff base formed from o-vanillin and l-serine
- Vanadium complexes
- acac, acetylacetone
- dhp, 1,2-dimethyl-3-hydroxy-4(1H)-pyridinone
- dipic, dipicolinic acid
- dmpp, 1,2-dimethyl-3-hydroxy-4-pyridinonate
- hTf, transferring
- hpno, 2-hydroxypyridine-N-oxide
- l.m.m., low molecular mass
- mal, maltol
- py, pyridine
- sal-l-Phe, N-salicylidene-l-tryptophanate
- salGlyGly, N-salicylideneglycylglycinate
- salSer, N-salicylideneserinate
- salTrp, N-salicylidene-L tryptophanate
- salVal, N-salicylidene-l-valinate
- salophen, N,N′-bis(salicylidene)-o-phenylenediamine
- saltrp, N-salicylidene-l-tryptophanate
- γ-PGA, poly-γ-glutamic acid
Collapse
Affiliation(s)
- Edgar Del Carpio
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
- Unidad de Química Medicinal, Facultad de Farmacia, Escuela “Dr. Jesús María Bianco”, Universidad Central de Venezuela, Venezuela
| | - Lino Hernández
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
- Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, Venezuela
| | - Carlos Ciangherotti
- Laboratorio de Neuropéptidos, Facultad de Farmacia, Escuela “Dr. Jesús María Bianco”, Universidad Central de Venezuela, Venezuela
- Laboratorio de Bioquímica, Facultad de Farmacia, Escuela “Dr. Jesús María Bianco”, Universidad Central de Venezuela, Venezuela
| | - Valentina Villalobos Coa
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
| | - Lissette Jiménez
- Facultad de ingeniería Química, Universidad de Carabobo, Venezuela
| | - Vito Lubes
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
| | - Giuseppe Lubes
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
| |
Collapse
|
31
|
New heteroleptic oxidovanadium(V) complexes: synthesis, characterization and biological evaluation as potential agents against Trypanosoma cruzi. J Biol Inorg Chem 2018; 23:1265-1281. [DOI: 10.1007/s00775-018-1613-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
|
32
|
Sanna D, Ugone V, Sciortino G, Buglyó P, Bihari Z, Parajdi-Losonczi PL, Garribba E. V IVO complexes with antibacterial quinolone ligands and their interaction with serum proteins. Dalton Trans 2018; 47:2164-2182. [PMID: 29327005 DOI: 10.1039/c7dt04216g] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quinolone derivatives are among the most commonly prescribed antibacterials in the world and could also attract interest as organic ligands in the design of metal complexes with potential pharmacological activity. In this study, five compounds, belonging to the first (nalidixic acid or Hnal), second (ciprofloxacin or Hcip, and norfloxacin or Hnor) and third generation (levofloxacin or Hlev, and sparfloxacin or Hspar) of quinolones, were used as ligands to bind the VIVO2+ ion. In aqueous solution, mono- and bis-chelated species were formed as a function of pH, with cis-[VOHxL2(H2O)]x+ and [VOHxL2]x+, x = 0-2, being the major complexes at pH 7.4. DFT calculations indicate that the most stable isomers are the octahedral OC-6-32 and the square pyramidal SPY-5-12, in equilibrium with each other. To the best of our knowledge, this is the first case that an equilibrium between a penta-coordinated square pyramidal complex and a hexa-coordinated octahedral complex is observed in solution for ligands forming six-membered chelated rings. Nalidixic acid forms the solid compound [VO(nal)2(H2O)], to which a cis-octahedral geometry was assigned. The interaction with 1-methylimidazole (MeIm) causes a shift of the equilibrium SPY-5 + H2O ⇄ OC-6 toward the right after the formation of cis-[VOHxL2(MeIm)]x+, where MeIm replaces an equatorial water ligand. The study of the systems containing [VO(nal)2(H2O)] and the serum proteins - albumin (HSA), apo-transferrin (apo-hTf) and holo-transferrin (holo-hTf) - indicates that HSA and holo-hTf form the mixed species {VO(nal)2}y(HSA) and {VO(nal)2}y(holo-hTf), where y = 1-3 denotes the number of VO(nal)2 moieties bound to accessible histidines (His105, His367, His510 for HSA, and His25, His349, His606 for holo-hTf), whereas apo-hTf yields VO(nal)2(apo-hTf) with the coordination of the His289 residue only. Docking calculations suggest that the specific conformation of apo-hTf and the steric hindrance of the cis-VO(nal)2 moiety interfere with its interaction with all the surface His residues and the formation of a hydrogen bond network which could stabilize the binding sites.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy.
