1
|
Ma C, Cao Q, Yu L, Ma Z, Gan Q. Chirality Interplay between the Interior and Exterior of Metal-Organic Cages. Angew Chem Int Ed Engl 2024; 63:e202410731. [PMID: 38923638 DOI: 10.1002/anie.202410731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
A series of metal-organic cages featuring two stereogenic elements, in terms of the twisting of amide moieties within the ligand backbones and the rotation of diazaanthracene segments along the ligand ridges, were exploited. These two chiral components are correlative and serve as relays for transmitting chirality information between the internal and external cages. The chirality information induced by a chiral guest inside the cage cavity can pass through the cage framework and influence the orientation of the diazaanthracene segments on the periphery of the cage. In turn, the chirality of a stereogenic center within the diazaanthracene segments can transfer back into the cavity, enabling discrimination of enantiomeric guests.
Collapse
Affiliation(s)
- Chunmiao Ma
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qingcheng Cao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lu Yu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhao Ma
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Quan Gan
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
2
|
Bloch WM, Horiuchi S, Holstein JJ, Drechsler C, Wuttke A, Hiller W, Mata RA, Clever GH. Maximized axial helicity in a Pd 2L 4 cage: inverse guest size-dependent compression and mesocate isomerism. Chem Sci 2023; 14:1524-1531. [PMID: 36794203 PMCID: PMC9906678 DOI: 10.1039/d2sc06629g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Helicity is an archetypal structural motif of many biological systems and provides a basis for molecular recognition in DNA. Whilst artificial supramolecular hosts are often helical, the relationship between helicity and guest encapsulation is not well understood. We report a detailed study on a significantly coiled-up Pd2L4 metallohelicate with an unusually wide azimuthal angle (∼176°). Through a combination of NMR spectroscopy, single-crystal X-ray diffraction, trapped ion mobility mass spectrometry and isothermal titration calorimetry we show that the coiled-up cage exhibits extremely tight anion binding (K of up to 106 M-1) by virtue of a pronounced oblate/prolate cavity expansion, whereby the Pd-Pd separation decreases for mono-anionic guests of increasing size. Electronic structure calculations point toward strong dispersion forces contributing to these host-guest interactions. In the absence of a suitable guest, the helical cage exists in equilibrium with a well-defined mesocate isomer that possesses a distinct cavity environment afforded by a doubled Pd-Pd separation distance.
Collapse
Affiliation(s)
- Witold M Bloch
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide South Australia 5042 Australia
| | - Shinnosuke Horiuchi
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University Bunkyo-machi Nagasaki 852-8521 Japan
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Christoph Drechsler
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Axel Wuttke
- Institute of Physical Chemistry, Georg-August University Göttingen Tammannstraße 6 37077 Göttingen Germany
| | - Wolf Hiller
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Ricardo A Mata
- Institute of Physical Chemistry, Georg-August University Göttingen Tammannstraße 6 37077 Göttingen Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Straße 6 44227 Dortmund Germany
| |
Collapse
|
3
|
Sharma S, Sarkar M, Chand DK. Conjoined and non-conjoined coordination cages with palladium(II) vertices: structural diversity, solution dynamics, and intermolecular interactions. Chem Commun (Camb) 2023; 59:535-554. [PMID: 36546562 DOI: 10.1039/d2cc04828k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Self-assembled coordination complexes prepared from a combination of Pd(II) components with one or more types of high-symmetry or low-symmetry bis/tris/tetrakis-monodentate ligands are considered in this review. The structures of these complexes are viewed in terms of the presence of a metallo-macromonocycle or conjoined metallo-macromonocycles/metallocages in the frameworks. Analysis of the typical molecular structures revealed an open truth that one or more units of metallo-macromonocycles can be conjoined to afford planar or non-planar systems. In the same line, the enveloping surface of a 3D cage can be considered as a multiple number of conjoined metallomacrocycles that embrace a 3D space from all directions. However, two or more units of cages are conjoined in a multi-3D-cavity cage system and such a system is considered as a conjoined cage. Construction of such conjoined cages having a finite but multiple number of 3D-cavities unified in a single molecular architecture is a challenging task when compared to that of single-3D-cavity based compounds. Conjoining of as many as four units of 3D cages is known so far. Single- as well as multi-cavity cages of lower symmetry have become a very recent trend in this regard where low-symmetry ligands or mixed ligand ensembles are crafted in the framework of the cages. Other structural diversities like helicity in cages, and supramolecular isomerism are also included in this assorted literature work. Although isomerism in classical coordination complexes is well known, it is very less studied in self-assembled coordination complexes. Ligand isomerism is one such feature that is reviewed here. The dynamic behavior of the cages results in interesting reactivity aspects. A large variety of dynamic processes are collected under an umbrella, i.e., "ligand exchange reactions" and described with examples. Intermolecular interaction among the already self-assembled molecules is possible in solution, solid, and gel-phases as discussed in the last part of this review. The understanding of intermolecular interaction is likely to influence different areas of research including crystal engineering, and materials chemistry.
