1
|
Shahbazi R, Behbahani FK. Synthesis, modifications, and applications of iron-based nanoparticles. Mol Divers 2024:10.1007/s11030-023-10801-9. [PMID: 38740610 DOI: 10.1007/s11030-023-10801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 12/22/2023] [Indexed: 05/16/2024]
Abstract
Magnetic nanoparticles (MNPs) are appealing materials as assistant to resolve environmental pollution issues and as recyclable catalysts for the oxidative degradation of resistant contaminants. Moreover, they can significantly influence the advancement of medical applications for imaging, diagnostics, medication administration, and biosensing. On the other hand, due to unique features, excellent biocompatibility, high curie temperatures and low cytotoxicity of the Iron-based nanoparticles, they have received increasing attention in recent years. Using an external magnetic field, in which the ferrite magnetic nanoparticles (FMNPs) in the reaction mixtures can be easily removed, make them more efficient approach than the conventional method for separating the catalyst particles by centrifugation or filtration. Ferrite magnetic nanoparticles (FMNPs) provide various advantages in food processing, environmental issues, pharmaceutical industry, sample preparation, wastewater management, water purification, illness therapy, identification of disease, tissue engineering, and biosensor creation for healthcare monitoring. Modification of FMNPs with the proper functional groups and surface modification techniques play a significant role in boosting their capability. Due to flexibility of FMNPs in functionalization and synthesis, it is possible to make customized FMNPs that can be utilized in variety of applications. This review focuses on synthesis, modifications, and applications of Iron-based nanoparticles.
Collapse
Affiliation(s)
- Raheleh Shahbazi
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
2
|
Wang J, Li P, Wang C, Liu N, Xing D. Molecularly or atomically precise nanostructures for bio-applications: how far have we come? MATERIALS HORIZONS 2023; 10:3304-3324. [PMID: 37365977 DOI: 10.1039/d3mh00574g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
A huge variety of nanostructures are promising for biomedical applications, but only a few have been practically applied. Among the various reasons, the limited structural preciseness is a critical one, as it increases the difficulty in product quality control, accurate dosing, and ensuring the repeatability of material performance. Constructing nanoparticles with molecule-like preciseness is becoming a new research field. In this review, we focus on the artificial nanomaterials that can currently be molecularly or atomically precise, including DNA nanostructures, some metallic nanoclusters, dendrimer nanoparticles and carbon nanostructures, describing their syntheses, bio-applications and limitations, in view of up-to-date studies. A perspective on their potential for clinical translation is also given. This review is expected to provide a particular rationale for the future design of nanomedicines.
Collapse
Affiliation(s)
- Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Ping Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Ning Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
3
|
Adam A, Mertz D. Iron Oxide@Mesoporous Silica Core-Shell Nanoparticles as Multimodal Platforms for Magnetic Resonance Imaging, Magnetic Hyperthermia, Near-Infrared Light Photothermia, and Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1342. [PMID: 37110927 PMCID: PMC10145772 DOI: 10.3390/nano13081342] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
The design of core-shell nanocomposites composed of an iron oxide core and a silica shell offers promising applications in the nanomedicine field, especially for developing efficient theranostic systems which may be useful for cancer treatments. This review article addresses the different ways to build iron oxide@silica core-shell nanoparticles and it reviews their properties and developments for hyperthermia therapies (magnetically or light-induced), combined with drug delivery and MRI imaging. It also highlights the various challenges encountered, such as the issues associated with in vivo injection in terms of NP-cell interactions or the control of the heat dissipation from the core of the NP to the external environment at the macro or nanoscale.
Collapse
|
4
|
Freis B, Ramírez MDLÁ, Furgiuele S, Journe F, Cheignon C, Charbonnière LJ, Henoumont C, Kiefer C, Mertz D, Affolter-Zbaraszczuk C, Meyer F, Saussez S, Laurent S, Tasso M, Bégin-Colin S. Bioconjugation studies of an EGF-R targeting ligand on dendronized iron oxide nanoparticles to target head and neck cancer cells. Int J Pharm 2023; 635:122654. [PMID: 36720449 DOI: 10.1016/j.ijpharm.2023.122654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
A major challenge in nanomedicine is designing nanoplatforms (NPFs) to selectively target abnormal cells to ensure early diagnosis and targeted therapy. Among developed NPFs, iron oxide nanoparticles (IONPs) are good MRI contrast agents and can be used for therapy by hyperthermia and as radio-sensitizing agents. Active targeting is a promising method for selective IONPs accumulation in cancer tissues and is generally performed by using targeting ligands (TL). Here, a TL specific for the epidermal growth factor receptor (EGFR) is bound to the surface of dendronized IONPs to produce nanostructures able to specifically recognize EGFR-positive FaDu and 93-Vu head and neck cancer cell lines. Several parameters were optimized to ensure a high coupling yield and to adequately quantify the amount of TL per nanoparticle. Nanostructures with variable amounts of TL on the surface were produced and evaluated for their potential to specifically target and be thereafter internalized by cells. Compared to the bare NPs, the presence of the TL at the surface was shown to be effective to enhance their internalization and to play a role in the total amount of iron present per cell.
Collapse
Affiliation(s)
- Barbara Freis
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France; Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - María De Los Ángeles Ramírez
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
| | - Sonia Furgiuele
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, 7000 Mons, Belgium
| | - Fabrice Journe
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, 7000 Mons, Belgium
| | - Clémence Cheignon
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 25, rue Becquerel, 67087 Strasbourg, France
| | - Loïc J Charbonnière
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR 7178, 25, rue Becquerel, 67087 Strasbourg, France
| | - Céline Henoumont
- Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - Celine Kiefer
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
| | - Damien Mertz
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France
| | - Christine Affolter-Zbaraszczuk
- Inserm U1121, Centre de recherche en biomédecine de Strasbourg, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
| | - Florent Meyer
- Inserm U1121, Centre de recherche en biomédecine de Strasbourg, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg Cedex, France
| | - Sven Saussez
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, 7000 Mons, Belgium
| | - Sophie Laurent
- Laboratoire de NMR et d'imagerie moléculaire, Université de Mons, Avenue Maistriau 19, 7000 Mons, Belgium
| | - Mariana Tasso
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France; Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Diagonal 113 y 64, 1900 La Plata, Argentina
| | - Sylvie Bégin-Colin
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux, UMR CNRS-UdS 7504, 23 Rue du Loess, BP 43, 67034 Strasbourg, France.
| |
Collapse
|
5
|
Nguyen QT, Robert F, Colliere V, Lecante P, Philippot K, Esvan J, Tran PD, Amiens C. Synthesis of NiFeOx nanocatalysts from metal-organic precursors for the oxygen evolution reaction. Dalton Trans 2022; 51:11457-11466. [PMID: 35822914 DOI: 10.1039/d2dt01370c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Production of hydrogen from a renewable source that is water requires the development of sustainable catalytic processes. This implies, among others, developing efficient catalytic materials from abundant and low-cost resources and investigating their performance, especially in the oxidation of water as this half-reaction is the bottleneck of the water splitting process. For this purpose, NiFe-based nanoparticles with sizes ca. 3-4 nm have been synthesized by an organometallic approach and characterized by complementary techniques (WAXS, TEM, STEM-HAADF, EDX, XPS, and ATR-FTIR). They display a Ni core and a mixed Ni-Fe oxide shell. Once deposited onto FTO electrodes, they have been assessed in the electrocatalytic oxygen evolution reaction under alkaline conditions. Three different Ni/Fe ratios (2/1, 1/1 and 1/9) have been studied in comparison with their monometallic counterparts. The Ni2Fe1 nanocatalyst displayed the lowest overpotential (320 mV at j = 10 mA cm-2) as well as excellent stability over 16 h.
Collapse
Affiliation(s)
- Quyen T Nguyen
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France. .,Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France.,University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology of Hanoi, 18 Hoang Quoc Viet, Hanoi, Vietnam.
| | - Francois Robert
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France. .,Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Vincent Colliere
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France. .,Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Pierre Lecante
- CEMES-CNRS, Université de Toulouse, CNRS, UPS, 29 rue J. Marvig, 31055 Toulouse, France
| | - Karine Philippot
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France. .,Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Jérome Esvan
- CIRIMAT, Université de Toulouse, CNRS-INPT-UPS, 4 Allée Emile Monso, BP 44362, 31030 Toulouse, France
| | - Phong D Tran
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology of Hanoi, 18 Hoang Quoc Viet, Hanoi, Vietnam.
| | - Catherine Amiens
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France. .,Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| |
Collapse
|
6
|
Li Y, Liu J, Mo Z, Li L. Influence of different iron sources on Sb(III) removal from water by active iron-oxidizing bacteria and its mechanism. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1412-1423. [PMID: 35290221 DOI: 10.2166/wst.2022.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Iron-oxidizing bacteria played an important role in the treatment of Sb-containing wastewater. In this study, effect of different iron sources on Sb(III) removal ability by isolated iron-oxidizing bacteria (named as IOB-L) was conducted systemically in batch experiment. Moreover, ferrous lactate and zero-valent iron were chosen as iron sources for IOB-L. The results showed that after inoculation of 2% volume of IOB-L, Sb(III) concentration in water decreased from initial 18 mg/L to 4.1 mg/L at optimal pH of 7.0. There was no reaction between Sb(III) and ferrous lactate, whereas corrosion product of iron can adsorb a certain amount of Sb. When active IOB-L cultivated in ferrous lactate, a better removal rate of Sb(III) can be reached with a longer stagnate phase for bacteria. However, Sb(III) removal ability of IOB-L using zero-valent iron as iron source was lower. SEM-EDS, FTIR, and XPS analysis further indicated that ferrous lactate was oxidized by IOB-L and precipitated as biogenic iron oxides which had strong adsorption ability towards Sb(III), whereas zero-valent iron was not a good iron source.