| | | | | | | | | | | | | |
Collapse
|
33
|
Sanna D, Ugone V, Micera G, Buglyó P, Bíró L, Garribba E. Speciation in human blood of Metvan, a vanadium based potential anti-tumor drug. Dalton Trans 2018. [PMID: 28640312 DOI: 10.1039/c7dt00943g] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The first report on the anti-cancer activity of the compound Metvan, [VIVO(Me2phen)2(SO4)], where Me2phen is 4,7-dimethyl-1,10-phenanthroline, dates back to 2001. Although it was immediately identified as one of the most promising multitargeted anti-cancer V compounds, no development on the medical experimentation was carried out. One of the possible reasons is the lack of information on its speciation in aqueous solution and its thermodynamic stability, factors which influence the transport in the blood and the final form which reaches the target organs. To fill this gap, in this work the speciation of Metvan in aqueous solution and human blood was studied by instrumental (EPR, electronic absorption spectroscopy, ESI-MS and ESI-MS/MS), analytical (pH-potentiometry) and computational (DFT) methods. The results suggested that Metvan transforms at physiological pH into the hydrolytic species cis-[VO(Me2phen)2(OH)]+ and that both citrate and proteins (transferrin and albumin in the blood serum, and hemoglobin in the erythrocytes) form mixed complexes, denoted [VO(Me2phen)(citrH-1)]2- and VO-Me2phen-Protein with the probable binding of His-N donors. The measurements with erythrocytes suggest that Metvan is able to cross their membrane forming mixed species VO-Me2phen-Hb. The redox stability in cell culture medium was also examined, showing that ca. 60% is oxidized to VV after 5 h. Overall, the speciation of Metvan in the blood mainly depends on the V concentration: when it is larger than 50 μM, [VO(Me2phen)(citrH-1)]2- and VO-Me2phen-Protein are the major species, while for concentrations lower than 10 μM, (VO)(hTf) is formed and Me2phen is lost. Therefore, it is plausible that the pharmacological activity of Metvan could be due to the synergic action of free Me2phen, and VIVO and VVO/VVO2 species.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Sciortino G, Sanna D, Ugone V, Lledós A, Maréchal JD, Garribba E. Decoding Surface Interaction of VIVO Metallodrug Candidates with Lysozyme. Inorg Chem 2018; 57:4456-4469. [DOI: 10.1021/acs.inorgchem.8b00134] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Agustí Lledós
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| |
Collapse
|
35
|
Sanna D, Ugone V, Buglyó P, Nagy S, Kacsir I, Garribba E. Speciation in aqueous solution and interaction with low and high molecular mass blood bioligands of [V IV O(oda)(H 2 O) 2 ], a V compound with in vitro anticancer activity. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.07.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Dos Santos ER, Graminha AE, Schultz MS, Correia I, Selistre-de-Araújo HS, Corrêa RS, Ellena J, Lacerda EDPS, Pessoa JC, Batista AA. Cytotoxic activity and structural features of Ru(II)/phosphine/amino acid complexes. J Inorg Biochem 2017; 182:48-60. [PMID: 29433005 DOI: 10.1016/j.jinorgbio.2017.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 02/05/2023]
Abstract
Thirteen new ruthenium amino acid complexes were synthesized and characterized. They were obtained by the reaction of α-amino acids (AA) with [RuCl2(P-P)(N-N)], where P-P=1,4-bis(diphenylphosphino)butane (dppb) or 1,3-bis(diphenylphosphino)propane (dppp) and N-N=4,4'-dimethyl-2,2'-bipyridine (4'-Mebipy), 5,5'-dimethyl-2,2'-bipyridine (5'-Mebipy) or 4,4'-Methoxy-2-2'-bipyridine (4'-MeObipy). This afforded a family of complexes formulated as [Ru(AA-H)(P-P)(N-N)]PF6, where AA=glycine (Gly), L-alanine (Ala), L-valine (Val), L-tyrosine (Tyr), L-tryptophan (Trp), L-histidine (His) and L-methionine (Met). All compounds were characterized by elemental analysis, spectroscopic and electrochemical techniques. The [Ru(AA-H)(P-P)(N-N)]PF6 complexes are octahedral (the AA-H ligand binding involves N-amine and O-carboxylate), diamagnetic (low-spin d6, S=0) and present bands due to electronic transitions in the visible region. 