Collapse
Affiliation(s)
- Shruti Sharma
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Moumita Sarkar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Dillip Kumar Chand
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
4
|
Tripathy D, Ganta S, Rath SL, Chand DK. Hierarchical self-assembly of self-assembled Pd(II) complexes: Synthesis, structural characterization, crystal packing evaluation and docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Sarkar M, Dasary H, Chand DK. Helicity induction by innocent anion in a quadruple stranded cage. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Timmer BJJ, Bobylev EO, Mooibroek TJ. Comparison of [Pd 2L 4][BF 4] 4 cages for binding of n-octyl glycosides and nitrate (L = isophthalamide or dipicolinamide linked dipyridyl ligand). Org Biomol Chem 2021; 19:6633-6637. [PMID: 34286795 DOI: 10.1039/d1ob01185e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two dipyridyl ligands were synthesized, where the pyridyl donor fragments were separated by an isophthalamide (1) or a dipicolinamide moiety (2). Both ligands formed [Pd2(Ligand)4][BF4]4 complexes in CD2Cl2 containing 5% dmso-d6. It was found that while [Pd2(1)4][BF4]4 readily binds to n-octyl glycosides and to nitrate anions, [Pd2(2)4][BF4]4 did not. The difference in binding properties could be rationalized based on the reduced flexibility and size of the [Pd2(2)4]2+ cage and/or stronger interior binding of a BF4- counter anion.
Collapse
Affiliation(s)
- Brian J J Timmer
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Eduard O Bobylev
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Tiddo J Mooibroek
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Hierarchical communication of chirality for aromatic oligoamide sequences. Nat Commun 2021; 12:2659. [PMID: 33976219 PMCID: PMC8113567 DOI: 10.1038/s41467-021-22984-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 04/07/2021] [Indexed: 11/24/2022] Open
Abstract
The communication of chirality at a molecular and supramolecular level is the fundamental feature capable of transmitting and amplifying chirality information. Yet, the limitation of one-step communication mode in many artificial systems has precluded the ability of further processing the chirality information. Here, we report the chirality communication of aromatic oligoamide sequences within the interpenetrated helicate architecture in a hierarchical manner, specifically, the communication is manipulated by three sequential steps: (i) coordination, (ii) concentration, and (iii) ion stimulus. Such approach enables the information to be implemented progressively and reversibly to different levels. Furthermore, the chiral information on the side chains can be accumulated and transferred to the helical backbones of the sequences, resulting in that one of ten possible diastereoisomers of the interpenetrated helicate is finally selected. The circular dichroism experiments with a mixture of chiral and achiral ligands demonstrate a cooperative behavior of these communications, leading to amplification of chiral information. Communication of chirality at a molecular level is the fundamental for transmitting chirality information but one-step communication modes in many artificial systems limits further processing the chirality information. Here, the authors report chirality communication of aromatic oligoamide sequences within interpenetrated helicate architecture in a hierarchical manner.