Collapse
Affiliation(s)
- Yongchao Li
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, P.R. China E-mail: ; School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, P.R. China
| | - Jialing Liu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, P.R. China E-mail:
| | - Zhonggeng Mo
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, P.R. China
| | - Liyuan Li
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, P.R. China E-mail:
| |
Collapse
|
7
|
Hossain K, Florean L, Del Tedesco A, Cattaruzza E, Geppi M, Borsacchi S, Canton P, Benedetti A, Riello P, Scarso A. Modification of Amorphous Mesoporous Zirconia Nanoparticles with Bisphosphonic Acids: A Straightforward Approach for Tailoring the Surface Properties of the Nanoparticles. Chemistry 2021; 27:17941-17951. [PMID: 34705317 PMCID: PMC9299609 DOI: 10.1002/chem.202103354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 12/02/2022]
Abstract
The use of readily prepared bisphosphonic acids obtained in few steps through a thio-Michael addition of commercially available thiols on tetraethyl vinylidenebisphosphonate enables the straightforward surface modification of amorphous mesoporous zirconia nanoparticles. Simple stirring of the zirconia nanoparticles in a buffered aqueous solution of the proper bisphosphonic acid leads to the surface functionalization of the nanoparticles with different kinds of functional groups, charge and hydrophobic properties. Formation of both chemisorbed and physisorbed layers of the bisphosphonic acid take place, observing after extensive washing a grafting density of 1.1 molecules/nm2 with negligible release in neutral or acidic pH conditions, demonstrating stronger loading compared to monophosphonate derivatives. The modified nanoparticles were characterized by IR, XPS, ζ-potential analysis to investigate the loading of the bisphosphonic acid, FE-SEM to investigate the size and morphologies of the nanoparticles and 31 P and 1 H MAS NMR to investigate the coordination motif of the phosphonate units on the surface. All these analytical techniques demonstrated the strong affinity of the bisphosphonic moiety for the Zr(IV) metal centers. The functionalization with bisphosphonic acids represents a straightforward covalent approach for tailoring the superficial properties of zirconia nanoparticles, much straightforward compared the classic use of trisalkoxysilane or trichlorosilane reagents typically employed for the functionalization of silica and metal oxide nanoparticles. Extension of the use of bisphosphonates to other metal oxide nanoparticles is advisable.
Collapse
Affiliation(s)
- Khohinur Hossain
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari VeneziaVia Torino 15530172Venezia MestreItaly
| | - Luca Florean
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari VeneziaVia Torino 15530172Venezia MestreItaly
| | - Anna Del Tedesco
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari VeneziaVia Torino 15530172Venezia MestreItaly
| | - Elti Cattaruzza
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari VeneziaVia Torino 15530172Venezia MestreItaly
| | - Marco Geppi
- Dipartimento di Chimica e Chimica IndustrialeUniversità di Pisavia G. Moruzzi 1356124PisaItaly
| | | | - Patrizia Canton
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari VeneziaVia Torino 15530172Venezia MestreItaly
| | - Alvise Benedetti
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari VeneziaVia Torino 15530172Venezia MestreItaly
| | - Pietro Riello
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari VeneziaVia Torino 15530172Venezia MestreItaly
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca' Foscari VeneziaVia Torino 15530172Venezia MestreItaly
| |
Collapse
|
8
|
Nguyen QT, Rousset E, Nguyen VTH, Colliere V, Lecante P, Klysubun W, Philippot K, Esvan J, Respaud M, Lemercier G, Tran PD, Amiens C. Covalent Grafting of Ruthenium Complexes on Iron Oxide Nanoparticles: Hybrid Materials for Photocatalytic Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53829-53840. [PMID: 34726907 DOI: 10.1021/acsami.1c15051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present environmental crisis prompts the search for renewable energy sources such as solar-driven production of hydrogen from water. Herein, we report an efficient hybrid photocatalyst for water oxidation, consisting of a ruthenium polypyridyl complex covalently grafted on core/shell Fe@FeOx nanoparticles via a phosphonic acid group. The photoelectrochemical measurements were performed under 1 sun illumination in 1 M KOH. The photocurrent density of this hybrid photoanode reached 20 μA/cm2 (applied potential of +1.0 V vs reversible hydrogen electrode), corresponding to a turnover frequency of 0.02 s-1. This performance represents a 9-fold enhancement of that achieved with a mixture of Fe@FeOx nanoparticles and a linker-free ruthenium polypyridyl photosensitizer. This increase in performance could be attributed to a more efficient electron transfer between the ruthenium photosensitizer and the Fe@FeOx catalyst as a consequence of the covalent link between these two species through the phosphonate pendant group.
Collapse
Affiliation(s)
- Quyen T Nguyen
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 100000 Hanoi, Vietnam
| | - Elodie Rousset
- University of Reims Champagne-Ardenne, ICMR, UMR CNRS, 7312 Moulin de la House, BP 1039, F-51687 Reims Cedex 2, France
| | - Van T H Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 100000 Hanoi, Vietnam
| | - Vincent Colliere
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Pierre Lecante
- CEMES-CNRS, Université de Toulouse, 29 rue J. Marvig, F-31055 Toulouse, France
| | - Wantana Klysubun
- Synchrotron Light Research Institute, 111 University Avenue, Muang, 30000 Nakhon Ratchasima, Thailand
| | - Karine Philippot
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Jérôme Esvan
- CIRIMAT, Université de Toulouse, CNRS-INPT-UPS, 4 Allée Emile Monso, BP 44362, 31030 Toulouse, France
| | - Marc Respaud
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
- LPCNO, INSA, 135 Avenue de Rangueil, 31077 Toulouse Cedex 4, France
| | - Gilles Lemercier
- University of Reims Champagne-Ardenne, ICMR, UMR CNRS, 7312 Moulin de la House, BP 1039, F-51687 Reims Cedex 2, France
| | - Phong D Tran
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 100000 Hanoi, Vietnam
| | - Catherine Amiens
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| |
Collapse
|
9
|
Ranjith Kumar D, Dhakal G, Nguyen VQ, Lee J, Lee YR, Shim JJ. Ammonium heptamolybdate preloaded on flexible carbon-matrix film electrode for the electrochemical phosphate sensor in a river water sample. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Cotin G, Blanco-Andujar C, Perton F, Asín L, de la Fuente JM, Reichardt W, Schaffner D, Ngyen DV, Mertz D, Kiefer C, Meyer F, Spassov S, Ersen O, Chatzidakis M, Botton GA, Hénoumont C, Laurent S, Greneche JM, Teran FJ, Ortega D, Felder-Flesch D, Begin-Colin S. Unveiling the role of surface, size, shape and defects of iron oxide nanoparticles for theranostic applications. NANOSCALE 2021; 13:14552-14571. [PMID: 34473175 DOI: 10.1039/d1nr03335b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Iron oxide nanoparticles (IONPs) are well-known contrast agents for MRI for a wide range of sizes and shapes. Their use as theranostic agents requires a better understanding of their magnetic hyperthermia properties and also the design of a biocompatible coating ensuring their stealth and a good biodistribution to allow targeting of specific diseases. Here, biocompatible IONPs of two different shapes (spherical and octopod) were designed and tested in vitro and in vivo to evaluate their abilities as high-end theranostic agents. IONPs featured a dendron coating that was shown to provide anti-fouling properties and a small hydrodynamic size favoring an in vivo circulation of the dendronized IONPs. While dendronized nanospheres of about 22 nm size revealed good combined theranostic properties (r2 = 303 mM s-1, SAR = 395 W gFe-1), octopods with a mean size of 18 nm displayed unprecedented characteristics to simultaneously act as MRI contrast agents and magnetic hyperthermia agents (r2 = 405 mM s-1, SAR = 950 W gFe-1). The extensive structural and magnetic characterization of the two dendronized IONPs reveals clear shape, surface and defect effects explaining their high performance. The octopods seem to induce unusual surface effects evidenced by different characterization techniques while the nanospheres show high internal defects favoring Néel relaxation for magnetic hyperthermia. The study of octopods with different sizes showed that Néel relaxation dominates at sizes below 20 nm while the Brownian one occurs at higher sizes. In vitro experiments demonstrated that the magnetic heating capability of octopods occurs especially at low frequencies. The coupling of a small amount of glucose on dendronized octopods succeeded in internalizing them and showing an effect of MH on tumor growth. All measurements evidenced a particular signature of octopods, which is attributed to higher anisotropy, surface effects and/or magnetic field inhomogeneity induced by tips. This approach aiming at an analysis of the structure-property relationships is important to design efficient theranostic nanoparticles.