1H, 13C{1H} and 31P{1H} NMR spectra of the complexes indicate the presence of C2 symmetry, and the identification of diastereoisomers. In vitro cytotoxicity assays of the compounds and cisplatin were carried out using MDA-MB-231 (human breast) tumor cell line and a non-tumor breast cell line (MCF-10A). Most complexes present promising results with IC50 values comparable with the reference drug cisplatin and high selectivity indexes were found for the complexes containing L-Trp. The binding of two Ru-precursors of the type [RuCl2(dppb)(NN)] (N-N=4'-MeObipy or 4'-Mebipy) to the blood transporter protein human serum albumin (HSA) was evaluated by fluorescence and circular dichroism spectroscopy. Both complexes bind HSA, probably in the hydrophobic pocket near Trp214, and the Ru-complex containing 4'-MeObipy shows higher affinity for HSA than the 4'-Mebipy one.
Collapse
Affiliation(s)
- Edjane R Dos Santos
- Departamento de Química, Universidade Federal de São Carlos, C.P. 676, CEP 13565-905 São Carlos, (SP), Brazil.
| | - Angelica E Graminha
- Departamento de Química, Universidade Federal de São Carlos, C.P. 676, CEP 13565-905 São Carlos, (SP), Brazil
| | - Mario S Schultz
- Núcleo em Ecologia e Desenvolvimento Sócio Ambiental de Macaé, Universidade Federal do Rio de Janeiro - Campus Macaé, CEP 27910-970 Macaé, RJ, Brazil
| | - Isabel Correia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Heloisa S Selistre-de-Araújo
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, C.P. 676, CEP 13565-905 São Carlos, SP, Brazil
| | - Rodrigo S Corrêa
- Universidade Federal de Ouro Preto, Campos Morro do Cruzeiro, CEP 35.400-000 Ouro Preto, MG, Brazil
| | - Javier Ellena
- Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, CEP 13560-970 São Carlos, SP, Brazil
| | - Elisângela de Paula S Lacerda
- Laboratório de Genética Molecular e Citogenética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - João Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Alzir A Batista
- Departamento de Química, Universidade Federal de São Carlos, C.P. 676, CEP 13565-905 São Carlos, (SP), Brazil
| |
Collapse
|
37
|
|
38
|
Sanna D, Serra M, Ugone V, Manca L, Pirastru M, Buglyó P, Bíró L, Micera G, Garribba E. Biorelevant reactions of the potential anti-tumor agent vanadocene dichloride. Metallomics 2017; 8:532-41. [PMID: 27121101 DOI: 10.1039/c6mt00002a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The interaction of the potential anti-tumor agent vanadocene dichloride ([Cp2VCl2] or VDC) with some relevant bioligands of the cytosol such as proteins (Hb), amino acids (glycine and histidine), NADH derivatives (NADH, NADPH, NAD(+) and NADP(+)), reductants (GSH and ascorbic acid), phosphates (HPO4(2-), P2O7(4-), cAMP, AMP, ADP and ATP) and carboxylate derivatives (lactate) and its uptake by red blood cells were studied. The results indicated that [Cp2VCl2] transforms at physiological pH into [Cp2V(OH)2] and that only HPO4(2-), P2O7(4-), lactate, ATP and ADP form mixed species with the [Cp2V](2+) moiety replacing the two hydroxide ions. EPR and electronic absorption spectroscopy, agarose gel electrophoresis and spin trapping measurements allow excluding any direct interaction and/or intercalation with DNA and the formation of reactive oxygen species (ROS) in Fenton-like reactions. Uptake experiments by erythrocytes suggested that VDC crosses the membrane and enters inside the cells, whereas 'bare' V(IV) transforms into V(IV)O species with loss of the two cyclopentadienyl rings. This transformation in the cellular environment could be related to the mechanism of action of VDC.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, UOS di Sassari, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Maria Serra
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, UOS di Sassari, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy.