Collapse
|
8
|
Luo D, Pan B, Zhang J, Ma C, Su Y, Gan Q. An interlocked coordination cage based on aromatic amide ligands. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Hiraoka S, Takahashi S, Sato H. Coordination Self-Assembly Processes Revealed by Collaboration of Experiment and Theory: Toward Kinetic Control of Molecular Self-Assembly. CHEM REC 2020; 21:443-459. [PMID: 33241912 DOI: 10.1002/tcr.202000124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022]
Abstract
The importance of the collaboration of experiment and theory has been proven in many examples in science and technology. Here, such a new example is shown in the investigation of molecular self-assembly process, which is a complicated multi-step chemical reaction occurring in the reaction network composed of a huge number of intermediates. An experimental method, QASAP (quantitative analysis of self-assembly process), developed by us and a numerical approach, NASAP (numerical analysis of self-assembly process), that analyzes the experimental data obtained by QASAP to draw detail molecular self-assembly pathways, which was also developed by us, are introduced, and their application to the investigation of Pd(II)-mediated coordination assemblies are presented. Further, the possibility of the prediction of the outcomes of molecular self-assembly by varying the reaction conditions is also demonstrated. Finally, a future direction in the field of artificial molecular self-assembly based on pathway-dependent self-assembly, that is, kinetic control of molecular self-assembly is discussed.
Collapse
Affiliation(s)
- Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Satoshi Takahashi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University, Kyoto, 615-8510, Japan.,Elements Strategy Initiative for Catalyst and Batteries, Kyoto University, Kyoto, 615-8510, Japan.,Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, 606-8103, Japan
| |
Collapse
|
10
|
Liu CL, Bobylev EO, Fu Y, Poole DA, Robeyns K, Fustin CA, Garcia Y, Reek JNH, Singleton ML. Balancing Ligand Flexibility versus Rigidity for the Stepwise Self-Assembly of M 12 L 24 via M 6 L 12 Metal-Organic Cages. Chemistry 2020; 26:11960-11965. [PMID: 32378754 DOI: 10.1002/chem.202001399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Indexed: 11/11/2022]
Abstract
Non-covalent interactions are important for directing protein folding across multiple intermediates and can even provide access to multiple stable structures with different properties and functions. Herein, we describe an approach for mimicking this behavior in the self-assembly of metal-organic cages. Two ligands, the bend angles of which are controlled by non-covalent interactions and one ligand lacking the above-mentioned interactions, were synthesized and used for self-assembly with Pd2+ . As these weak interactions are easily broken, the bend angles have a controlled flexibility giving access to M2 (L1)4 , M6 (L2)12 , and M12 (L2)24 cages. By controlling the self-assembly conditions this process can be directed in a stepwise fashion. Additionally, the multiple endohedral hydrogen-bonding sites on the ligand were found to play a role in the binding and discrimination of neutral guests.