Collapse
Affiliation(s)
- Geoffrey Cotin
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67034 Strasbourg, France.
- Labex CSC, Fondation IcFRC/Université de Strasbourg, 8 allée Gaspard Monge BP 70028, F-67083 Strasbourg Cedex, France
| | - Cristina Blanco-Andujar
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67034 Strasbourg, France.
| | - Francis Perton
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67034 Strasbourg, France.
| | - Laura Asín
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza & Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
| | - Jesus M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza & Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
| | - Wilfried Reichardt
- Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Denise Schaffner
- Department of Radiology, Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Dinh-Vu Ngyen
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67034 Strasbourg, France.
| | - Damien Mertz
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67034 Strasbourg, France.
| | - Céline Kiefer
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67034 Strasbourg, France.
| | - Florent Meyer
- Université de Strasbourg, INSERM, UMR 1121 Biomaterials and Bioengineering, FMTS, F-67000 Strasbourg, France
| | - Simo Spassov
- Geophysical Centre of the Royal Meteorological Institute, 1 rue du Centre Physique, 5670 Dourbes, Belgium
| | - Ovidiu Ersen
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67034 Strasbourg, France.
| | - Michael Chatzidakis
- Dept of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4M1
| | - Gianluigi A Botton
- Dept of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4M1
| | - Céline Hénoumont
- Université de Mons, General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, 7000 Mons, Belgium
| | - Sophie Laurent
- Université de Mons, General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, 7000 Mons, Belgium
| | - Jean-Marc Greneche
- Institut des Molécules et Matériaux du Mans IMMM UMR CNRS 6283, Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Francisco J Teran
- iMdea Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | - Daniel Ortega
- iMdea Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
- Condensed Matter Physics Department, Faculty of Sciences, University of Cádiz, 11510 Puerto Real, Spain
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Delphine Felder-Flesch
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67034 Strasbourg, France.
| | - Sylvie Begin-Colin
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67034 Strasbourg, France.
- Labex CSC, Fondation IcFRC/Université de Strasbourg, 8 allée Gaspard Monge BP 70028, F-67083 Strasbourg Cedex, France
| |
Collapse
|
11
|
Besenhard MO, Panariello L, Kiefer C, LaGrow AP, Storozhuk L, Perton F, Begin S, Mertz D, Thanh NTK, Gavriilidis A. Small iron oxide nanoparticles as MRI T1 contrast agent: scalable inexpensive water-based synthesis using a flow reactor. NANOSCALE 2021; 13:8795-8805. [PMID: 34014243 DOI: 10.1039/d1nr00877c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Small iron oxide nanoparticles (IONPs) were synthesised in water via co-precipitation by quenching particle growth after the desired magnetic iron oxide phase formed. This was achieved in a millifluidic multistage flow reactor by precisely timed addition of an acidic solution. IONPs (≤5 nm), a suitable size for positive T1 magnetic resonance imaging (MRI) contrast agents, were obtained and stabilised continuously. This novel flow chemistry approach facilitates a reproducible and scalable production, which is a crucial paradigm shift to utilise IONPs as contrast agents and replace currently used Gd complexes. Acid addition had to be timed carefully, as the inverse spinel structure formed within seconds after initiating the co-precipitation. Late quenching allowed IONPs to grow larger than 5 nm, whereas premature acid addition yielded undesired oxide phases. Use of a flow reactor was not only essential for scalability, but also to synthesise monodisperse and non-agglomerated small IONPs as (i) co-precipitation and acid addition occurred at homogenous environment due to accurate temperature control and rapid mixing and (ii) quenching of particle growth was possible at the optimum time, i.e., a few seconds after initiating co-precipitation. In addition to the timing of growth quenching, the effect of temperature and dextran present during co-precipitation on the final particle size was investigated. This approach differs from small IONP syntheses in batch utilising either growth inhibitors (which likely leads to impurities) or high temperature methods in organic solvents. Furthermore, this continuous synthesis enables the low-cost (<£10 per g) and large-scale production of highly stable small IONPs without the use of toxic reagents. The flow-synthesised small IONPs showed high T1 contrast enhancement, with transversal relaxivity (r2) reduced to 20.5 mM-1 s-1 and longitudinal relaxivity (r1) higher than 10 mM-1 s-1, which is among the highest values reported for water-based IONP synthesis.
Collapse
Affiliation(s)
| | - Luca Panariello
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.
| | - Céline Kiefer
- Institut de Physique et Chimie des Matériaux de Strasbourg, BP 43, 67034, Strasbourg, France
| | - Alec P LaGrow
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - Liudmyla Storozhuk
- Biophysics group, Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK.
| | - Francis Perton
- Institut de Physique et Chimie des Matériaux de Strasbourg, BP 43, 67034, Strasbourg, France
| | - Sylvie Begin
- Institut de Physique et Chimie des Matériaux de Strasbourg, BP 43, 67034, Strasbourg, France
| | - Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg, BP 43, 67034, Strasbourg, France
| | - Nguyen Thi Kim Thanh
- Biophysics group, Department of Physics and Astronomy, University College London, London, WC1E 6BT, UK. and UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London, W1S 4BS, UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.
| |
Collapse
|
12
|
Monteserín M, Larumbe S, Martínez AV, Burgui S, Francisco Martín L. Recent Advances in the Development of Magnetic Nanoparticles for Biomedical Applications. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2705-2741. [PMID: 33653440 DOI: 10.1166/jnn.2021.19062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The unique properties of magnetic nanoparticles have led them to be considered materials with significant potential in the biomedical field. Nanometric size, high surface-area ratio, ability to function at molecular level, exceptional magnetic and physicochemical properties, and more importantly, the relatively easy tailoring of all these properties to the specific requirements of the different biomedical applications, are some of the key factors of their success. In this paper, we will provide an overview of the state of the art of different aspects of magnetic nanoparticles, specially focusing on their use in biomedicine. We will explore their magnetic properties, synthetic methods and surface modifications, as well as their most significative physicochemical properties and their impact on the in vivo behaviour of these particles. Furthermore, we will provide a background on different applications of magnetic nanoparticles in biomedicine, such as magnetic drug targeting, magnetic hyperthermia, imaging contrast agents or theranostics. Besides, current limitations and challenges of these materials, as well as their future prospects in the biomedical field will be discussed.
Collapse
Affiliation(s)
- Maria Monteserín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Silvia Larumbe
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Alejandro V Martínez
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Saioa Burgui
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - L Francisco Martín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| |
Collapse
|
13
|
da Silva FLF, Neto DMA, de Menezes FL, Sa IP, de Higuera JM, Fechine PBA, da Costa LS, Nogueira ARA, Lopes GS, Matos WO. Non-chromatographic arsenic speciation analyses in wild shrimp (Farfantepenaeus brasiliensis) using functionalized magnetic iron-nanoparticles. Food Chem 2020; 345:128781. [PMID: 33601653 DOI: 10.1016/j.foodchem.2020.128781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 11/26/2022]
Abstract
A new iron-magnetic nanomaterial functionalized with organophosphorus compound was used as solid-phase for arsenic speciation analysis in seafood samples by ICP-MS. The procedure was optimized using chemometric tools and the variables pH = 4.0, 15 min extraction time, and 20 mg of mass of material were obtained as the optimum point. The inorganic arsenic (iAs) extracted using nanoparticles presented concentrations between 20 and 100 µg kg-1 in the evaluated samples. The method was validated for accuracy using CRMs DOLT-5 and DORM-4. It was possible to reuse the same magnetic nanomaterial for 6 successive cycles, and we obtained a detection limit of 16.4 ng kg-1. The proposed method is suitable for the use of inorganic speciation of As, presenting good accuracy, precision, relatively low cost, and acquittance to green chemistry principles.
