1
|
Gungor O, Veziroglu YE, Kose A, Gungor SA, Kose M. New 1,2,3-triazoles and their oxime derivatives: AChE/BChE enzyme inhibitory and DNA binding properties. J Biomol Struct Dyn 2025; 43:1593-1610. [PMID: 38084715 DOI: 10.1080/07391102.2023.2292298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/23/2023] [Indexed: 01/16/2025]
Abstract
1,2,3-Triazole compounds (1a-3a) and their oxime derivatives (1b-3b) were synthesized. The structures of these synthesized compounds were characterized using common spectroscopic methods. Crystal structures of the compounds 3, 2b and 3b were determined by single crystal X-ray diffraction studies. The acetylcholinesteras (AChE) and butyrylcholinesterase (BChE) cholinesterase inhibitor (ChEI) and DNA/calf serum albumin (BSA) binding properties of the compounds were examined. DNA binding studies have shown that compounds interact with DNA through 1,2,3-triazole and oxime groups. When the binding constant Kb values were compared, it was revealed that compound 3b (Kb = 4.6 × 105 M-1) with oxime in its structure binds more strongly than the others. In addition, in vitro BSA binding studies showed that compounds 1b and 3b exhibited higher binding affinity. These results confirm that the quenching is due to the formation of a compound resulting from the static quenching mechanism, rather than being initiated by a dynamic mechanism. Likewise, when the enzyme activity of the compounds was examined, the compounds exhibited high inhibitory activity against AChE. The highest activity was observed for compounds 2b and 3b (8.6 ± 0.05 and 4.8 ± 0.052 µM). It was observed that the compounds were not selective with respect to BChE. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ozge Gungor
- Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, Türkiye
| | - Yunus Emre Veziroglu
- Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, Türkiye
| | - Aysegul Kose
- Department of Property Protection and Safety, Elbistan Vocational School, Istiklal University, Kahramanmaras, Türkiye
| | - Seyit Ali Gungor
- Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, Türkiye
| | - Muhammet Kose
- Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, Türkiye
| |
Collapse
|
2
|
Wang L, Mu L, Ye Y, Xu J, Zou X. Application of Fluorescent Composite Materials as a Sustained Release System in Treatment of Polycystic Ovary Syndrome. J Fluoresc 2024:10.1007/s10895-024-03993-2. [PMID: 39425839 DOI: 10.1007/s10895-024-03993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a multifactorial disease characterized by oxidative stress and follicular dysfunction, leading to menstrual irregularities, hyperandrogenism, and infertility. Traditional drug delivery methods often result in drug loss and side effects on normal tissues. To address these issues, we synthesized two novel Co(II)-containing coordination polymers (CPs), {[Co(L)(H2O)2]·2H2O}n (1) and {[Co(L)(H2O)2]·1.5H2O}n (2), through the reaction of the T-shaped ligand (4 - 3'-pyridyl-,6 - 4'-carboxylphenyl)picolinic acid (H2L) with Co(NO3)2·6H2O via a solvothermal process. Fluorescence spectroscopy revealed that the fluorescence emission of the CPs originates from the ligand, indicating their potential application as blue fluorescence materials. Subsequently, we encapsulated these CPs with hyaluronic acid (HA) and carboxymethyl chitosan (CMCS) hydrogels to create two types of metal gel particles carrying spironolactone (HA/CMCS-CPs@spironolactone). SEM and TEM analyses showed that the material consists of tightly stacked sheet-like structures with an average size of approximately 100 nm. Thermogravimetric analysis (TGA) indicated that the material begins to decompose at around 115 °C, demonstrating good thermal stability. We assessed the inhibitory effects of these materials on oxidative stress induced by PCOS. The results showed that both types of spironolactone-loaded metal gel particles significantly reduced malondialdehyde (MDA) levels, particularly the particles constructed with CP2. HA/CMCS-CP1@spironolactone reduced MDA levels by approximately 17% and 46% at low and high concentrations, respectively, while HA/CMCS-CP2@spironolactone decreased MDA levels by about 55% and 39% at high and low concentrations, respectively. Therefore, the novel drug delivery system reported in this study has the potential to become a safe and effective option for the localized treatment of PCOS.
Collapse
Affiliation(s)
- Lin Wang
- Reproductive Medicine Center, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| | - Liangshan Mu
- Reproductive Medicine Center, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yao Ye
- Reproductive Medicine Center, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jun Xu
- Reproductive Medicine Center, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xutong Zou
- Reproductive Medicine Center, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
3
|
Dasmahapatra U, Maiti B, Alam MM, Chanda K. Anti-cancer property and DNA binding interaction of first row transition metal complexes: A decade update. Eur J Med Chem 2024; 275:116603. [PMID: 38936150 DOI: 10.1016/j.ejmech.2024.116603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
Metal ions carry out a wide variety of functions, including acid-base/redox catalysis, structural functions, signaling, and electron transport. Understanding the interactions of transition metal complexes with biomacromolecules is essential for biology, medicinal chemistry, and the production of synthetic metalloenzymes. After the coincidental discovery of cisplatin, importance of the metal complexes in biochemistry became a top priority for inquiry. In this review, a decade update on various synthetic strategies to first row transition metal complex and their interaction with DNA through non-covalent binding are explored. Moreover, this effort provides an excellent analysis on the efficacy of theoretical and practical approaches to the systematic generation of new non-platinum based metallodrugs for anti-cancer therapeutics.
Collapse
Affiliation(s)
- Upala Dasmahapatra
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Barnali Maiti
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| | - Mohammed Mujahid Alam
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Kaushik Chanda
- Department of Chemistry, Rabindranath Tagore University, Hojai, Assam, 782435, India.