Collapse
Affiliation(s)
- Cui-Lian Liu
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, Louvain-la-Neuve, 1348, Belgium
| | - Eduard O Bobylev
- Van''t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Yang Fu
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, Louvain-la-Neuve, 1348, Belgium
| | - David A Poole
- Van''t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, Louvain-la-Neuve, 1348, Belgium
| | - Charles-André Fustin
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, Louvain-la-Neuve, 1348, Belgium
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, Louvain-la-Neuve, 1348, Belgium
| | - Joost N H Reek
- Van''t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH, The Netherlands
| | - Michael L Singleton
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Louis Pasteur 1, Louvain-la-Neuve, 1348, Belgium
| |
Collapse
|
11
|
Abstract
A self-assembled coordination cage usually possesses one well-defined three-dimensional (3D) cavity whereas infinite number of 3D-cavities are crafted in a designer metal-organic framework. Construction of a discrete coordination cage possessing multiple number of 3D-cavities is a challenging task. Here we report the peripheral decoration of a trinuclear [Pd3L6] core with one, two and three units of a [Pd2L4] entity for the preparation of multi-3D-cavity conjoined-cages of [Pd4(La)2(Lb)4], [Pd5(Lb)4(Lc)2] and [Pd6(Lc)6] formulations, respectively. Formation of the tetranuclear and pentanuclear complexes is attributed to the favorable integrative self-sorting of the participating components. Cage-fusion reactions and ligand-displacement-induced cage-to-cage transformation reactions are carried out using appropriately chosen ligand components and cages prepared in this work. The smaller [Pd2L4] cavity selectively binds one unit of NO3−, F−, Cl− or Br− while the larger [Pd3L6] cavity accommodates up to four DMSO molecules. Designing aspects of our conjoined-cages possess enough potential to inspire construction of exotic molecular architectures. Developing simple routes for construction of multi-compartmental cages is a compelling and challenging task. Here, the authors report modular construction of multi-3D-cavity cages featuring one, two or three units of a [Pd2L4] entity conjoined with a [Pd3L6] core.
Collapse
|
12
|
Lin Q, Gao L, Kauffmann B, Zhang J, Ma C, Luo D, Gan Q. Helicity adaptation within a quadruply stranded helicate by encapsulation. Chem Commun (Camb) 2018; 54:13447-13450. [PMID: 30431027 DOI: 10.1039/c8cc07932c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The helicity of a quadruply stranded M2L4 helicate consisting of an aromatic amide bidendate ligand is flexible due to the twisting of the amide moieties and can be tuned by the encapsulated anions. This study reveals the multiple interplays and complementarities between the anions as well as between the anions and the helicate, which are synthetically responsive to the ultimate conformation of the helicate.
Collapse
Affiliation(s)
- Qi Lin
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Steel PJ, McMorran DA. Selective Anion Recognition by a Dynamic Quadruple Helicate. Chem Asian J 2018; 14:1098-1101. [PMID: 30209886 DOI: 10.1002/asia.201801262] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/04/2018] [Indexed: 01/06/2023]
Abstract
An M2 L4 quadruple helicate, formed by wrapping four molecules of 1,4-bis(3-pyridyloxy)benzene (L1 ) about two palladium(II) centers, is shown to bind anions within its internal cavity. 1 H NMR exchange experiments provide a quantitative measure of anion selectivity and reveal a preference for ClO4 - over the other tetrahedral anions BF4 - and ReO4 - and the octahedral anion PF6 - . X-ray crystal structures of [Pd2 (L1 )4 ]4+ helicates containing ClO4 , BF4 - and I- reveal that the cavity size can dynamically change in response to the size of the guest.