Collapse
Affiliation(s)
- Francisco L F da Silva
- Laboratório de Estudos em Química Aplicada (LEQA), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, CE, Brazil
| | - Davino M Andrade Neto
- Grupo de Química dos Materiais (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, CE, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE) - Campus Camocim, 62400-000 Camocim, CE, Brazil
| | - Fernando L de Menezes
- Grupo de Química dos Materiais (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, CE, Brazil
| | - Ivero P Sa
- Grupo de Análise Instrumental Aplicada (GAIA), Departamento de Química, Universidade Federal de São Carlos (UFSCar), PO Box 676, 13560-970 São Carlos, SP, Brazil; EMBRAPA Pecuária Sudeste, P.O. Box 339, 13560-970 São Carlos, SP, Brazil
| | - Julymar M de Higuera
- Grupo de Análise Instrumental Aplicada (GAIA), Departamento de Química, Universidade Federal de São Carlos (UFSCar), PO Box 676, 13560-970 São Carlos, SP, Brazil; EMBRAPA Pecuária Sudeste, P.O. Box 339, 13560-970 São Carlos, SP, Brazil
| | - Pierre B A Fechine
- Grupo de Química dos Materiais (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, CE, Brazil
| | - Luelc S da Costa
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Ana R A Nogueira
- EMBRAPA Pecuária Sudeste, P.O. Box 339, 13560-970 São Carlos, SP, Brazil
| | - Gisele S Lopes
- Laboratório de Estudos em Química Aplicada (LEQA), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, CE, Brazil
| | - Wladiana O Matos
- Laboratório de Estudos em Química Aplicada (LEQA), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, CE, Brazil.
| |
Collapse
|
14
|
Binary metallic sponges as an efficient electrocatalyst for alkaline water electrolysis. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2941-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
15
|
Lisjak D, Hribar Boštjančič P, Mertelj A, Mavrič A, Valant M, Kovač J, Hudelja H, Kocjan A, Makovec D. Formation of Fe(III)-phosphonate Coatings on Barium Hexaferrite Nanoplatelets for Porous Nanomagnets. ACS OMEGA 2020; 5:14086-14095. [PMID: 32566875 PMCID: PMC7301540 DOI: 10.1021/acsomega.0c01597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Amorphous coatings formed with mono-, di-, and tetra-phosphonic acids on barium hexaferrite (BHF) nanoplatelets using various synthesis conditions. The coatings, synthesized in water with di- or tetra-phosphonic acids, were thicker than that could be expected from the ligand size and the surface coverage, as determined by thermogravimetric analysis. Here, we propose a mechanism for coating formation based on direct evidence of the surface dissolution/precipitation of the BHF nanoplatelets. The partial dissolution of the nanoplatelets was observed with atomic-resolution scanning transmission electron microscopy, and the released Fe(III) ions were detected with energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy in amorphous coating. The strong chemical interaction between the surface Fe(III) ions with phosphonic ligands induces the dissolution of BHF nanoplatelets and the consequent precipitation of the Fe(III)-phosphonates that assemble into a porous coating. The so-obtained porous nanomagnets are highly responsive to a very weak magnetic field (in the order of Earth's magnetic field) at room temperature, which is a major advantage over the classic mesoporous nanomaterials and metal-organo-phosphonic frameworks with only a weak magnetic response at a few kelvins. The combination of porosity with the intrinsic magneto-crystalline anisotropy of BHF can be exploited, for example, as sorbents for heavy metals from contaminated water.
Collapse
Affiliation(s)
- Darja Lisjak
- Jožef
Stefan Institute, Jamova
39, 1000 Ljubljana, Slovenia
| | - Patricija Hribar Boštjančič
- Jožef
Stefan Institute, Jamova
39, 1000 Ljubljana, Slovenia
- Jožef
Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Alenka Mertelj
- Jožef
Stefan Institute, Jamova
39, 1000 Ljubljana, Slovenia
| | - Andraž Mavrič
- University
of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610054, China
| | - Matjaz Valant
- University
of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia
- Institute
of Fundamental and Frontier Sciences, University
of Electronic Science and Technology of China, Chengdu 610054, China
| | - Janez Kovač
- Jožef
Stefan Institute, Jamova
39, 1000 Ljubljana, Slovenia
| | - Hermina Hudelja
- Jožef
Stefan Institute, Jamova
39, 1000 Ljubljana, Slovenia
- Jožef
Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Andraž Kocjan
- Jožef
Stefan Institute, Jamova
39, 1000 Ljubljana, Slovenia
| | - Darko Makovec
- Jožef
Stefan Institute, Jamova
39, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Principles of Magnetic Hyperthermia: A Focus on Using Multifunctional Hybrid Magnetic Nanoparticles. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5040067] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperthermia is a noninvasive method that uses heat for cancer therapy where high temperatures have a damaging effect on tumor cells. However, large amounts of heat need to be delivered, which could have negative effects on healthy tissues. Thus, to minimize the negative side effects on healthy cells, a large amount of heat must be delivered only to the tumor cells. Magnetic hyperthermia (MH) uses magnetic nanoparticles particles (MNPs) that are exposed to alternating magnetic field (AMF) to generate heat in local regions (tissues or cells). This cancer therapy method has several advantages, such as (a) it is noninvasive, thus requiring surgery, and (b) it is local, and thus does not damage health cells. However, there are several issues that need to achieved: (a) the MNPs should be biocompatible, biodegradable, with good colloidal stability (b) the MNPs should be successfully delivered to the tumor cells, (c) the MNPs should be used with small amounts and thus MNPs with large heat generation capabilities are required, (d) the AMF used to heat the MNPs should meet safety conditions with limited frequency and amplitude ranges, (e) the changes of temperature should be traced at the cellular level with accurate and noninvasive techniques, (f) factors affecting heat transport from the MNPs to the cells must be understood, and (g) the effect of temperature on the biological mechanisms of cells should be clearly understood. Thus, in this multidisciplinary field, research is needed to investigate these issues. In this report, we shed some light on the principles of heat generation by MNPs in AMF, the limitations and challenges of MH, and the applications of MH using multifunctional hybrid MNPs.
Collapse
|
17
|
Cotin G, Blanco-Andujar C, Nguyen DV, Affolter C, Boutry S, Boos A, Ronot P, Uring-Lambert B, Choquet P, Zorn PE, Mertz D, Laurent S, Muller RN, Meyer F, Felder Flesch D, Begin-Colin S. Dendron based antifouling, MRI and magnetic hyperthermia properties of different shaped iron oxide nanoparticles. NANOTECHNOLOGY 2019; 30:374002. [PMID: 31195384 DOI: 10.1088/1361-6528/ab2998] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Owing to the great potential of iron oxide nanoparticles (NPs) for nanomedicine, large efforts have been made to better control their magnetic properties, especially their magnetic anisotropy to provide NPs able to combine imaging by MRI and therapy by magnetic hyperthermia. In that context, the design of anisotropic NPs appears as a very promising and efficient strategy. Furthermore, their bioactive coating also remains a challenge as it should provide colloidal stability, biocompatibility, furtivity along with good water diffusion for MRI. By taking advantage of our controlled synthesis method of iron oxide NPs with different shapes (cubic, spherical, octopod and nanoplate), we demonstrate here that the dendron coating, shown previously to be very suitable for 10 nm sized iron oxide, also provided very good colloidal, MRI and antifouling properties to the anisotropic shaped NPs. These antifouling properties, demonstrated through several experiments and characterizations, are very promising to achieve specific targeting of disease tissues without affecting healthy organs. On the other hand, the magnetic hyperthermia properties were shown to depend on the saturation magnetization and the ability of NPs to self-align, confirming the need of a balance between crystalline and dipolar magnetic anisotropies.
Collapse
Affiliation(s)
- G Cotin
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67034 Strasbourg, France. Labex CSC, Fondation IcFRC/université de Strasbourg, 8 allée Gaspard Monge BP 70028, F-67083 Strasbourg Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Casset A, Jouhannaud J, Garofalo A, Spiegelhalter C, Nguyen DV, Felder-Flesch D, Pourroy G, Pons F. Macrophage functionality and homeostasis in response to oligoethyleneglycol-coated IONPs: Impact of a dendritic architecture. Int J Pharm 2018; 556:287-300. [PMID: 30557682 DOI: 10.1016/j.ijpharm.2018.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 12/20/2022]
Abstract
The engineering of iron oxide nanoparticles (IONPs) for biomedical use has received great interest over the past decade. In the present study we investigated the biocompatibility of IONPs grafted with linear (2P) or generation 1 (2PG1) or 2 (2PG2) dendronized oligoethyleneglycol units in THP-1-derived macrophages. To evaluate IONP effects on cell functionality and homeostasis, mitochondrial function (MTT assay), membrane permeability (LDH release), inflammation (IL-8), oxidative stress (reduced glutathione, GSH), NLRP3 inflammasome activation (IL-1β) and nanoparticle cellular uptake (intracellular iron content) were quantified after a 4-h or 24-h cell exposure to increasing IONP concentrations (0-300 µg Fe/mL). IONPs coated with a linear molecule, NP10COP@2P, were highly taken up by cells and induced significant dose-dependent IL-8 release, oxidative stress and NLRP3 inflammasome activation. In comparison, IONPs coated with dendrons of generation 1 (NP10COP@2PG1) and 2 (NP10COP@2PG2) exhibited better biocompatibility. Effect of the dendritic architecture of the surface coating was investigated in a kinetic experiment involving cell short-term exposure (30 min or 1 h 30) to the two dendronized IONPs. NP10COP@2PG2 disrupted cellular homeostasis (LDH release, IL-1β and IL-8 secretion) to a greater extend than NP10COP@2PG1, which makes this last IONP the best candidate as MRI contrast or theranostic agent.