| |
Collapse
|
4
|
Kharpan B, Chetia J, Pyngrope H, Nandi R, Pradhan AK, Paul PC, Kumar D. Investigation of antileishmanial, antioxidant activities, CT-DNA interaction and DFT study of novel cobalt(II) complexes derived from mesogenic aromatic amino acids based Schiff base ligands. Biometals 2024:10.1007/s10534-024-00627-9. [PMID: 39154301 DOI: 10.1007/s10534-024-00627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
In the present work, new Co(II) complexes were synthesized from mesogenic aromatic amino acids based Schiff base ligands, HL1 [Methyl 2-((2-hydroxy-4-(tetradecyloxy)benzylidene)amino)-3-phenylpropanoate] and HL2 [Methyl 2-((2-hydroxy-4-(tetradecyloxy)benzylidene)amino)-3-(1H-indol-2-yl)propanoate]. The compounds were thoroughly characterised using different elemental, thermogravimetric and spectroscopic studies. The in-vitro antileishmanial efficacy of the compounds against Leishmania donovani was evaluated by MTT assay and the antioxidant activity was performed by Mensor's method. The cell viability percentage and IC50 values for both the antileishmanial and antioxidant studies revealed that the cobalt(II) complexes are comparable to the standard, amphotericin B and ascorbic acid, respectively, signifying the potential applications of the biogenic compounds. The CT-DNA interaction experiments study using photophysical techniques indicated that the cobalt(II) complexes exhibited pronounced interactions as compared to the parent ligand. The parent ligands were found to possess mesogenicity as evidenced from the polarizing optical microscope (POM) and differential scanning calorimetry (DSC). The optical band gap of the compounds, as estimated from the Tauc plot of the UV-Vis spectra, lies within the domain of optoelectronic material properties, which was further supported through Density Functional Theory (DFT) study. Moreover, DFT methods have been used to explore the ground state geometry and DFT based reactivity descriptors of the two synthesised ligands, HL1 and HL2 along with their corresponding Co(II) complexes, Co(L1)2 and Co(L2)2. Reactivity descriptors obtained from Conceptual Density Functional Theory (CDFT) analysis reveal that Co(L1)2 is the most stable and Co(L2)2 is the most electrophilic.
Collapse
Affiliation(s)
| | - Jagritima Chetia
- Department of Chemistry, Assam University, Silchar, 788011, Assam, India
| | - Hunshisha Pyngrope
- Department of Chemistry, Assam University, Silchar, 788011, Assam, India
| | - Rajat Nandi
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Amit Kumar Pradhan
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Pradip C Paul
- Department of Chemistry, Assam University, Silchar, 788011, Assam, India.
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| |
Collapse
|
5
|
Islam MT, Bitu NA, Chaki BM, Hossain MJ, Asraf MA, Hossen MF, Kudrat-E-Zahan M, Latif MA. Water-soluble Schiff base ligands and metal complexes: an overview considering green solvent. RSC Adv 2024; 14:25256-25272. [PMID: 39139233 PMCID: PMC11320196 DOI: 10.1039/d4ra04310c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
The water-soluble metal complexes with Schiff base (SB) ligands are of great interest to green chemistry researchers due to their stability, cost-effectiveness, eco-friendly, electron-donating ability, and various applications. They have high potential to express their biological activity including anti-inflammatory, anticancer, antibacterial, antifungal, antioxidant, and DNA binding and cleavage. In the recent era, transition metal complexes have played a significant role in different processes such as hydrogenation, carbonylation, oxidation, reduction, epoxidation, hydrolysis, decomposition, and polymerization reactions in industry. However, their limited aqueous solubility may be the major limitation to their potential catalytic, industrial, and clinical applications. In industrial catalytic processes, it has been proven that water can be used as a solvent to minimize the environmental effect of different reactions as well as simple and complete separation. Water is a green solvent, flexible, non-toxic, safe, readily available, environmentally harmless, and inexpensive. Attaching different substituents on Schiff bases enhances the water solubility and catalytic activity. Studies on water-soluble SB complexes will explore these aspects and their prospects for the future evolution of their diverse applications.
Collapse
Affiliation(s)
- Md Tariqul Islam
- Department of Chemistry, Rajshahi University Rajshahi 6205 Bangladesh
| | - Nur Amin Bitu
- Department of Chemistry, Rajshahi University Rajshahi 6205 Bangladesh
| | | | - Md Jakir Hossain
- Department of Chemistry, Begum Rokeya University Rangpur Bangladesh
| | - Md Ali Asraf
- Department of Chemistry, Rajshahi University Rajshahi 6205 Bangladesh
| | - Md Faruk Hossen
- Department of Chemistry, Rajshahi University Rajshahi 6205 Bangladesh
| | - Md Kudrat-E-Zahan
- Department of Chemistry, Rajshahi University Rajshahi 6205 Bangladesh
| | - Md Abdul Latif
- Department of Chemistry, Begum Rokeya University Rangpur Bangladesh
| |
Collapse
|
6
|
Zhang LL, Huang X, Azam M, Yuan HX, Ma FJ, Cheng YZ, Zhang LP, Sun D. Silver(I) Complexes with Mefenamic Acid and Nitrogen Heterocyclic Ligands: Synthesis, Characterization, and Biological Evaluation. Inorg Chem 2024; 63:12624-12634. [PMID: 38910548 DOI: 10.1021/acs.inorgchem.4c01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Four Ag(I) complexes with mefenamato and nitrogen heterocyclic ligands, [Ag(2-apy)(mef)]2 (1), [Ag(3-apy)(mef)] (2), [Ag2(tmpyz)(mef)2] (3), and {[Ag(4,4'-bipy)(mef)]2(CH3CN)1.5(H2O)2}n (4), (mef = mefenamato, 2-apy = 2-aminopyridine, 3-apy = 3-aminopyridine, tmpyz = 2,3,5,6-tetramethylpyrazine, 4,4'-bipy = 4,4'-bipyridine), were synthesized and characterized. The interactions of these complexes with BSA were investigated by fluorescence spectroscopy, which indicated that these complexes quench the fluorescence of BSA by a static mechanism. The fluorescence data also indicated that the complexes showed good affinity for BSA, and one binding site on BSA was suitable for the complexes. The in vitro cytotoxicity of the four complexes against human cancer cell lines (MCF-7, HepG-2, A549, and MDA-MB-468) and one normal cell line (HTR-8) was evaluated by the MTT assay. Complex 1 displayed high cytotoxic activity against A549 cells. Further studies revealed that complex 1 could enhance the intracellular levels of ROS (reactive oxygen species) in A549 cells, cause cell cycle arrest in the G0/G1 phase, and induce apoptosis in A549 cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Lu-Lin Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Xiang Huang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, P.O. BOX 2455, Riyadh 11451, Saudi Arabia
| | - Hua-Xin Yuan
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Feng-Jie Ma
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Yuan-Zheng Cheng
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Li-Ping Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, P. R. China
| |
Collapse
|
7
|
Ghasali E, Dizge N, Khataee A, Alterkaoui A, Isik Z, Özdemir S, Orooji Y. Biofouling mitigation of Nb 2AlC and Mo 3AlC 2 MXene-precursors doped polyether sulfone mixed matrix membranes for pathogen microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172189. [PMID: 38583624 DOI: 10.1016/j.scitotenv.2024.172189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
This study explores the incorporation of Nb2AlC and Mo3AlC2 MAX phases, known for their nano-layered structure, into polyether sulfone (PES) membranes to enhance their antifouling and permeability properties for pathogen microorganism filtration against bovine serum albumin (BSA) and Escherichia coli (E. coli). The composite membranes were characterized for their structural and morphological properties, and their performance in mitigating biofouling was evaluated. The structural characterizations have been performed for all the prepared MAX phases and corresponding composite membranes. The antioxidant ability of Nb2AlC and Mo3AlC2 MAX phases was defined by the DPPH radical scavenging assay, and the highest antioxidant ability was found to be 59.35 %, while 53.69 % scavenging potential was recorded at 100 mg/L. The percentage scavenging ability was raised with an increase in concentrations. The antimicrobial properties of MAX phases, evaluated as the minimum inhibitory concentration, were stated against several pathogen microorganisms. The tested compounds of Nb2AlC and Mo3AlC2 composites containing MAX phases exhibited excellent chemical nuclease activity, and it was determined that Nb2AlC caused double strand DNA cleavage activity while Mo3AlC2 induced the complete fragmentation of the DNA molecule. Biofilm inhibition of Nb2AlC and Mo3AlC2 MAX phases was studied against Staphylococcus aureus, and Pseudomonas aeruginosa and the maximum biofilm inhibition of Nb2AlC and Mo3AlC2 MAX phases was found to be 77.15 % and 69.07 % against S. aureus and also 69.74 % and 65.01 % against P. aeruginosa. Furthermore, Nb2AlC and Mo3AlC2 MAX phases demonstrated excellent E. coli growth inhibition of 100 % at 125 and 250 mg/L.