| | - Laura Manca
- Dipartimento di Scienze Biomediche, Università di Sassari, Via Muroni 25, I-07100 Sassari, Italy
| | - Monica Pirastru
- Dipartimento di Scienze Biomediche, Università di Sassari, Via Muroni 25, I-07100 Sassari, Italy
| | - Péter Buglyó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary
| | - Linda Bíró
- Department of Inorganic and Analytical Chemistry, University of Debrecen, P.O. Box 21, H-4010 Debrecen, Hungary
| | - Giovanni Micera
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy.
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy.
| |
Collapse
|
39
|
|
40
|
Sciortino G, Sanna D, Ugone V, Micera G, Lledós A, Maréchal JD, Garribba E. Elucidation of Binding Site and Chiral Specificity of Oxidovanadium Drugs with Lysozyme through Theoretical Calculations. Inorg Chem 2017; 56:12938-12951. [PMID: 28985059 DOI: 10.1021/acs.inorgchem.7b01732] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study presents an implementation of the protein-ligand docking program GOLD and a generalizable method to predict the binding site and orientation of potential vanadium drugs. Particularly, theoretical methods were applied to the study of the interaction of two VIVO complexes with antidiabetic activity, [VIVO(pic)2(H2O)] and [VIVO(ma)2(H2O)], where pic is picolinate and ma is maltolate, with lysozyme (Lyz) for which electron paramagnetic resonance spectroscopy suggests the binding of the moieties VO(pic)2 and VO(ma)2 through a carboxylate group of an amino acid residue (Asp or Glu). The work is divided in three parts: (1) the generation of a new series of parameters in GOLD program for vanadium compounds and the validation of the method on five X-ray structures of VIVO and VV species bound to proteins; (2) the prediction of the binding site and enantiomeric preference of [VO(pic)2(H2O)] to lysozyme, for which the X-ray diffraction analysis displays the interaction of a unique isomer (i.e., OC-6-23-Δ) through Asp52 residue, and the subsequent refinement of the results with quantum mechanics/molecular mechanics methods; (3) the application of the same approach to the interaction of [VO(ma)2(H2O)] with lysozyme. The results show that convenient implementation of protein-ligand docking programs allows for satisfactorily reproducing X-ray structures of metal complexes that interact with only one coordination site with proteins and predicting with blind procedures relevant low-energy binding modes. The results also demonstrate that the combination of docking methods with spectroscopic data could represent a new tool to predict (metal complex)-protein interactions and have a general applicability in this field, including for paramagnetic species.