Collapse
Affiliation(s)
- Anne Casset
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France.
| | - Julien Jouhannaud
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux Strasbourg, UMR 7504, F-67000 Strasbourg, France
| | - Antonio Garofalo
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux Strasbourg, UMR 7504, F-67000 Strasbourg, France
| | - Coralie Spiegelhalter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, CNRS, Université de Strasbourg, F-67404 Illkirch, France
| | - Dinh-Vu Nguyen
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux Strasbourg, UMR 7504, F-67000 Strasbourg, France
| | - Delphine Felder-Flesch
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux Strasbourg, UMR 7504, F-67000 Strasbourg, France
| | - Geneviève Pourroy
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux Strasbourg, UMR 7504, F-67000 Strasbourg, France
| | - Françoise Pons
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France
| |
Collapse
|
19
|
Thomas G, Demoisson F, Boudon J, Millot N. Efficient functionalization of magnetite nanoparticles with phosphonate using a one-step continuous hydrothermal process. Dalton Trans 2018; 45:10821-9. [PMID: 27295502 DOI: 10.1039/c6dt01050d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For the first time, phosphonate-functionalized magnetite nanoparticles (Fe3O4 NPs) were synthesized using a one-step continuous hydrothermal process. The NP surface was modified using a hydrophilic organic molecule, namely 6-phosphonohexanoic acid (PHA). NPs were fully characterized (TEM, XRD, DLS, ζ-potential, TGA, FTIR, XPS and specific surface area measurements) in order to investigate PHA effect on size, oxidation state, anchoring and colloidal stability. PHA reduced the crystallite size and size distribution and improved greatly colloidal stability when compared with bare Fe3O4 NPs. Moreover, PHA was grafted on the NP surface according to three different conformations: as mononuclear monodendates, as binuclear bidentates or as lying-down complexes. This report is very promising regarding the stabilization and functionalization of Fe3O4 NPs by phosphonate molecules under continuous hydrothermal conditions. The post-grafting of polymers such as polyethylene glycol can be considered owing to the presence of free carboxyl groups (-COOH) on the surface of Fe3O4 NPs.
Collapse
Affiliation(s)
- Guillaume Thomas
- Laboratoire Interdisciplinaire Carnot de Bourgogne UMR 6303 CNRS-Université Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47870 F-21078 DIJON Cedex, France.
| | - Frédéric Demoisson
- Laboratoire Interdisciplinaire Carnot de Bourgogne UMR 6303 CNRS-Université Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47870 F-21078 DIJON Cedex, France.
| | - Julien Boudon
- Laboratoire Interdisciplinaire Carnot de Bourgogne UMR 6303 CNRS-Université Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47870 F-21078 DIJON Cedex, France.
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne UMR 6303 CNRS-Université Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47870 F-21078 DIJON Cedex, France.
| |
Collapse
|
20
|
Bordeianu C, Parat A, Piant S, Walter A, Zbaraszczuk-Affolter C, Meyer F, Begin-Colin S, Boutry S, Muller RN, Jouberton E, Chezal JM, Labeille B, Cinotti E, Perrot JL, Miot-Noirault E, Laurent S, Felder-Flesch D. Evaluation of the Active Targeting of Melanin Granules after Intravenous Injection of Dendronized Nanoparticles. Mol Pharm 2018; 15:536-547. [PMID: 29298480 DOI: 10.1021/acs.molpharmaceut.7b00904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The biodistribution of dendronized iron oxides, NPs10@D1_DOTAGA and melanin-targeting NPs10@D1_ICF_DOTAGA, was studied in vivo using magnetic resonance imaging (MRI) and planar scintigraphy through [177Lu]Lu-radiolabeling. MRI experiments showed high contrast power of both dendronized nanoparticles (DPs) and hepatobiliary and urinary excretions. Little tumor uptake could be highlighted after intravenous injection probably as a consequence of the negatively charged DOTAGA-derivatized shell, which reduces the diffusion across the cells' membrane. Planar scintigraphy images demonstrated a moderate specific tumor uptake of melanoma-targeted [177Lu]Lu-NPs10@D1_ICF_DOTAGA at 2 h post-intravenous injection (pi), and the highest tumor uptake of the control probe [177Lu]Lu-NPs10@D1_DOTAGA at 30 min pi, probably due to the enhanced permeability and retention effect. In addition, ex vivo confocal microscopy studies showed a high specific targeting of human melanoma samples impregnated with NPs10@D1_ICF_Alexa647_ DOTAGA.
Collapse
Affiliation(s)
- C Bordeianu
- Université de Strasbourg , CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.,Fondation IcFRC/Université de Strasbourg , 8 allée Gaspard Monge BP 70028, F-67083 Strasbourg Cedex, France
| | - A Parat
- Université de Strasbourg , CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.,Fondation IcFRC/Université de Strasbourg , 8 allée Gaspard Monge BP 70028, F-67083 Strasbourg Cedex, France
| | - S Piant
- Université de Strasbourg , CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.,Fondation IcFRC/Université de Strasbourg , 8 allée Gaspard Monge BP 70028, F-67083 Strasbourg Cedex, France
| | - A Walter
- Université de Strasbourg , CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.,Fondation IcFRC/Université de Strasbourg , 8 allée Gaspard Monge BP 70028, F-67083 Strasbourg Cedex, France
| | - C Zbaraszczuk-Affolter
- Université de Strasbourg , INSERM, UMR 1121 Biomatériaux et Bioingénierie, 11 rue Humann F-67000 Strasbourg, France
| | - F Meyer
- Université de Strasbourg , INSERM, UMR 1121 Biomatériaux et Bioingénierie, 11 rue Humann F-67000 Strasbourg, France
| | - S Begin-Colin
- Université de Strasbourg , CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.,Fondation IcFRC/Université de Strasbourg , 8 allée Gaspard Monge BP 70028, F-67083 Strasbourg Cedex, France
| | - S Boutry
- University of Mons , General, Organic and Biomedical Chemistry NMR and Molecular Imaging Laboratory, Avenue Maistriau 19, 7000 Mons, Belgium.,CMMI - Center for Microscopy and Molecular Imaging, MRI & Optical Imaging , Rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| | - R N Muller
- University of Mons , General, Organic and Biomedical Chemistry NMR and Molecular Imaging Laboratory, Avenue Maistriau 19, 7000 Mons, Belgium.,CMMI - Center for Microscopy and Molecular Imaging, MRI & Optical Imaging , Rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| | - E Jouberton
- Clermont Université, Université d'Auvergne , Laboratoire d'Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,INSERM, U1240 , F-63005 Clermont-Ferrand, France
| | - J-M Chezal
- Clermont Université, Université d'Auvergne , Laboratoire d'Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,INSERM, U1240 , F-63005 Clermont-Ferrand, France
| | - B Labeille
- CHU , Département de Dermatologie, F-42000 St. Etienne, France
| | - E Cinotti
- Department of Medical, Surgical and Neurological Science, Dermatology Section, University of Siena , S. Maria alle Scotte Hospital, F-53100 Siena, Italy
| | - J-L Perrot
- CHU , Département de Dermatologie, F-42000 St. Etienne, France
| | - E Miot-Noirault
- Clermont Université, Université d'Auvergne , Laboratoire d'Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,INSERM, U1240 , F-63005 Clermont-Ferrand, France
| | - S Laurent
- University of Mons , General, Organic and Biomedical Chemistry NMR and Molecular Imaging Laboratory, Avenue Maistriau 19, 7000 Mons, Belgium.,CMMI - Center for Microscopy and Molecular Imaging, MRI & Optical Imaging , Rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| | - D Felder-Flesch
- Université de Strasbourg , CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France.,Fondation IcFRC/Université de Strasbourg , 8 allée Gaspard Monge BP 70028, F-67083 Strasbourg Cedex, France
| |
Collapse
|
21
|
Nedyalkova M, Donkova B, Romanova J, Tzvetkov G, Madurga S, Simeonov V. Iron oxide nanoparticles - In vivo/in vitro biomedical applications and in silico studies. Adv Colloid Interface Sci 2017; 249:192-212. [PMID: 28499604 DOI: 10.1016/j.cis.2017.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022]
Abstract
The review presents a broad overview of the biomedical applications of surface functionalized iron oxide nanoparticles (IONPs) as magnetic resonance imaging (MRI) agents for sensitive and precise diagnosis tool and synergistic combination with other imaging modalities. Then, the recent progress in therapeutic applications, such as hyperthermia is discussed and the available toxicity data of magnetic nanoparticles concerning in vitro and in vivo biomedical applications are addressed. This review also presents the available computer models using molecular dynamics (MD), Monte Carlo (MC) and density functional theory (DFT), as a basis for a complete understanding of the behaviour and morphology of functionalized IONPs, for improving NPs surface design and expanding the potential applications in nanomedicine.