Collapse
Affiliation(s)
- Ehsan Ghasali
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Nadir Dizge
- Mersin University, Department of Environmental Engineering, 33343 Mersin, Turkey.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Chemical Engineering, & ITU Synthetic Fuels and Chemicals Technology Center (ITU-SENTEK), Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Aya Alterkaoui
- Mersin University, Department of Environmental Engineering, 33343 Mersin, Turkey
| | - Zelal Isik
- Mersin University, Department of Environmental Engineering, 33343 Mersin, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343 Yenisehir, Mersin, Turkey
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| |
Collapse
|
8
|
Li X, Qi J, Li Z, Fan M. Two Mixed-Ligand Co(II) Complexes as Luminescent Materials and Loaded with Temozolomide-gel Particles in Nursing Against Glioma. J Fluoresc 2024:10.1007/s10895-024-03721-w. [PMID: 38625573 DOI: 10.1007/s10895-024-03721-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
By employing a mixed-ligand strategy, we synthesized two new coordination polymers (CPs) featuring Co(II): {Co(H2L)(bib)]·2H2O}n (1) and {Co(L)(bib)2]·2H2O}n (2), where H4L represents 5-(3,5-dicarboxybenzyloxy) isophthalic acid, and bib denotes 1,4-bis(1-imidazolyl)benzene. These CPs were obtained through the reaction of H4L, a flexible carboxylic acid ligand, with Co(NO3)2·6H2O in various solvent mixtures, along with the N-donor co-ligand bib. Complexes 1 and 2 are formed through distinct coordination modes, resulting in their distinct structural features and excellent fluorescent properties. Based on ligand-centered fluorescence emission and the blue shift (CP 1) along with red shift (CP 2) characteristics, both complexes show promise for applications in fields such as blue fluorescence sensing materials and luminescent materials. After successfully synthesizing two CPs, CP 1 was chosen as the carrier for loading temozolomide (TMZ). Subsequently, leveraging the unique advantages of hydrogels, we developed a novel metal gel formulation loaded with TMZ. The inhibitory effect of this formulation on the growth of glioblastoma was evaluated. Our results demonstrate a significant suppression of glioblastoma cell proliferation by this system, providing an effective avenue for glioblastoma treatment.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Neurosurgery, School of Clinical Medicine, First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Jinmin Qi
- Department of Neurosurgery, School of Clinical Medicine, First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Zongxi Li
- Department of Neurosurgery, School of Clinical Medicine, First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Muchen Fan
- Department of Neurosurgery, School of Clinical Medicine, First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China.
| |
Collapse
|
9
|
Di L, Lv Z, Zhang H, Li H. A New Co(II)-coordination Polymer: Fluorescence Performances, Loaded with Paclitaxel-hydrogel on Breast Cancer and Molecular Docking Study. J Fluoresc 2024:10.1007/s10895-024-03670-4. [PMID: 38517647 DOI: 10.1007/s10895-024-03670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
In the current context of the increasing incidence of breast cancer, we aim to develop an efficient drug carrier for breast cancer by constructing an innovative complex consisting of a metal-organic framework (MOF) and a hydrogel. The aim of this initiative is to provide new ideas and tools for breast cancer treatment strategies through scientific research, so as to address the current challenges in breast cancer treatment. In the present study, by employment of a new Co(II)-based coordination polymer with the chemical formula of [Co(H2O)(CH3OH)L]n (1) (H2L = 5-(1 H-tetrazol-5-yl)nicotinic acid) was solvothermally synthesized by reaction of Co(NO3)2·6H2O a mixed solvent of MeOH and water. The characteristics of ligand-based absorption and emission, as unveiled by ultraviolet and fluorescence spectroscopy tests, offer insights into the distinctive electronic transitions and structural features originating from the ligand in compound 1. Using natural polysaccharide hyaluronic acid (HA) and carboxymethyl chitosan (CMCS) as raw materials, HA/CMCS hydrogels were successfully prepared by chemical method and their internal morphology was studied by scanning electron microscopy. Using paclitaxel as a drug model, we further designed and synthesized a novel metal gel particle-loaded paclitaxel drug and evaluated its inhibitory effect on breast cancer cells. Finally, the hypothesized interactions between the complex and the receptor have been confirmed through molecular docking simulation, and multiple polar interactions have been verified, which further proves the potential anti-cancer capability and excellent bioactivity. Based on this, this composite material prepared from a novel Co(II)-coordinated polymer with paclitaxel hydrogel could provide a useful pathway for the identification and treatment of breast cancer.