Collapse
Affiliation(s)
- Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona , Cerdanyola del Vallés, 08193 Barcelona, Spain.,Dipartimento di Chimica e Farmacia, Università di Sassari , Via Vienna 2, I-07100 Sassari, Italy
| | - Daniele Sanna
- Istituto CNR di Chimica Biomolecolare , Trav. La Crucca 3, Baldinca-Li Punti, I-07040 Sassari, Italy
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia, Università di Sassari , Via Vienna 2, I-07100 Sassari, Italy
| | - Giovanni Micera
- Dipartimento di Chimica e Farmacia, Università di Sassari , Via Vienna 2, I-07100 Sassari, Italy
| | - Agustí Lledós
- Departament de Química, Universitat Autònoma de Barcelona , Cerdanyola del Vallés, 08193 Barcelona, Spain
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona , Cerdanyola del Vallés, 08193 Barcelona, Spain
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari , Via Vienna 2, I-07100 Sassari, Italy
| |
Collapse
|
41
|
Correia I, Borovic S, Cavaco I, Matos CP, Roy S, Santos HM, Fernandes L, Capelo JL, Ruiz-Azuara L, Pessoa JC. Evaluation of the binding of four anti-tumor Casiopeínas® to human serum albumin. J Inorg Biochem 2017; 175:284-297. [PMID: 28806645 DOI: 10.1016/j.jinorgbio.2017.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 02/06/2023]
Abstract
The metal complexes designated by Casiopeínas® are mixed-ligand CuII-compounds some of them having promising antineoplastic properties. We report studies of binding of Cu(glycinato)(4,7-dimethyl-1,10-phenanthroline) (Cas-II-Gly (1)), Cu(acetylacetonato)(4,7-dimethyl-1,10-phenanthroline) (Cas-III-Ea (2)), Cu(glycinato)(4,4'-dimethyl-2,2'-bipyridine) (Cas-IV-Gly (3)) and Cu(acetylacetonato)(4,4'-dimethyl-2,2'-bipyridine) (Cas-III-ia (4)) to human serum albumin (HSA) by circular dichroism (CD), Electron paramagnetic resonance (EPR) and fluorescence spectroscopy. The results indicate that HSA may bind up to three molecules of the tested Casiopeínas. This is confirmed by inductively coupled plasma - atomic absorption spectroscopy measurements of samples of HSA-Casiopeínas after passing by adequate size-exclusion columns. The binding of Cas-II-Gly to HSA was also confirmed by MALDI-TOF mass spectrometric experiments. In the physiological range of concentrations the Casiopeínas form 1:1 adducts with HSA, with conditional binding constants of ca. 1×109 (1), 4×107 (2), 1×106 (3) and 2×105 (4), values determined from the CD spectra measured, and the fluorescence emission spectra indicates that the binding takes place close to the Trp214 residue. Overall, the data confirm that these Casiopeínas may bind to HSA and may be transported in blood serum by this protein; this might allow some selective tumor targeting, particularly in the case of Cas-II-Gly. In this work we also discuss aspects associated to the reliability of the frequently used methodologies to determine binding constants based on the measurement of fluorescence emission spectra of solutions containing low concentrations of proteins such as HSA and BSA, by titrations with solutions of metal complexes.
Collapse
Affiliation(s)
- Isabel Correia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sladjana Borovic
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal; University Business Academy in Novi Sad, Faculty of Pharmacy Novi Sad, Trg Mladenaca 5, 21000 Novi Sad, Serbia
| | - Isabel Cavaco
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal; Departamento de Química e Farmácia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Cristina P Matos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Somnath Roy
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal; Department of Chemistry, Ananda Chandra College, Jalpaiguri, West Bengal, India
| | - Hugo M Santos
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152 Caparica, Portugal
| | - Luz Fernandes
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152 Caparica, Portugal
| | - José L Capelo
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152 Caparica, Portugal
| | - Lena Ruiz-Azuara
- Facultad de Química, Departamento de Química Inorgánica y Nuclear, Universidad Nacional Autónoma de México, México DF 04510, Mexico
| | - João Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
42
|
Correia I, Chorna I, Cavaco I, Roy S, Kuznetsov ML, Ribeiro N, Justino G, Marques F, Santos-Silva T, Santos MFA, Santos HM, Capelo JL, Doutch J, Pessoa JC. Interaction of [V IV O(acac) 2 ] with Human Serum Transferrin and Albumin. Chem Asian J 2017. [PMID: 28651041 DOI: 10.1002/asia.201700469] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
[VO(acac)2 ] is a remarkable vanadium compound and has potential as a therapeutic drug. It is important to clarify how it is transported in blood, but the reports addressing its binding to serum proteins have been contradictory. We use several spectroscopic and mass spectrometric techniques (ESI and MALDI-TOF), small-angle X-ray scattering and size exclusion chromatography (SEC) to characterize solutions containing [VO(acac)2 ] and either human serum apotransferrin (apoHTF) or albumin (HSA). DFT and modeling protein calculations are carried out to disclose the type of binding to apoHTF. The measured circular dichroism spectra, SEC and MALDI-TOF data clearly prove that at least two VO-acac moieties may bind to apoHTF, most probably forming [VIV O(acac)(apoHTF)] complexes with residues of the HTF binding sites. No indication of binding of [VO(acac)2 ] to HSA is obtained. We conclude that VIV O-acac species may be transported in blood by transferrin. At very low complex concentrations speciation calculations suggest that [(VO)(apoHTF)] species form.