Collapse
Affiliation(s)
- Miroslava Nedyalkova
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski". J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria.
| | - Borjana Donkova
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski". J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria
| | - Julia Romanova
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski". J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria
| | - George Tzvetkov
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski". J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria
| | - Sergio Madurga
- Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB) of Barcelona University (UB), C/Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain
| | - Vasil Simeonov
- Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski". J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria
| |
Collapse
|
22
|
Zhai H, Gao T, Qi T, Zhang Y, Zeng G, Xiao D. Iron-Cobalt Phosphomolybdate with High Electrocatalytic Activity for Oxygen Evolution Reaction. Chem Asian J 2017; 12:2694-2702. [DOI: 10.1002/asia.201700905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/10/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Haoying Zhai
- College of Chemistry and Chemical Engineering; Neijiang Normal University; 705 Dongtong Road Neijiang 641112 P.R. China
| | - Taotao Gao
- College of Chemical Engineering; Sichuan University; 29 Wangjiang Road Chengdu 610064 P.R. China
| | - Ting Qi
- College of Chemical Engineering; Sichuan University; 29 Wangjiang Road Chengdu 610064 P.R. China
| | - Yajie Zhang
- College of Chemistry; Sichuan University; 29 Wangjiang Road Chengdu 610064 P.R. China
| | - Guangfeng Zeng
- College of Chemistry; Sichuan University; 29 Wangjiang Road Chengdu 610064 P.R. China
| | - Dan Xiao
- College of Chemical Engineering; Sichuan University; 29 Wangjiang Road Chengdu 610064 P.R. China
- College of Chemistry; Sichuan University; 29 Wangjiang Road Chengdu 610064 P.R. China
| |
Collapse
|
23
|
Tuning Properties of Iron Oxide Nanoparticles in Aqueous Synthesis without Ligands to Improve MRI Relaxivity and SAR. NANOMATERIALS 2017; 7:nano7080225. [PMID: 28820442 PMCID: PMC5575707 DOI: 10.3390/nano7080225] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/29/2023]
Abstract
Aqueous synthesis without ligands of iron oxide nanoparticles (IONPs) with exceptional properties still remains an open issue, because of the challenge to control simultaneously numerous properties of the IONPs in these rigorous settings. To solve this, it is necessary to correlate the synthesis process with their properties, but this correlation is until now not well understood. Here, we study and correlate the structure, crystallinity, morphology, as well as magnetic, relaxometric and heating properties of IONPs obtained for different durations of the hydrothermal treatment that correspond to the different growth stages of IONPs upon initial co-precipitation in aqueous environment without ligands. We find that their properties were different for IONPs with comparable diameters. Specifically, by controlling the growth of IONPs from primary to secondary particles firstly by colloidal and then also by magnetic interactions, we control their crystallinity from monocrystalline to polycrystalline IONPs, respectively. Surface energy minimization in the aqueous environment along with low temperature treatment is used to favor nearly defect-free IONPs featuring superior properties, such as high saturation magnetization, magnetic volume, surface crystallinity, the transversal magnetic resonance imaging (MRI) relaxivity (up to r2 = 1189 mM−1·s−1 and r2/r1 = 195) and specific absorption rate, SAR (up to 1225.1 W·gFe−1).
Collapse
|
24
|
Walter A, Garofalo A, Bonazza P, Meyer F, Martinez H, Fleutot S, Billotey C, Taleb J, Felder-Flesch D, Begin-Colin S. Effect of the Functionalization Process on the Colloidal, Magnetic Resonance Imaging, and Bioelimination Properties of Mono- or Bisphosphonate-Anchored Dendronized Iron Oxide Nanoparticles. Chempluschem 2017; 82:647-659. [DOI: 10.1002/cplu.201700049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/27/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Aurélie Walter
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS; Université de Strasbourg; 23, rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| | - Antonio Garofalo
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS; Université de Strasbourg; 23, rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| | - Pauline Bonazza
- Université de Lyon; Université Jean Monnet; Equipe Mixte de Recherche 3738 “Ciblage Thérapeutique en Oncologie”, Bâtiment 10- Locaux IMTHERNAT, Hôpital Edouard Herriot, 5 place d'Arsonval; 69437 Lyon cedex 03 France
| | - Florent Meyer
- Université de Strasbourg, Inserm UMR 1121 Biomatériaux et Bioingénierie); Université de Strasbourg; 11, rue Humann 67000 Strasbourg Cedex France
| | - Hervé Martinez
- IPREM-UMR CNRS 5254; Université de Pau et des Pays de l'Adour; Hélioparc Pau-Pyrénées, 2 Av du Président Angot 64053 Pau Cedex 9 France
| | - Solenne Fleutot
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS; Université de Strasbourg; 23, rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| | - Claire Billotey
- Université de Lyon; Université Jean Monnet; Equipe Mixte de Recherche 3738 “Ciblage Thérapeutique en Oncologie”, Bâtiment 10- Locaux IMTHERNAT, Hôpital Edouard Herriot, 5 place d'Arsonval; 69437 Lyon cedex 03 France
| | - Jacqueline Taleb
- Université de Lyon; Université Jean Monnet; Equipe Mixte de Recherche 3738 “Ciblage Thérapeutique en Oncologie”, Bâtiment 10- Locaux IMTHERNAT, Hôpital Edouard Herriot, 5 place d'Arsonval; 69437 Lyon cedex 03 France
| | - Delphine Felder-Flesch
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS; Université de Strasbourg; 23, rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| | - Sylvie Begin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS; Université de Strasbourg; 23, rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| |
Collapse
|
25
|
Richard S, Boucher M, Saric A, Herbet A, Lalatonne Y, Petit PX, Mériaux S, Boquet D, Motte L. Optimization of pegylated iron oxide nanoplatforms for antibody coupling and bio-targeting. J Mater Chem B 2017; 5:2896-2907. [PMID: 32263983 DOI: 10.1039/c6tb03080g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PEGylation has been established as a valuable strategy to minimize nanoparticle clearance by the reticulo-endothelial system due to hydrophilicity and steric repulsion of PEG chains. In this study we functionalized superparamagnetic iron oxide nanoparticle surface with two PEG differing in their length (n = 23 and 44) and terminal functionality, COOH and CH3. By varying the ratio of the two different PEG, we optimized the molecular architecture of the nanoplatform to obtain maximum stability and low toxicity under physiological conditions. The best nanoplatform was evaluated as MRI contrast for mouse brain vascularization imaging at 7 T. The carboxylic acid functions of the nanoplatform were used to covalently bind an antibody, Ab. This antibody, labeled with a fluorophore, targets the ETA receptor, a G-protein-coupled receptor involved in the endothelin axis and overexpressed in various solid tumours, including ovarian, prostate, colon, breast, bladder and lung cancers. In vitro studies, performed by flow cytometry and magnetic quantification, showed the targeting efficiency of the Ab-nanoplatforms. Clearly, an imaging tracer for cancer diagnosis from a bimodal contrast agent (fluorescence and MRI) was thus obtained.
Collapse
Affiliation(s)
- S Richard
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, 75205 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mertz D, Sandre O, Bégin-Colin S. Drug releasing nanoplatforms activated by alternating magnetic fields. Biochim Biophys Acta Gen Subj 2017; 1861:1617-1641. [PMID: 28238734 DOI: 10.1016/j.bbagen.2017.02.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 02/05/2023]
Abstract
The use of an alternating magnetic field (AMF) to generate non-invasively and spatially a localized heating from a magnetic nano-mediator has become very popular these last years to develop magnetic hyperthermia (MH) as a promising therapeutic modality already used in the clinics. AMF has become highly attractive this last decade over others radiations, as AMF allows a deeper penetration in the body and a less harmful ionizing effect. In addition to pure MH which induces tumor cell death through local T elevation, this AMF-generated magneto-thermal effect can also be exploited as a relevant external stimulus to trigger a drug release from drug-loaded magnetic nanocarriers, temporally and spatially. This review article is focused especially on this concept of AMF induced drug release, possibly combined with MH. The design of such magnetically responsive drug delivery nanoplatforms requires two key and complementary components: a magnetic mediator which collects and turns the magnetic energy into local heat, and a thermoresponsive carrier ensuring thermo-induced drug release, as a consequence of magnetic stimulus. A wide panel of magnetic nanomaterials/chemistries and processes are currently developed to achieve such nanoplatforms. This review article presents a broad overview about the fundamental concepts of drug releasing nanoplatforms activated by AMF, their formulations, and their efficiency in vitro and in vivo. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.