Collapse
Affiliation(s)
- Lijun Di
- Department of Oncology, Linfen People's Hospital, Linfen, 041000, China
| | - Zhihong Lv
- Department of Oncology, Linfen People's Hospital, Linfen, 041000, China
| | - Haiping Zhang
- Department of Oncology, Linfen People's Hospital, Linfen, 041000, China
| | - Hui Li
- Department of Oncology, Linfen People's Hospital, Linfen, 041000, China.
| |
Collapse
|
10
|
Can Karanlık C, Karanlık G, Özdemir S, Tollu G, Erdoğmuş A. Synthesis and characterization of novel BODIPYs and their antioxidant, antimicrobial, photodynamic antimicrobial, antibiofilm and DNA interaction activities. Photochem Photobiol 2024; 100:101-114. [PMID: 37317040 DOI: 10.1111/php.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/16/2023]
Abstract
In the current study, we synthesized and characterized new BODIPY derivatives (1-4) having pyridine or thienyl-pyridine substituents at meso- position and 4-dibenzothienyl or benzo[b]thien-2-yl moieties at 2-,6- positions. We investigated fluorescence properties and the ability to form singlet oxygen. In addition, various biological activities of BODIPYs such as DPPH scavenging, DNA binding/cleavage ability, cell viability inhibition, antimicrobial activity, antimicrobial photodynamic therapy (aPDT) and biofilm inhibition properties were performed. BODIPY derivatives BDPY-3 (3) and BDPY-4 (4) have high fluorescence quantum yields as 0.50 and 0.61 and 1 O2 quantum yields were calculated as 0.83 for BDPY-1 (1), 0.12 for BDPY-2 (2), 0.11 for BDPY-3 and 0.23 for BDPY-4. BODIPY derivatives BDPY-2, BDPY-3 and BDPY-4 displayed 92.54 ± 5.41%, 94.20 ± 5.50%, and 95.03 ± 5.54% antioxidant ability, respectively. BODIPY compounds showed excellent DNA chemical nuclease activity. BDPY-2, BDPY-3 and BDPY-4 also exhibited 100% APDT activity against E. coli at all tested concentrations. In addition to these, they demonstrated a highly effective biofilm inhibition activity against Staphyloccous aureus and Pseudomans aeruginosa. BDPY-4 showed the most effective antioxidant and DNA cleavage activity, while BDPY-3 exhibited the most effective antimicrobial and antibiofilm activity.
Collapse
Affiliation(s)
| | - Gürkan Karanlık
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, Mersin, Turkey
| | - Gülşah Tollu
- Department of Laboratory and Veterinary Health, Technical Science Vocational School, Mersin University, Mersin, Turkey
| | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| |
Collapse
|
11
|
Seddik RG, Shoukry AA, Rashidi FB, Salah-Eldin DS. Investigation on CT-DNA and Protein Interaction of New Pd(II) Complexes Involving Ceftazidime and 3-Amino-1,2,3-triazole: Synthesis, Characterization, Biological Impact, Anticancer Evaluation, and Molecular Docking Approaches. Chem Biodivers 2023; 20:e202301170. [PMID: 37850505 DOI: 10.1002/cbdv.202301170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/19/2023]
Abstract
Two new palladium (II) complexes, [Pd(CAZ)(OH2 )2 ]2+ (1) and [Pd(3-AT)(OH2 )2 ]2+ (2), (CAZ=ceftazidime, and 3-AT=amitrole) were synthesized and studied for their potential as anticancer drugs with low toxicity and high potency. To fully characterize these complexes, we conducted elemental analysis and FT-IR studies. Furthermore, we irradiated the complexes with Indian 60 Co gamma rays and thoroughly evaluated their antimicrobial properties. Our results demonstrate that the inhibitory activity of complexes was significantly enhanced against (G+) bacteria and fungi. Additionally, we probed the complexes' interaction with CT-DNA and BSA using various techniques, including UV-vis spectroscopy, thermal denaturation, viscometry, gel electrophoresis, and molecular docking studies. Our findings conclusively demonstrate that these complexes possess a strong binding interaction with CT-DNA via minor groove binding and/or electrostatic interactions, as well as excellent binding affinity to BSA. Finally, we conducted a cytotoxicity assay that clearly indicates these complexes hold immense promise as cell growth inhibitors against MCF-7 and HCT-116.
Collapse
Affiliation(s)
- Ramy G Seddik
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
- Faculty of Basic Science, Galala University, 43511, Suze, Egypt
| | - Azza A Shoukry
- Inorganic Chemistry Division, Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Fatma B Rashidi
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Doaa S Salah-Eldin
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
12
|
Rani P, Chahal S, Kumar R, Mayank, Kumar P, Negi A, Singh R, Kumar S, Kataria R, Joshi G, Sindhu J. Electro-organic synthesis of C-5 sulfenylated amino uracils: Optimization and exploring topoisomerase-I based anti-cancer profile. Bioorg Chem 2023; 138:106660. [PMID: 37320914 DOI: 10.1016/j.bioorg.2023.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/25/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Cancer is spreading worldwide and is one of the leading causes of death. The use of existing chemotherapeutic agents is frequently limited due to side effects. As a result, it is critical to investigate new agents for cancer treatment. In this context, we developed an electrochemical method for the synthesis of a series of thiol-linked pyrimidine derivatives (3a-3p) and explored their anti-cancer potential. The biological profile of the synthesized compounds was evaluated against breast (MDAMB-231 and MCF-7) and colorectal (HCT-116) cancer cell lines. 3b and 3d emerged to be the most potent agents, with IC50 values ranging between 0.98 to 2.45 µM. Target delineation studies followed by secondary anticancer parameters were evaluated for most potent compounds, 3b and 3d. The analysis revealed compounds possess DNA intercalation potential and selective inhibition towards human topoisomerase (hTopo1). The analysis was further corroborated by DNA binding studies and in silico-based molecular modeling studies that validated the intercalating binding mode between the compounds and the DNA.
Collapse
Affiliation(s)
- Payal Rani
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Sandhya Chahal
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Roshan Kumar
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Mayank
- Institut interdisciplinaire d'innovation technologique - 3IT USherbrooke, Sherbrooke, Quebec, Canada
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Arvind Negi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Rajvir Singh
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India
| | - Sudhir Kumar
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India; Department of Bioinformatics and Computational Biology, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Ramesh Kataria
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Gaurav Joshi
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar-246174, Dist. Garhwal, (Uttarakhand), India; Department of Biotechnology, Graphic Era (Deemed to be University), Bell Road, Clement Town Dehradun, Uttarakhand- 248002.