Collapse
Affiliation(s)
- Peter J Steel
- Department of Chemistry, University of Canterbury, Christchurch, 8140, New Zealand
| | - David A McMorran
- Department of Chemistry Te Tari Matauranga Mata, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
14
|
Dasary H, Chand DK. Structural and Dynamic Aspects of Palladium(II)‐Based Self‐Assembled Binuclear Coordination Complexes. Isr J Chem 2018. [DOI: 10.1002/ijch.201800065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hareesha Dasary
- Department of ChemistryIndian Institute of Technology Madras Chennai 600036 India
| | - Dillip Kumar Chand
- Department of ChemistryIndian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
15
|
|
16
|
Hiraoka S. Unresolved Issues that Remain in Molecular Self-Assembly. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
17
|
Kai S, Martí-Centelles V, Sakuma Y, Mashiko T, Kojima T, Nagashima U, Tachikawa M, Lusby PJ, Hiraoka S. Quantitative Analysis of Self-Assembly Process of a Pd 2 L 4 Cage Consisting of Rigid Ditopic Ligands. Chemistry 2017; 24:663-671. [PMID: 29044811 DOI: 10.1002/chem.201704285] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Indexed: 12/20/2022]
Abstract
The self-assembly process of a Pd2 L4 cage complex consisting of rigid ditopic ligands, in which two 3-pyridyl groups are connected to a benzene ring through acetylene bonds and PdII ions was revealed by a recently developed quantitative analysis of self-assembly process (QASAP), with which the self-assembly process of coordination assemblies can be investigated by monitoring the evolution with time of the average composition of all the intermediates. QASAP revealed that the rate-determining steps of the cage formation are the intramolecular ligand exchanges in the final stage of the self-assembly: [Pd2 L4 Py*2 ]4+ →[Pd2 L4 Py*1 ]4+ +Py* and [Pd2 L4 Py*1 ]4+ →[Pd2 L4 ]4+ +Py* (Py*: 3-chloropyridine, which was used as a leaving ligand on the metal source). The energy barriers for the two reactions were determined to be 22.3 and 21.9 kcal mol-1 , respectively. DFT calculations of the transition-state (TS) structures for the two steps indicated that the distortion of the trigonal-bipyramidal PdII center at the TS geometries increases the activation free energy of the two steps.
Collapse
Affiliation(s)
- Shumpei Kai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Vicente Martí-Centelles
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland, EH9 3FJ, UK
| | - Yui Sakuma
- Quantum Chemistry Division, Graduate School of Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama-city, Kanagawa, 236-0027, Japan
| | - Takako Mashiko
- Quantum Chemistry Division, Graduate School of Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama-city, Kanagawa, 236-0027, Japan
| | - Tatsuo Kojima
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Umpei Nagashima
- Foundation for Computational Science (FOCUS), 7-1-28, Minatojimaminatomachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Masanori Tachikawa
- Quantum Chemistry Division, Graduate School of Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama-city, Kanagawa, 236-0027, Japan
| | - Paul J Lusby
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland, EH9 3FJ, UK
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
18
|
Ganta S, Chand DK. Multi-Stimuli-Responsive Metallogel Molded from a Pd2L4-Type Coordination Cage: Selective Removal of Anionic Dyes. Inorg Chem 2017; 57:3634-3645. [DOI: 10.1021/acs.inorgchem.7b02239] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sudhakar Ganta
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Dillip K. Chand
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
19
|
Preston D, Lewis JEM, Crowley JD. Multicavity [PdnL4]2n+ Cages with Controlled Segregated Binding of Different Guests. J Am Chem Soc 2017; 139:2379-2386. [DOI: 10.1021/jacs.6b11982] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dan Preston
- Department
of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - James E. M. Lewis
- Department
of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - James D. Crowley
- Department
of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| |
Collapse
|
20
|
Li YH, Zhang Y, Legrand YM, van der Lee A, Jiang JJ, Chen CX, Su CY, Barboiu M. Hydrophobic metallo-supramolecular Pd2L4 cages for zwitterionic guest encapsulation in organic solvents. Dalton Trans 2017; 46:15204-15207. [DOI: 10.1039/c7dt03517a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrophobic metallo-supramolecular cages are selectively encapsulating hydrophilic zwitterionic guests in organic solvents via synergetic multivalent recognition.