Collapse
Affiliation(s)
- Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23, rue du Loess, 67034 Strasbourg, France.
| | - Olivier Sandre
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607, Cedex, France
| | - Sylvie Bégin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23, rue du Loess, 67034 Strasbourg, France
| |
Collapse
|
27
|
Weng Y, Wang T, Qiu S, Wang C, Ma L, Zhang Q, Chen L, Li Y, Sun F, Zhang Q. Aqueous-Phase Hydrodeoxygenation of Biomass Sugar Alcohol into Renewable Alkanes over a Carbon-Supported Ruthenium with Phosphoric Acid Catalytic System. ChemCatChem 2017. [DOI: 10.1002/cctc.201601470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yujing Weng
- Key Laboratory of Renewable Energy; Guangdong Provincial Key Laboratory of New and Renewable Energy, Research and Development; Guangzhou Institute of Energy Conversion; Chinese Academy of Sciences; Nengyuan Road No.2 Guangzhou 510640 China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Tiejun Wang
- Key Laboratory of Renewable Energy; Guangdong Provincial Key Laboratory of New and Renewable Energy, Research and Development; Guangzhou Institute of Energy Conversion; Chinese Academy of Sciences; Nengyuan Road No.2 Guangzhou 510640 China
| | - Songbai Qiu
- Key Laboratory of Renewable Energy; Guangdong Provincial Key Laboratory of New and Renewable Energy, Research and Development; Guangzhou Institute of Energy Conversion; Chinese Academy of Sciences; Nengyuan Road No.2 Guangzhou 510640 China
| | - Chenguang Wang
- Key Laboratory of Renewable Energy; Guangdong Provincial Key Laboratory of New and Renewable Energy, Research and Development; Guangzhou Institute of Energy Conversion; Chinese Academy of Sciences; Nengyuan Road No.2 Guangzhou 510640 China
| | - Longlong Ma
- Key Laboratory of Renewable Energy; Guangdong Provincial Key Laboratory of New and Renewable Energy, Research and Development; Guangzhou Institute of Energy Conversion; Chinese Academy of Sciences; Nengyuan Road No.2 Guangzhou 510640 China
| | - Qi Zhang
- Key Laboratory of Renewable Energy; Guangdong Provincial Key Laboratory of New and Renewable Energy, Research and Development; Guangzhou Institute of Energy Conversion; Chinese Academy of Sciences; Nengyuan Road No.2 Guangzhou 510640 China
| | - Lungang Chen
- Key Laboratory of Renewable Energy; Guangdong Provincial Key Laboratory of New and Renewable Energy, Research and Development; Guangzhou Institute of Energy Conversion; Chinese Academy of Sciences; Nengyuan Road No.2 Guangzhou 510640 China
| | - Yuping Li
- Key Laboratory of Renewable Energy; Guangdong Provincial Key Laboratory of New and Renewable Energy, Research and Development; Guangzhou Institute of Energy Conversion; Chinese Academy of Sciences; Nengyuan Road No.2 Guangzhou 510640 China
| | - Fei Sun
- Key Laboratory of Renewable Energy; Guangdong Provincial Key Laboratory of New and Renewable Energy, Research and Development; Guangzhou Institute of Energy Conversion; Chinese Academy of Sciences; Nengyuan Road No.2 Guangzhou 510640 China
| | - Qian Zhang
- Key Laboratory of Renewable Energy; Guangdong Provincial Key Laboratory of New and Renewable Energy, Research and Development; Guangzhou Institute of Energy Conversion; Chinese Academy of Sciences; Nengyuan Road No.2 Guangzhou 510640 China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
28
|
Anantharaj S, Reddy PN, Kundu S. Core-Oxidized Amorphous Cobalt Phosphide Nanostructures: An Advanced and Highly Efficient Oxygen Evolution Catalyst. Inorg Chem 2017; 56:1742-1756. [DOI: 10.1021/acs.inorgchem.6b02929] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Sengeni Anantharaj
- Academy of Scientific
and Innovative Research, CSIR-Central Electrochemical Research Institute (CECRI) Campus, New Delhi, India
- Electrochemical Materials
Science (ECMS) Division, CSIR-CECRI, Karaikudi 630006, Tamil Nadu, India
| | | | - Subrata Kundu
- Academy of Scientific
and Innovative Research, CSIR-Central Electrochemical Research Institute (CECRI) Campus, New Delhi, India
- Electrochemical Materials
Science (ECMS) Division, CSIR-CECRI, Karaikudi 630006, Tamil Nadu, India
- Department of Materials Science and Mechanical Engineering, Texas A&M University, College Station, Texas, Texas 77843, United States
| |
Collapse
|
29
|
Bordeianu C, Parat A, Affolter-Zbaraszczuk C, Muller RN, Boutry S, Begin-Colin S, Meyer F, Laurent S, Felder-Flesch D. How a grafting anchor tailors the cellular uptake and in vivo fate of dendronized iron oxide nanoparticles. J Mater Chem B 2017; 5:5152-5164. [DOI: 10.1039/c7tb00781g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Superparamagnetic iron oxide nanoparticles synthesized by thermal decomposition have been grafted with two dendrons bearing respectively a monophosphonic anchor (D2) or a biphosphonic tweezer (D2-2P) at their focal point.
Collapse
Affiliation(s)
- C. Bordeianu
- Université de Strasbourg
- CNRS
- Institut de Physique et Chimie des Matériaux de Strasbourg
- F-67000 Strasbourg
- France
| | - A. Parat
- Université de Strasbourg
- CNRS
- Institut de Physique et Chimie des Matériaux de Strasbourg
- F-67000 Strasbourg
- France
| | | | - R. N. Muller
- University of Mons
- General
- Organic and Biomedical Chemistry NMR and Molecular Imaging Laboratory
- 7000 Mons
- Belgium
| | - S. Boutry
- University of Mons
- General
- Organic and Biomedical Chemistry NMR and Molecular Imaging Laboratory
- 7000 Mons
- Belgium
| | - S. Begin-Colin
- Université de Strasbourg
- CNRS
- Institut de Physique et Chimie des Matériaux de Strasbourg
- F-67000 Strasbourg
- France
| | - F. Meyer
- Université de Strasbourg
- INSERM
- UMR 1121 Biomatériaux et Bioingénierie
- 67000 Strasbourg
- France
| | - S. Laurent
- University of Mons
- General
- Organic and Biomedical Chemistry NMR and Molecular Imaging Laboratory
- 7000 Mons
- Belgium
| | - D. Felder-Flesch
- Université de Strasbourg
- CNRS
- Institut de Physique et Chimie des Matériaux de Strasbourg
- F-67000 Strasbourg
- France
| |
Collapse
|
30
|
Gharbi K, Salles F, Mathieu P, Amiens C, Collière V, Coppel Y, Philippot K, Fontaine L, Montembault V, Smiri LS, Ciuculescu-Pradines D. Alkyl phosphonic acid-based ligands as tools for converting hydrophobic iron nanoparticles into water soluble iron–iron oxide core–shell nanoparticles. NEW J CHEM 2017. [DOI: 10.1039/c7nj02482g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transfer of Fe nanoparticles into water using phosphonates.
Collapse
|
31
|
Sun W, Mignani S, Shen M, Shi X. Dendrimer-based magnetic iron oxide nanoparticles: their synthesis and biomedical applications. Drug Discov Today 2016; 21:1873-1885. [DOI: 10.1016/j.drudis.2016.06.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/26/2016] [Accepted: 06/28/2016] [Indexed: 01/10/2023]
|
32
|
Lam T, Avti PK, Pouliot P, Tardif JC, Rhéaume É, Lesage F, Kakkar A. Surface engineering of SPIONs: role of phosphonate ligand multivalency in tailoring their efficacy. NANOTECHNOLOGY 2016; 27:415602. [PMID: 27608753 DOI: 10.1088/0957-4484/27/41/415602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report the design of scaffolds containing mono-, bis-, and tris-phosphonate coordinating groups, and a polyethylene glycol chain, for stabilizing superparamagnetic iron oxide nanoparticles (SPIONs), using simple and versatile chemistry. We demonstrate that the number of anchoring phosphonate sites on the ligand influence the colloidal stability, magnetic and biological properties of SPIONs, and the latter do not solely depend on attaching moieties that can enhance their aqueous dispersion. These parameters can be tailored by the number of conjugation sites on the ligand, as evidenced from dynamic light scattering at various salt concentrations, magnetic relaxivities and cell viability studies.
Collapse
Affiliation(s)
- Tina Lam
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Pramod K Avti
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
- Department of Electrical Engineering, Ecole Polytechnique de Montreal, C.P. 6079 succ. Centre-Ville, Montreal, Quebec H3C 3A7, Canada
- Research Centre, Montreal Heart Institute, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
| | - Philippe Pouliot
- Department of Electrical Engineering, Ecole Polytechnique de Montreal, C.P. 6079 succ. Centre-Ville, Montreal, Quebec H3C 3A7, Canada
| | - Jean-Claude Tardif
- Research Centre, Montreal Heart Institute, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
- Department of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Éric Rhéaume
- Research Centre, Montreal Heart Institute, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
- Department of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Frederic Lesage
- Department of Electrical Engineering, Ecole Polytechnique de Montreal, C.P. 6079 succ. Centre-Ville, Montreal, Quebec H3C 3A7, Canada
- Research Centre, Montreal Heart Institute, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
33
|
Preparation of core/shell NaYF 4 :Yb,Tm@dendrons nanoparticles with enhanced upconversion luminescence for in vivo imaging. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2107-2113. [DOI: 10.1016/j.nano.2016.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 11/24/2022]
|
34
|
Blanco-Andujar C, Walter A, Cotin G, Bordeianu C, Mertz D, Felder-Flesch D, Begin-Colin S. Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine (Lond) 2016; 11:1889-910. [DOI: 10.2217/nnm-2016-5001] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Iron oxide nanoparticles are widely used for biological applications thanks to their outstanding balance between magnetic properties, surface-to-volume ratio suitable for efficient functionalization and proven biocompatibility. Their development for MRI or magnetic particle hyperthermia concentrates much of the attention as these nanomaterials are already used within the health system as contrast agents and heating mediators. As such, the constant improvement and development for better and more reliable materials is of key importance. On this basis, this review aims to cover the rational design of iron oxide nanoparticles to be used as MRI contrast agents or heating mediators in magnetic hyperthermia, and reviews the state of the art of their use as nanomedicine tools.