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar 125004, India.
| |
Collapse
|
13
|
Sabithakala T, Reddy CVR. DNA-binding, cleavage, antibacterial and in vitro anticancer activity of copper(II) mixed ligand complexes of 2-(((6-chloro-1H-benzo[d]imidazol-2-yl)methyl)amino)aceticacid and polypyridyl ligands. J Biomol Struct Dyn 2023; 41:1309-1321. [PMID: 34963412 DOI: 10.1080/07391102.2021.2019121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A tridentate ligand(A), 2-(((6-chloro-1H-benzo[d]imidazol-2-yl)methyl)amino) aceticacid (Cl-BIGH) was synthesised by the Phillips condensation of 4-chlorobenzene-1,2-diamine and iminodiaceticacid in 1:2 molar ratio. Its Cu(II) mixed ligand complexes[Cu(II)-A-L] were obtained by involving other co-ligands(L): 2,2΄-bipyridine(L1), 4,4΄-dimethyl-2,2΄-bipyridyl(L2), 5,5΄-dimethyl-2,2΄-bipyridyl(L3) and 1,10 phenanthroline(L4). The complexes were characterized by elemental analysis, thermal analysis, molar conductance, magnetic moment measurements, X-ray diffraction, FTIR, UV-Visible, ESR spectroscopy, mass spectrometry and cyclic voltammetry. From the spectral and analytical data, the ternary complexes [Cu(Cl-BIGH)(L1-4)]ClO4 were found to form in 1:1:1(Cu(II): Cl-BIGH: L) molar ratio. The geometry of the mixed-ligand complexes were found to be 5-coordinated square pyramidal or trigonal bipyramidal with polycrystalline natures. The DNA binding and cleaving abilities, antibacterial and the in vitro cytotoxicity of the complexes were explored. The molecular docking was used to predict the efficiency of binding of the metal complexes with COX- 2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thatituri Sabithakala
- Department of Chemistry, Jawaharlal Nehru Technological University Hyderabad, Hyderabad, India
| | | |
Collapse
|
14
|
Promising anticancer activity with high selectivity of DNA/plasma protein targeting new phthalazin-1(2H)-one heterocyclic scaffolds. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Singh G, Sharma S, Singh A, Devi A, Gupta S, Malik P, Khurana S, Soni S. Detection of 2,4-dichlorophenoxyacetic acid in water sample by organosilane based silica nanocomposites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159594. [PMID: 36280050 DOI: 10.1016/j.scitotenv.2022.159594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The present study aims to produce nanocomposites of silica based organosilane as sensitive and selective fluorescent sensor for the recognition of 2,4 dichlorophenoxyacetic acid (2,4-D). Hydrazone tethered triazole functionalized organosilane has been synthesized by the condensation reaction of 4-hydroxybenzaldehyde and phenyl hydrazine followed by Cu(I) catalysed cycloaddition of azide with alkyne. The prepared compound has been further grafted over silica surface and the synthesized materials were characterized by FT-IR, NMR (1H and 13C), XRD, mass spectrometry and FE-SEM spectral analyses. The prepared organosilane and its HSNPs have been utilized as an effective emission probe for the selective detection of 2,4 D with good linear relationship in the range of 0-160 μM and 0-115 μM and LOD value of 46 nM and 13.5 nM respectively. In the presence of other active species, the sensor shows minimal interference while the comparison with the previously reported techniques suggests it to be more desirable for the sensitive and selective detection of 2,4 D. Further, the real sample application for detection of 2,4 D was analyzed in field water and the HSNPs based sensing system gave recovery percentage of above 98 %.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Sanjay Sharma
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Akshpreet Singh
- Department of Chemistry, DAV College, Sector-10, Chandigarh 160011, India.
| | - Anita Devi
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Sofia Gupta
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Pooja Malik
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Sumesh Khurana
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Sajeev Soni
- Department of Chemistry, GGDSD College, Sector-32, Chandigarh, India
| |
Collapse
|
16
|
Acheampong DK, Sunatsuki Y, Suzuki T. Structural comparison of geometrical isomers of N'-(1H-imidazol-4-ylmethylene)picolinohydrazide and their mononuclear and dinuclear cobalt(III) complexes. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
17
|
Popov LD, Tupolova YP, Vlasenko VG, Borodkin SA, Levchenkov SI, Lebedev VE, Askalepova OI, Borodkin GS, Zubenko AA, Gishko KB, Zubavichus YV, Lazarenko VA, Shcherbakov IN. Synthesis, Structure, and Properties of 2-Oxo-3-formylquinolone Acylhydrazone Containing a Trimethylammonium Fragment and also of Transition Metal Complexes Based on This Compound. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
18
|
Interaction with bioligands and in vitro cytotoxicity of a new dinuclear dioxido vanadium(V) complex. J Inorg Biochem 2022; 237:111980. [PMID: 36109193 DOI: 10.1016/j.jinorgbio.2022.111980] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023]
Abstract
One centrosymmetric bis(μ-oxido)-bridged vanadium(V) dimer with molecular formula [(VVO2)2(pedf)2] (1) has been synthesized from the reaction of VOSO4·5H2O with a Schiff base ligand (abbreviated with pedf-) obtained from 2-acetylpyridine and 2-furoic hydrazide in methanol. Complex 1 was characterized by elemental analysis, UV-visible (UV-Vis), Fourier-transform infrared spectra (FT-IR), cyclic voltammetry (CV), electron paramagnetic resonance spectroscopy (EPR) and electrospray ionization-mass spectrometry (ESI-MS) techniques along with single crystal X-ray diffraction (SCXRD). The FT-IR spectral data of 1 indicated the involvement of oxygen and azomethine nitrogen in coordination to the central metal ion. The crystallographic studies revealed a dinuclear oxovanadium(V) complex with the Schiff base coordinated via the ONN donor set with formation of two five-membered chelate rings resulting in a distorted octahedral geometry. The interaction of 1 with calf thymus DNA (CT-DNA) was investigated by spectroscopic measurements and results suggested that the complex binds to CT-DNA via moderate intercalative mode with a binding constant (Kb) around 103 M-1. In addition, the in vitro protein binding behavior was studied by fluorescence spectrophotometric method using both bovine serum albumin (BSA) and human serum albumin (HSA) and a static quenching mechanism was observed for the interaction of the complex with both albumins that occurs with a Kb in the range (5-6) × 103 M-1. In vitro cytotoxicity of complex 1 on lung cancer cells (A549) and human skin carcinoma cell line (A431) demonstrated that the complex had a broad-spectrum of anti-proliferative activity with IC50 value of 64.2 μM and 56.2 μM.
Collapse
|
19
|
Ruthenium(III) and (II) complexes containing pyridine moiety: Synthesis, crystal structure and in vitro biological evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Valencia J, Sánchez-Velasco OA, Saavedra-Olavarría J, Hermosilla-Ibáñez P, Pérez EG, Insuasty D. N-Arylation of 3-Formylquinolin-2(1 H)-ones Using Copper(II)-Catalyzed Chan-Lam Coupling. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238345. [PMID: 36500438 PMCID: PMC9735505 DOI: 10.3390/molecules27238345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022]
Abstract
3-formyl-2-quinolones have attracted the scientific community's attention because they are used as versatile building blocks in the synthesis of more complex compounds showing different and attractive biological activities. Using copper-catalyzed Chan-Lam coupling, we synthesized 32 new N-aryl-3-formyl-2-quinolone derivatives at 80 °C, in air and using inexpensive phenylboronic acids as arylating agents. 3-formyl-2-quinolones and substituted 3-formyl-2-quinolones can act as substrates, and among the products, the p-methyl derivative 9a was used as a substrate to obtain different derivatives such as alcohol, amine, nitrile, and chalcone.