Collapse
Affiliation(s)
- Yu-Hao Li
- Lehn Institute of Functional Materials
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Yan Zhang
- Institut Europeen des Membranes
- Adaptive Supramolecular Nanosystems Group University of Montpellier
- ENSCM-CNRS
- Montpellier
- France
| | - Yves-Marie Legrand
- Institut Europeen des Membranes
- Adaptive Supramolecular Nanosystems Group University of Montpellier
- ENSCM-CNRS
- Montpellier
- France
| | - Arie van der Lee
- Institut Europeen des Membranes
- Adaptive Supramolecular Nanosystems Group University of Montpellier
- ENSCM-CNRS
- Montpellier
- France
| | - Ji-Jun Jiang
- Lehn Institute of Functional Materials
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Cheng-Xia Chen
- Lehn Institute of Functional Materials
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Cheng-Yong Su
- Lehn Institute of Functional Materials
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Mihail Barboiu
- Lehn Institute of Functional Materials
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| |
Collapse
|
21
|
Kang Y, Lee E, Moon SH, Kim J, Park KM. Meso-Helical Ag(I) Coordination Polymer Based on a Pyridylimidazole Ligand. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Youngjin Kang
- Division of Science Education and Department of Chemistry; Kangwon National University; Chuncheon 24341 Republic of Korea
| | - Eunji Lee
- Research Institute of Natural Science and Department of Chemistry; Gyeongsang National University; Jinju 52828 Republic of Korea
| | - Suk-Hee Moon
- Department of Food and Nutrition; Kyungnam College of Information and Technology; Busan 47011 Republic of Korea
| | - Jinho Kim
- Division of Science Education and Department of Chemistry; Kangwon National University; Chuncheon 24341 Republic of Korea
| | - Ki-Min Park
- Research Institute of Natural Science and Department of Chemistry; Gyeongsang National University; Jinju 52828 Republic of Korea
| |
Collapse
|
22
|
Yue NL, Jennings MC, Puddephatt RJ. Chemistry of palladium(II) with bis(3-amidopyridine) ligands. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
González-Montiel S, Baca-Téllez S, Martínez-Otero D. Construction of 18-membered monometallic macrocycles by a trans-spanning ligand. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Lee E, Ju H, Moon SH, Lee SS, Park KM. Double-Helical Silver(I) Coordination Polymer Based on an Unsymmetrical Ligand. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Eunji Lee
- Department of Chemistry and Research Institute of Natural Science; Gyeongsang National University; Jinju 660-701 S. Korea
| | - Huiyeong Ju
- Department of Chemistry and Research Institute of Natural Science; Gyeongsang National University; Jinju 660-701 S. Korea
| | - Suk-Hee Moon
- Department of Food and Nutrition; Kyungnam College of Information and Technology; Busan 617-701 S. Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Science; Gyeongsang National University; Jinju 660-701 S. Korea
| | - Ki-Min Park
- Department of Chemistry and Research Institute of Natural Science; Gyeongsang National University; Jinju 660-701 S. Korea
| |
Collapse
|
25
|
Cook TR, Stang PJ. Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. Chem Rev 2015; 115:7001-45. [DOI: 10.1021/cr5005666] [Citation(s) in RCA: 1299] [Impact Index Per Article: 129.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Timothy R. Cook
- Department
of Chemistry, University at Buffalo, State University of New York, 359 Natural Sciences Complex, Buffalo, New York 14260, United States
| | - Peter J. Stang
- Department
of Chemistry, University of Utah, 315 S. 1400 E. Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
26
|
Laramée-Milette B, Lachance-Brais C, Hanan GS. Synthesis of discrete Re(i) di- and tricarbonyl assemblies using a [4 × 1] directional bonding strategy. Dalton Trans 2015; 44:41-5. [DOI: 10.1039/c4dt03077j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Discrete assembly of two Re(i) squares was achieved by a simple [4 × 1] strategy where the complexes, [Re(4-pytpy-κ2N)(CO)3Br] and [Re(4-pytpy-κ3N)(CO)2Br], act as their own ligands. The properties of the assemblies and their precursors are described along with solid-state X-ray diffraction studies.