Collapse
Affiliation(s)
- Isabel Correia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Ielyzaveta Chorna
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Isabel Cavaco
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.,Departamento de Química e Farmácia, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Somnath Roy
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.,Department of Chemistry, Ananda Chandra College, Jalpaiguri, West Bengal, India
| | - Maxim L Kuznetsov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Nádia Ribeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Gonçalo Justino
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Fernanda Marques
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.,Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066, Bobadela LRS, Portugal
| | - Teresa Santos-Silva
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Marino F A Santos
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Hugo M Santos
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.,PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152, Caparica, Portugal
| | - José L Capelo
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.,PROTEOMASS Scientific Society, Madan Park, Rua dos Inventores, 2825-152, Caparica, Portugal
| | - James Doutch
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - João Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| |
Collapse
|
43
|
Sanna D, Ugone V, Serra M, Garribba E. Speciation of potential anti-diabetic vanadium complexes in real serum samples. J Inorg Biochem 2017; 173:52-65. [PMID: 28499214 DOI: 10.1016/j.jinorgbio.2017.04.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/28/2017] [Accepted: 04/23/2017] [Indexed: 10/19/2022]
Abstract
In this work the speciation in real serum samples of five VIVO complexes with potential application in the therapy of diabetes was studied through EPR spectroscopy as a function of V concentration (45.4, 90.9 and 454.5μM) and time (0-180min). [VO(dhp)2], [VO(ma)2], [VO(acac)2], [VO(pic)2(H2O)], and [VO(mepic)2], where Hdhp indicates 1,2-dimethyl-3-hydroxy-4(1H)-pyridinone, Hma maltol, Hacac acetylacetone, Hpic picolinic acid, and Hmepic 6-methylpicolinic acid, were examined. The distribution of VIVO2+ among the serum bioligands was calculated from the thermodynamic stability constants in the literature and compared with the experimental results. EPR results, which confirm the prediction, depend on the strength of the ligand L and geometry assumed by the bis-chelated species at physiological pH, cis-octahedral or square pyramidal. With dhp, the strongest chelator, the system is dominated by [VO(dhp)2] and/or cis-VO(dhp)2(Protein); with intermediate strength chelators, i.e. maltolate, acetylacetonate and picolinate, by cis-VO(ma)2(Protein), [VO(acac)2] or [VO(pic)(citrH-1)]3-/[VO(pic)(lactH-1)]- (citr=citrate and lact=lactate) when the V concentration overcomes 100-200μM and by (VO)(hTf)/(VO)2(hTf) when concentration is lower than 100μM; with the weakest chelator, 6-methylpicolinate, (VO)(hTf)/(VO)2(hTf), (VO)(HSA) (hTf = human serum transferrin and HSA = human serum albumin), and VO(mepic)(Protein)(OH) are the major species at concentration higher than 100-200μM, whereas hydrolytic processes are observed for lower concentrations. For [VO(dhp)2], [VO(ma)2], [VO(acac)2] and [VO(pic)2(H2O)], the EPR spectra remain unaltered with elapsing time, while for mepic they change significantly because the hydrolyzed VIVO species are complexed by the serum bioligands, in particular by lactate. The rate of oxidation in the serum is [VO(dhp)2]>[VO(ma)2]>[VO(acac)2] and reflects the order of E1/2 values.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy.