Collapse
Affiliation(s)
- Jhesua Valencia
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Oriel A. Sánchez-Velasco
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Jorge Saavedra-Olavarría
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Patricio Hermosilla-Ibáñez
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Materials Chemistry Department, Faculty of Chemistry and Biology, University of Santiago, Chile, Santiago 9170022, Chile
| | - Edwin G. Pérez
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (E.G.P.); (D.I.)
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia
- Correspondence: (E.G.P.); (D.I.)
| |
Collapse
|
21
|
A novel approach to the synthesis of substituted ribose and furan derivatives: biological activity of dimethyl 3,4-dihydroxytetrahydrofuran-2,5-dicarboxylate. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Zhou Y, Lin HH, Cai QQ, Wang DH. A Cu(II) coordination polymer: Crystal structure and therapeutic effect on sepsis. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Tang SL, Li DJ, Ma FJ, Zhang LL, Lian B, Cheng YZ, Zhang LP. Synthesis, structure, and biological properties of Cu(II) complexes based on diimine ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Treatment Activity of Co(II) Complexes on Osteoarthritis Induced by Anterior Ligament Reconstruction by Inhibiting the nf-κb Signaling Pathway. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Wang YF, Tang JX, Mo ZY, Li J, Liang FP, Zou HH. The strong in vitro and vivo cytotoxicity of three new cobalt(II) complexes with 8-methoxyquinoline. Dalton Trans 2022; 51:8840-8847. [PMID: 35621165 DOI: 10.1039/d2dt01310j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Three new cobalt(II) complexes, [Co(MQL)2Cl2] (CoCl), [Co(MQL)2Br2] (CoBr), and [Co(MQL)2I2] (CoI), bearing 8-methoxyquinoline (MQL) have been designed for the first time. MTT assays showed that CoCl, CoBr, and CoI exhibit much better antiproliferative activities than cisplatin toward cisplatin-resistant SK-OV-3/DDP and SK-OV-3 ovarian cancer cells, with IC50 values of as low as 0.32-5.49 μM. Further, CoCl and CoI can regulate autophagy-related proteins in SK-OV-3/DDP cells and, therefore, they can induce primarily autophagy-mediated cell apoptosis in the following order: CoCl > CoI. The different antiproliferative activities of the MQL complexes CoCl, CoBr, and CoI could be correlated with the lengths of their Co-X bonds, which adopted the following order: CoI > CoBr > CoCl. The 8-HOMQ complexes CoCl (ca. 60.1%) and CoI (ca. 48.8%) also showed potent in vivo anticancer effects after 15 days of treatment. In summary, the MQL ligand highly enhances the antiproliferative activities of cobalt(II) complexes in comparison to other previously reported 8-hydroxyquinoline metal complexes.
Collapse
Affiliation(s)
- Yu-Feng Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P. R. China.
| | - Ji-Xia Tang
- School of Foreign Language and International Business, Guilin University of Aerospace Technology, Guilin, 541004, P. R. China
| | - Zai-Yong Mo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Juan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P. R. China.
| | - Fu-Pei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P. R. China. .,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Hua-Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P. R. China.
| |
Collapse
|
26
|
Kamaal S, Ali A, Afzal M, Muslim M, Alarifi A, Ahmad M. Exploiting the biological potential of Zn(II) complex derived from zwitterionic Schiff base: DNA binding and cytotoxicity activity against human cervical cancer. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Kar K, Ghosh D, Kabi B, Chandra A. A concise review on cobalt Schiff base complexes as anticancer agents. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Priya Vadhana KT, Vairam S, Ushadevi B, Parveen S. New Mg(II) and Ca(II) Mixed Strontium Squarates: Structural Characterization, DNA/BSA Interaction, Antioxidant and Anticancer Activities. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-01989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Wang J, Huang X, Li H, Yan D, Huang W. Two Zn(II) coordination polymers with anticancer drug norcantharidin as ligands for cancer chemotherapy. Dalton Trans 2022; 51:5624-5634. [PMID: 35319055 DOI: 10.1039/d2dt00300g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Here two Zn(II) coordination polymers [Zn20(DMCA)12]O12 (DMCA = demethylcantharic acid, DMCA-Zn1) and [Zn(DMCA)](H2O)2 (DMCA-Zn2) are synthesized from a broad-spectrum anticancer drug norcantharidin (NCTD) and Zn(NO3)2·6H2O under solvothermal conditions. By mechanical grinding with a biocompatible polymeric surfactant F127, ultrasonic treatment and filtration, DMCA-Zn1 and DMCA-Zn2 can be transformed into stable nanoparticles (DMCA-Zn1 NPs and DMCA-Zn2 NPs) suspended in water with average diameters of around 190 nm and 162 nm for drug delivery. The in vitro evaluation indicates that DMCA-Zn1 NPs and DMCA-Zn2 NPs can enter into HepG2 and Hep3B cancer cells via endocytosis and inhibit their proliferation. Meanwhile they exhibit relatively low toxicity to L927 normal cells. The in vivo evaluation confirms that DMCA-Zn1 NPs and DMCA-Zn2 NPs can more effectively inhibit the growth of Hep3B tumors with relatively few side effects compared with free NCTD. This approach can be extended to other anticancer drugs to construct nanodrug delivery systems for cancer treatment.