Collapse
Affiliation(s)
| | | | - Garry S. Hanan
- Départment de Chimie
- Université de Montréal
- Montréal
- Canada
| |
Collapse
|
27
|
Schmidt A, Casini A, Kühn FE. Self-assembled M2L4 coordination cages: Synthesis and potential applications. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.03.037] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Bandi S, Pal AK, Hanan GS, Chand DK. Stoichiometrically controlled revocable self-assembled "spiro" versus quadruple-stranded "double-decker" type coordination cages. Chemistry 2014; 20:13122-6. [PMID: 25138657 DOI: 10.1002/chem.201403808] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Indexed: 11/08/2022]
Abstract
The simple combination of Pd(II) with the tris-monodentate ligand bis(pyridin-3-ylmethyl) pyridine-3,5-dicarboxylate, L, at ratios of 1:2 and 3:4 demonstrated the stoichiometrically controlled exclusive formation of the "spiro-type" Pd1L2 macrocycle, 1, and the quadruple-stranded Pd3L4 cage, 2, respectively. The architecture of 2 is elaborated with two compartments that can accommodate two units of fluoride, chloride, or bromide ions, one in each of the enclosures. However, the entry of iodide is altogether restricted. Complexes 1 and 2 are interconvertible under suitable conditions.
Collapse
Affiliation(s)
- Sreenivasulu Bandi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 (India); Department of Chemistry, University of Montreal, Montreal QC H3T-IJ4 (Canada)
| | | | | | | |
Collapse
|
29
|
Klein C, Gütz C, Bogner M, Topić F, Rissanen K, Lützen A. A new structural motif for an enantiomerically pure metallosupramolecular Pd₄L₈ aggregate by anion templating. Angew Chem Int Ed Engl 2014; 53:3739-42. [PMID: 24590898 DOI: 10.1002/anie.201400626] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Indexed: 11/11/2022]
Abstract
An enantiomerically pure BINOL-based bis(3-pyridyl) ligand 1 assembles into a homochiral [Pd4(1)8] complex upon coordination to tetravalent Pd(II) ions. The formation of this aggregate is templated by two tetrafluoroborate counterions that are encapsulated in two peripheral cavities. The resulting structure is a new structural motif for this kind of metallosupramolecular assemblies that arranges the palladium ions in a distorted tetrahedral fashion and forces ligand 1 to adopt two different conformations. Both phenomena are unique and cause an overall three-dimensional structure that has another confined, chiral, and hydrophilic central cavity.
Collapse
Affiliation(s)
- Christoph Klein
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn (Germany)
| | | | | | | | | | | |
Collapse
|
30
|
Klein C, Gütz C, Bogner M, Topić F, Rissanen K, Lützen A. Ein enantiomerenreines metallosupramolekulares Pd4L8-Aggregat mit neuartigem Strukturmotiv: Bildung durch einen Anionen-Templateffekt. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400626] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Gütz C, Hovorka R, Klein C, Jiang QQ, Bannwarth C, Engeser M, Schmuck C, Assenmacher W, Mader W, Topić F, Rissanen K, Grimme S, Lützen A. Enantiomerically Pure [M6L12] or [M12L24] Polyhedra from Flexible Bis(Pyridine) Ligands. Angew Chem Int Ed Engl 2014; 53:1693-8. [DOI: 10.1002/anie.201308651] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Indexed: 12/27/2022]
|
32
|
Gütz C, Hovorka R, Klein C, Jiang QQ, Bannwarth C, Engeser M, Schmuck C, Assenmacher W, Mader W, Topić F, Rissanen K, Grimme S, Lützen A. Enantiomerenreine [M6L12]- oder [M12L24]-Polyeder aus flexiblen Bis(pyridin)-Liganden. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308651] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Gütz C, Hovorka R, Schnakenburg G, Lützen A. Homochiral Supramolecular M2L4Cages by High-Fidelity Self-Sorting of Chiral Ligands. Chemistry 2013; 19:10890-4. [DOI: 10.1002/chem.201301499] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Indexed: 11/10/2022]
|
34
|
Zhang X, Fan L, Zhang W, Ding Y, Fan W, Zhao X. A highly photocatalytic polyoxomolybdate compound constructed from novel-type triple helix {Mo4O12}n chains and copper(i)–organic nets. Dalton Trans 2013; 42:16562-8. [DOI: 10.1039/c3dt52001c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|