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Maria Serra
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy.
| |
Collapse
|
44
|
Brodowska K, Correia I, Garribba E, Marques F, Klewicka E, Łodyga-Chruscińska E, Pessoa JC, Dzeikala A, Chrusciński L. Coordination ability and biological activity of a naringenin thiosemicarbazone. J Inorg Biochem 2016; 165:36-48. [DOI: 10.1016/j.jinorgbio.2016.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/18/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
|
45
|
Behavior of the potential antitumor V(IV)O complexes formed by flavonoid ligands. 3. Antioxidant properties and radical production capability. J Inorg Biochem 2016; 161:18-26. [PMID: 27184413 DOI: 10.1016/j.jinorgbio.2016.04.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 11/22/2022]
Abstract
The radical production capability and the antioxidant properties of some V(IV)O complexes formed by flavonoid ligands were examined. In particular, the bis-chelated species of quercetin (que), [VO(que)2](2-), and morin (mor), [VO(mor)2], were evaluated for their capability to reduce the stable radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) and produce the hydroxyl radical (•)OH by Fenton-like reactions, where the reducing agent is V(IV)O(2+). The results were compared with those displayed by other V(IV)O complexes, such as [VO(H2O)5](2+), [VO(acac)2] (acac=acetylacetonate) and [VO(cat)2](2-) (cat=catecholate). The capability of the V(IV)O flavonoids complexes to reduce DPPH is much larger than that of the V(IV)O species formed by non-antioxidant ligands and it is due mainly to the flavonoid molecule. Through the 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin trapping assay of the hydroxyl radical it was possible to demonstrate that in acidic solution V(IV)O(2+) has an effectiveness in producing (•)OH radicals comparable to that of Fe(2+). When V(IV)O complexes of flavonoids were taken into account, the amount of hydroxyl radicals produced in Fenton-like reactions depends on the specific structure of the ligand and on their capability to reduce H2O2 to give (•)OH. Both the formation of reactive oxygen species (ROS) under physiological conditions by V(IV)O complexes of flavonoid ligands and their radical scavenging capability can be put in relationship with their antitumor effectiveness and it could be possible to modulate these actions by changing the features of the flavonoid coordinated to the V(IV)O(2+) ion, such as the entity, nature and position of the substituents and the number of phenolic groups.
Collapse
|
46
|
Palmajumder E, Patra S, Drew MGB, Mukherjea KK. Vanadium bromoperoxidase (VBrPO) mimics: synthesis, structure and a comparative account of the catalytic activity of newly synthesized oxidovanadium and oxido-peroxidovanadium complexes. NEW J CHEM 2016. [DOI: 10.1039/c6nj00767h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic peroxidative bromination (VBrPO mimic) of organic substances by oxido and oxido-peroxidovanadium complexes suggests the superiority of the oxido-peroxido complex over the oxido one.