Collapse
Affiliation(s)
- Jia Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xiange Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China
| | - Hegen Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Wei Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
30
|
Gayathri S, Viswanathamurthi P, Thuslim V, Sathya M, Ranjani M, Prabhakaran R, Haribabu J, Echeverria C. Synthesis, structural, DNA/protein binding and cytotoxic studies of copper(I) ∝-diimine hydrazone complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Treatment activity of a mixed-ligand coordination polymer on gastric carcinoma. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Zhao J, Du L. Therapeutic effect of two transition metal coordination polymers on ovarian cancer by regulating the expression of estrogen receptor. Des Monomers Polym 2022; 25:19-24. [PMID: 35173523 PMCID: PMC8843167 DOI: 10.1080/15685551.2022.2033432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study, via using a ligand featuring oxalamide groups N,N′-bis(4-phthalic acid) (H4L), two new Cu(II) and Co(II)-containing coordination polymers with the chemical formulae of [Cu2L(H2O)4]n (1) and [Co(H2L)(H2O)2]n (2) have been successfully prepared via reaction of the corresponding metal salts with the H4L ligand. The as-prepared two coordination polymers have been studied via the single crystal X-ray diffraction, elemental analysis, powder X-ray diffraction and thermogravimetric analysis. Their therapeutic effect and mechanism for ovarian cancer was evaluated and explored. Firstly, the inhibitory activity of the new compounds on the proliferation of the ovarian cancer was measured with CCK-8 assay after compound treatment. Besides, the relative expression of the estrogen receptor on the ovarian cancer cells after compound treatment was also determined with real-time RT-PCR assay.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Gynaecology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Lan Du
- Department of Gynaecology, Xi'an Angel Women's and Children's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
33
|
Jana A, Aher A, Brandao P, Bera P, Sharda S, Phadikar U, Manna SK, Mahapatra AK, Bera P. Evaluation of the anticancer activities with various ligand substituents in Co(II/III)-picolyl phenolate derivatives: synthesis, characterization, DFT, DNA cleavage, and molecular docking studies. Dalton Trans 2022; 51:2346-2363. [PMID: 35043134 DOI: 10.1039/d1dt02825a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The reactions between 2-(pyridine-2-ylmethoxy)-benzaldehyde (L) and various primary amines furnish tridentate (L1 to L3) and tetradentate (L4) chelating ligands. The choice of different primary amines in the condensation reaction incorporates the chiral carbon atom in L2 and L3. A series of mononuclear cobalt(II) complexes, [CoII(L1)(Cl)2] (1), [CoII(L2)(Cl)2]·CH3CN (2), [CoII(L3)(Cl)2] (3), and [CoIII(L4)(N3)2] (4) are synthesized in the pure crystalline state from the resulting solution of cobalt(II) chloride and/or azide and respective ligand. The new ligands and cobalt complexes are characterized using spectral (UV-Vis, 1H-NMR, IR, and HRMS), cyclovoltammetric, and DFT studies. The structure of L1, L2, and all four cobalt complexes are determined by single X-ray crystallography. Cytotoxic activity of the compounds is evaluated using three different tissues of origin e.g., U-937 (histiocytic lymphoma), HEK293T (embryonic kidney), and A549 (lung carcinoma). The cobalt complexes are more active than the corresponding ligands against U-937 and HEK293T. The MTT assay demonstrates that the cobalt compounds are more effective anticancer agents against U-937 cancer cells than HEK293T and A549. The toxicity order, 1 (7.2 ± 0.3 μM) > 3 (11.4 ± 0.6 μM) > 2 (12 ± 0.1 μM) > 4 (29 ± 1 μM) is observed against U-937 cancer cells. All the compounds induce cell death through an apoptosis mechanism and all are ineffective against PBMCs. The mechanism of activity against U937 cancer cells involves caspase-3 activation and two different mitogen-activated protein kinases attesting the programmed cell death. Among the compounds, complexes 1, 2, and 3 show DNA cleavage activity both in oxidizing (H2O2) and reducing (GSH) environments. The mechanistic study reveals that singlet oxygen (1O2) is the major species involved in DNA cleavage. The absolute chemical hardness values of the ligands and 4 are relatively higher than 1, 2, and 3, which tacitly support the DNA cleavage experiment. The docking result indicates that the compounds under investigation strongly interact with DNA base pairs through a variety of interactions which attests successfully to the experimental results. A structure-activity relationship has been drawn to correlate the variation of antitumor activity with ligand conformations.
Collapse
Affiliation(s)
- Abhimanyu Jana
- Post Graduate Department of Chemistry, Panskura Banamali College (Autonomous) (Vidyasagar University), Panskura R. S, Midnapore (East), West Bengal, 721152, India.
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, 711103, India
| | - Abhishek Aher
- Centre for DNA Fingerprinting & Diagnostics (CDFD), Hyderabad, 500 039, Telangana, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana-121001, India
| | - Paula Brandao
- Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pradip Bera
- Post Graduate Department of Chemistry, Panskura Banamali College (Autonomous) (Vidyasagar University), Panskura R. S, Midnapore (East), West Bengal, 721152, India.
- Department of Chemistry, Kandi Raj College, Murshidabad, West Bengal, 742137, India
| | - Saphy Sharda
- Centre for DNA Fingerprinting & Diagnostics (CDFD), Hyderabad, 500 039, Telangana, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana-121001, India
| | - Ujjwal Phadikar
- Post Graduate Department of Chemistry, Panskura Banamali College (Autonomous) (Vidyasagar University), Panskura R. S, Midnapore (East), West Bengal, 721152, India.
| | - Sunil Kumar Manna
- Centre for DNA Fingerprinting & Diagnostics (CDFD), Hyderabad, 500 039, Telangana, India
- Adjunct Faculty, Regional Centre for Biotechnology, Faridabad, Haryana, 121001, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, 711103, India
| | - Pulakesh Bera
- Post Graduate Department of Chemistry, Panskura Banamali College (Autonomous) (Vidyasagar University), Panskura R. S, Midnapore (East), West Bengal, 721152, India.
| |
Collapse
|
34
|
Therapeutic effect of two Co(II) coordination polymers by inhibiting tumor cell proliferation and invasion on pancreatic cancer. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Feng Z, Cheng L, Fan H, Liu J, Han F. Two new Co(II)/Zn(II) coordination polymers: Photocatalytic and luminescent property, and application value on alveolar bone reconstruction. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Zhang HA, Pang FN, Yue R. Treatment activity of 0D/2D coordination complexes on gastric carcinoma by inhibiting the cancer cell viability. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
A new Cu(II)-based coordination polymer: application values on liver cancer through down-regulating relative expression of miRNA9. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Inhibitory effect of two coordination polymers combined with LL-37 against lung cancer. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
He XL, Huang FH, Zhang CM, Dong Z, Wang BQ. New photoluminescent Zn(II)/Cd(II) coordination polymers for laryngeal carcinoma therapy. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Ragab MS, Shehata MR, Shoukry MM, Haukka M, Ragheb MA. Oxidative DNA cleavage mediated by a new unexpected [Pd(BAPP)][PdCl 4] complex (BAPP = 1,4-bis(3-aminopropyl)piperazine): crystal structure, DNA binding and cytotoxic behavior. RSC Adv 2022; 12:1871-1884. [PMID: 35425175 PMCID: PMC8979008 DOI: 10.1039/d1ra07793g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022] Open
Abstract
A novel Pd(ii) double complex, [Pd(BAPP)][PdCl4], containing the 1,4-bis(3-aminopropyl)piperazine (BAPP) ligand is investigated. X-ray crystallography of a single crystal confirmed the structure of the [Pd(BAPP)][PdCl4] complex. The spectroscopic behavior was also elucidated using elemental analysis, nuclear magnetic resonance and Fourier-transform infrared spectroscopy, and mass spectrometry. The antimicrobial susceptibility of the [Pd(BAPP)][PdCl4] complex against all tested microbial strains was lower than that of the BAPP ligand except for C. albicans. The cytotoxic impacts of the BAPP ligand and its [Pd(BAPP)][PdCl4] complex were evaluated in vitro for HepG2, CaCo-2 and MCF7 cell lines as well as the WI-38 normal cell line. The anticancer activity was markedly improved by the complexation. The [Pd(BAPP)][PdCl4] complex could selectively inhibit the tested cancer cells in a safe way to the non-tumorigenic cell (WI-38). From the DNA binding studies with ultraviolet-visible spectrophotometry, the [Pd(BAPP)][PdCl4] complex interacts more efficiently with the calf thymus DNA than its BAPP ligand through the intercalative binding mode. In the absence of an external reductant, the [Pd(BAPP)][PdCl4] complex cleaved the intact supercoiled pBR322 DNA under physiological conditions in a concentration-dependent manner. Additionally, electrophoretic experiments were performed in the presence of different radical scavengers, namely DMSO, NaN3 and KI, and ruled out the hydrolytic mechanistic pathway of the reaction and suggested that the oxidative mechanism is the preferred one. The results of the binding affinity of the [Pd(BAPP)][PdCl4] complex to human DNA were modeled using a molecular docking study showing that the complex interacts more strongly with human DNA than the ligand. Finally, an in vitro pharmacokinetic study was assessed through in silico ADME predictions.
Collapse
Affiliation(s)
- Mona S Ragab
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Mohamed R Shehata
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Mohamed M Shoukry
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä P.O. Box 35 FI-40014 Jyväskylä Finland
| | - Mohamed A Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University Giza Egypt
| |
Collapse
|
41
|
Zhao X, Dong WL, Luo GF, Xie J, Liu J, Yu FR. Cervical cancer treatment of Co(II) coordination polymer through miR-9-5p-regulated BRCA1-OCT1-GADD45 pathways. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
42
|
Gokulnath G, Manikandan R, Anitha P, Umarani C. Synthesis, characterization, in vitro antimicrobial and anticancer activity of metal(II) complexes of Schiff base-derived from 3-formyl-2-mercaptoquinoline and thiosemicarbazide. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1966630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ganesan Gokulnath
- Department of Chemistry, Government Arts College (Autonomous), Salem, Tamil Nadu, India
| | - Rajendran Manikandan
- Department of Chemistry, Loyola College of Arts and Science, Mettala, Namakkal, Tamil Nadu, India
| | - Panneerselvam Anitha
- Department of Chemistry, Government College of Engineering, Salem, Tamil Nadu, India
| | - Chinnusamy Umarani
- Department of Chemistry, Government Arts College (Autonomous), Salem, Tamil Nadu, India
| |
Collapse
|
43
|
Two Co(II) coordination polymers: Crystal structures and treatment activity on bacterial acute sinusitis. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Meng Z, Xu Z, Li D. A new In(III) coordination polymer: Crystal structure, clinical and nursing value for ovarian cancer treatment. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Yin T, Wang R, Yang S. Anti-breast Cancer Activity of Co(II) Complex by Inhibiting Cell Viability and Stimulating Cell Apoptosis. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
A Heterotrinuclear Cluster Complex Attenuates Oral Squamous Cell Carcinoma Development In Vivo and In Vitro. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Elsayed SA, Elnabky IM, di Biase A, El‐Hendawy AM. New mixed ligand copper(II) hydrazone‐based complexes: Synthesis, characterization, crystal structure, DNA/RNA/BSA binding, in vitro anticancer, apoptotic activity, and cell cycle analysis. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shadia A. Elsayed
- Chemistry Department, Faculty of Science Damietta University New Damietta 34517 Egypt
| | - Islam M. Elnabky
- Chemistry Department, Faculty of Science Damietta University New Damietta 34517 Egypt
| | - Armando di Biase
- Department of Chemistry University of Milan C. Golgi 19 Milan 20133 Italy
| | - Ahmed M. El‐Hendawy
- Chemistry Department, Faculty of Science Damietta University New Damietta 34517 Egypt
| |
Collapse
|
48
|
Xu MH, Wang CF, Liu YT, Cui QL. Co(II) coordination polymer: Treatment activity on the chronic obstructive pulmonary disease by reducing the inflammatory cytokines releasing. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the current study, using a semi-flexible quadritopic N-donor ligand, 5,5′-bipyrimidine (bpym), a new azide-based coordination polymer, [Co(bpym)(N3)2]n (1), was synthesized and structurally characterized via the single crystal X-ray diffraction along with the elemental analysis. Its treatment activity on the chronic obstructive pulmonary disease (COPD) would be evaluated and the related mechanism was explored. Firstly, the ELISA (enzyme linked immunosorbent assay) detection assay was performed and the levels of the inflammatory cytokines were measured. In addition to this, the NF-κB signaling pathway activation in the lung epithelial cells was measured with the real time RT-PCR (reverse transcription-polymerase chain reaction). Both six-membered rings containing nitrogen and the azide group on the designed drug molecule were confirmed by molecular docking simulation to have activities to the NF-kappaB.
Collapse
Affiliation(s)
- Mei-Hua Xu
- Department of Pharmacy, Traditional Chinese Medical Hospital of Huangdao District, Qingdao, Shandong, China
| | - Cui-Feng Wang
- Department of Pulmonary Diseases, Huangdao District Chinese Medicine Hospital, Qingdao, Shandong, China
| | - Yan-Tao Liu
- Qingdao Center for Disease Control and Prevention, Qingdao, Shandong, China
| | - Qiu-Lian Cui
- Department of Health Management, Chinese Medicine Hospital of Huangdao District, Qingdao, Shandong, China
| |
Collapse
|
49
|
Di HP, Li Y, Gao Y. Two Cu(II) and Co(II) complexes: Magnetic properties and protective activity on burn disease by regulating the proliferation capability of mutated fibroblasts. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
John L, Joseyphus RS, Dasan A, Joe IH, Vibin M. Protein binding and cytotoxicity activities of glutamine based metal complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|