Collapse
Affiliation(s)
| | - Swarup Patra
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | | | | |
Collapse
|
47
|
Costa Pessoa J, Garribba E, Santos MF, Santos-Silva T. Vanadium and proteins: Uptake, transport, structure, activity and function. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.03.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Sanna D, Ugone V, Micera G, Pivetta T, Valletta E, Garribba E. Speciation of the Potential Antitumor Agent Vanadocene Dichloride in the Blood Plasma and Model Systems. Inorg Chem 2015; 54:8237-50. [DOI: 10.1021/acs.inorgchem.5b01277] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Valeria Ugone
- Dipartimento di Chimica
e Farmacia and Centro Interdisciplinare per lo Sviluppo della Ricerca
Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Giovanni Micera
- Dipartimento di Chimica
e Farmacia and Centro Interdisciplinare per lo Sviluppo della Ricerca
Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Tiziana Pivetta
- Dipartimento di Scienze
Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| | - Elisa Valletta
- Dipartimento di Scienze
Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| | - Eugenio Garribba
- Dipartimento di Chimica
e Farmacia and Centro Interdisciplinare per lo Sviluppo della Ricerca
Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| |
Collapse
|
49
|
Sanna D, Ugone V, Pisano L, Serra M, Micera G, Garribba E. Behavior of the potential antitumor V(IV)O complexes formed by flavonoid ligands. 2. Characterization of sulfonate derivatives of quercetin and morin, interaction with the bioligands of the plasma and preliminary biotransformation studies. J Inorg Biochem 2015; 153:167-177. [PMID: 26281973 DOI: 10.1016/j.jinorgbio.2015.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/15/2015] [Accepted: 07/27/2015] [Indexed: 01/12/2023]
Abstract
The biotransformation in the plasma and red blood cells of two potential antitumor V(IV)O complexes formed by flavonoid ligands (quercetin or que and morin or mor) and their sulfonic derivatives (quercetin-5'-sulfonic acid or que(S) and morin-5'-sulfonic acid or mor(S)) was studied by spectroscopic (EPR, Electron Paramagnetic Resonance) and computational (DFT, Density Functional Theory) methods. Que and que(S) form with V(IV)O stable complexes, and in the systems with apo-transferrin (apo-hTf) and albumin (HSA) VO(que)2 and VO(que(S))2 remain unchanged. VO(mor)2 and VO(mor(S))2 undergo displacement reactions to give the partial formation of (VO)x(HSA) and (VO)(apo-hTf)/(VO)2(apo-hTf); moreover, mor(S) forms with apo-transferrin and albumin mixed species VO-mor(S)-apo-hTf and VO-mor(S)-HSA. In the systems with apo-hTf and HSA anisotropic EPR spectra at room temperature are detected in which the protein is not directly coordinated to V(IV)O(2+) ion. This is explained assuming that the bis-chelated complexes interact strongly with the proteins through a network of hydrogen bonds with the polar groups present on the protein surface. It is suggested that this "indirect" transport of V(IV)O species could be common to all the species containing ligands which can interact with the blood proteins. Uptake experiments by red blood cells were also carried out, using vanadium concentration of 5.0×10(-4)M and incubation time in the range 0-160min. VO(que)2/VO(que(S))2 and VO(mor)2/VO(mor(S))2 cross the erythrocytes membrane and in the cytosol VO(que)2/VO(que(S))2 do not transform, whereas VO(mor)2/VO(mor(S))2 give the partial formation of mixed species with hemoglobin (Hb) and other V(IV)O complexes.
Collapse
Affiliation(s)
- Daniele Sanna
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy.
| | - Valeria Ugone
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Luisa Pisano
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Maria Serra
- Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Giovanni Micera
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy; Centro Interdisciplinare per lo Sviluppo della Ricerca Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy; Centro Interdisciplinare per lo Sviluppo della Ricerca Biotecnologica e per lo Studio della Biodiversità della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy.
| |
Collapse
|
50
|
Kundu S, Mondal D, Bhattacharya K, Endo A, Sanna D, Garribba E, Chaudhury M. Nonoxido Vanadium(IV) Compounds Involving Dithiocarbazate-Based Tridentate ONS Ligands: Synthesis, Electronic and Molecular Structure, Spectroscopic and Redox Properties. Inorg Chem 2015; 54:6203-15. [DOI: 10.1021/acs.inorgchem.5b00359] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sanchita Kundu
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Dhrubajyoti Mondal
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Kisholoy Bhattacharya
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Akira Endo
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Daniele Sanna
- Istituto CNR di
Chimica
Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento
di Chimica e Farmacia and Centro Interdisciplinare per lo Sviluppo
della Ricerca Biotecnologica e per lo Studio della Biodiversità
della Sardegna, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Muktimoy Chaudhury
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|