Collapse
Affiliation(s)
- Cristina Blanco-Andujar
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France
| | - Aurelie Walter
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France
| | - Geoffrey Cotin
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France
| | - Catalina Bordeianu
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France
| | - Damien Mertz
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France
| | - Delphine Felder-Flesch
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France
| | - Sylvie Begin-Colin
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG cedex 2, France
| |
Collapse
|
35
|
Lam T, Avti PK, Pouliot P, Tardif JC, Rhéaume É, Lesage F, Kakkar A. Magnetic resonance imaging/fluorescence dual modality protocol using designed phosphonate ligands coupled to superparamagnetic iron oxide nanoparticles. J Mater Chem B 2016; 4:3969-3981. [PMID: 32263096 DOI: 10.1039/c6tb00821f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A simple and versatile methodology to tailor the surface of superparamagnetic iron oxide nanoparticles (SPIONs), and render additional fluorescence capability to these contrast agents, is reported. The dual modality imaging protocol was developed by designing multi-functional scaffolds with a combination of orthogonal moieties for aqueous dispersion and stealth, to covalently link them to SPIONs, and carry out post-functionalization of nanoparticles. SPIONs stabilized with ligands incorporating surface-anchoring phosphonate groups, ethylene glycol backbone for aqueous dispersion, and free surface exposed OH moieties were coupled to near-infrared dye Cy5.5A. Our results demonstrate that design of multi-tasking ligands with desired combination and spatial distribution of functions provides an ideal platform to construct highly efficient dual imaging probes with balanced magnetic, optical and cell viability properties.
Collapse
Affiliation(s)
- Tina Lam
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada.
| | | | | | | | | | | | | |
Collapse
|
36
|
Dolci S, Domenici V, Vidili G, Orecchioni M, Bandiera P, Madeddu R, Farace C, Peana M, Tiné MR, Manetti R, Sgarrella F, Delogu LG. Immune compatible cystine-functionalized superparamagnetic iron oxide nanoparticles as vascular contrast agents in ultrasonography. RSC Adv 2016. [DOI: 10.1039/c5ra19652c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been investigated for biomedical applications.
Collapse
Affiliation(s)
- Sara Dolci
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- 56124 Pisa
- Italy
| | - Valentina Domenici
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- 56124 Pisa
- Italy
| | - Gianpaolo Vidili
- Department of Clinical and Experimental Medicine
- University of Sassari
- 07100 Sassari
- Italy
| | - Marco Orecchioni
- Department of Chemistry and Pharmacy
- University of Sassari
- 07100 Sassari
- Italy
| | - Pasquale Bandiera
- Department of Biomedical Sciences
- University of Sassari
- 07100 Sassari
- Italy
| | - Roberto Madeddu
- Department of Biomedical Sciences
- University of Sassari
- 07100 Sassari
- Italy
| | - Cristiano Farace
- Department of Biomedical Sciences
- University of Sassari
- 07100 Sassari
- Italy
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy
- University of Sassari
- 07100 Sassari
- Italy
| | - Maria Rosaria Tiné
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- 56124 Pisa
- Italy
| | - Roberto Manetti
- Department of Clinical and Experimental Medicine
- University of Sassari
- 07100 Sassari
- Italy
| | | | - Lucia Gemma Delogu
- Department of Chemistry and Pharmacy
- University of Sassari
- 07100 Sassari
- Italy
| |
Collapse
|
37
|
Pivetal J, Frénéa-Robin M, Haddour N, Vézy C, Zanini LF, Ciuta G, Dempsey NM, Dumas-Bouchiat F, Reyne G, Bégin-Colin S, Felder-Flesh D, Ghobril C, Pourroy G, Simonet P. Development and applications of a DNA labeling method with magnetic nanoparticles to study the role of horizontal gene transfer events between bacteria in soil pollutant bioremediation processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:20322-20327. [PMID: 26498963 DOI: 10.1007/s11356-015-5614-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Horizontal gene transfers are critical mechanisms of bacterial evolution and adaptation that are involved to a significant level in the degradation of toxic molecules such as xenobiotic pesticides. However, understanding how these mechanisms are regulated in situ and how they could be used by man to increase the degradation potential of soil microbes is compromised by conceptual and technical limitations. This includes the physical and chemical complexity and heterogeneity in such environments leading to an extreme bacterial taxonomical diversity and a strong redundancy of genes and functions. In addition, more than 99 % of soil bacteria fail to develop colonies in vitro, and even new DNA-based investigation methods (metagenomics) are not specific and sensitive enough to consider lysis recalcitrant bacteria and those belonging to the rare biosphere. The objective of the ANR funded project “Emergent” was to develop a new culture independent approach to monitor gene transfer among soil bacteria by labeling plasmid DNA with magnetic nanoparticles in order to specifically capture and isolate recombinant cells using magnetic microfluidic devices. We showed the feasibility of the approach by using electrotransformation to transform a suspension of Escherichia coli cells with biotin-functionalized plasmid DNA molecules linked to streptavidin-coated superparamagnetic nanoparticles. Our results have demonstrated that magnetically labeled cells could be specifically retained on micromagnets integrated in a microfluidic channel and that an efficient selective separation can be achieved with the microfluidic device. Altogether, the project offers a promising alternative to traditional culture-based approaches for deciphering the extent of horizontal gene transfer events mediated by electro or natural genetic transformation mechanisms in complex environments such as soil.
Collapse
|
38
|
Kandasamy G, Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm 2015; 496:191-218. [PMID: 26520409 DOI: 10.1016/j.ijpharm.2015.10.058] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/15/2022]
Abstract
Recently superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively used in cancer therapy and diagnosis (theranostics) via magnetic targeting, magnetic resonance imaging, etc. due to their remarkable magnetic properties, chemical stability, and biocompatibility. However, the magnetic properties of SPIONs are influenced by various physicochemical and synthesis parameters. So, this review mainly focuses on the influence of spin canting effects, introduced by the variations in size, shape, and organic/inorganic surface coatings, on the magnetic properties of SPIONs. This review also describes the several predominant chemical synthesis procedures and role of the synthesis parameters for monitoring the size, shape, crystallinity and composition of the SPIONs. Moreover, this review discusses about the latest developments of the inorganic materials and organic polymers for encapsulation of the SPIONs. Finally, the most recent advancements of the SPIONs and their nanopackages in combination with other imaging/therapeutic agents have been comprehensively discussed for their effective usage as in vitro and in vivo theranostic agents in cancer treatments.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Nanomaterials Lab, Department of Mechanical Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| | - Dipak Maity
- Nanomaterials Lab, Department of Mechanical Engineering, Shiv Nadar University, Uttar Pradesh 201314, India.
| |
Collapse
|
39
|
Brunetti V, Bouchet LM, Strumia MC. Nanoparticle-cored dendrimers: functional hybrid nanocomposites as a new platform for drug delivery systems. NANOSCALE 2015; 7:3808-3816. [PMID: 25566989 DOI: 10.1039/c4nr04438j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanoparticle-cored dendrimers (NCDs) are now offering themselves as versatile carriers because of their colloidal stability, tunable membrane properties and ability to encapsulate or integrate a broad range of drugs and molecules. This kind of hybrid nanocomposite aims to combine the advantages of stimuli-responsive dendritic coatings, in order to regulate the drug release behaviour under different conditions and improve the biocompatibility and in vivo half-time circulation of the inorganic nanoparticles. Size, surface chemistry and shape are key nanocarrier properties to evaluate. Here, we have reviewed the most recent advances of NCDs in drug delivery systems, compared their behaviour with non-dendritic stabilized nanoparticles and highlighted their challenges and promising applications in the future.
Collapse
Affiliation(s)
- V Brunetti
- Departamento de Fisicoquímica (INFIQC, CONICET-UNC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, (5016) Córdoba, Argentina
| | | | | |
Collapse
|
40
|
Parat A, Bordeianu C, Dib H, Garofalo A, Walter A, Bégin-Colin S, Felder-Flesch D. Dendrimer–nanoparticle conjugates in nanomedicine. Nanomedicine (Lond) 2015; 10:977-92. [DOI: 10.2217/nnm.14.196] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nanomedicine can take advantage of the recent developments in nanobiotechnology research areas for the creation of platforms with superior drug carrier capabilities, selective responsiveness to the environment, unique contrast enhancement profiles and improved accumulation at the disease site. Colloidal inorganic nanoparticles (NPs) have been attracting considerable interest in biomedicine, from drug and gene delivery to imaging, sensing and diagnostics. It is essential to modify the NPs surface to have enhanced biocompatibility and reach multifunctional systems for the in vitro and in vivo applications, especially in delivering drugs locally and recognizing overexpressed biomolecules. This paper describes the rational design for dendrimer–nanoparticle conjugates elaboration and reviews their state-of-the-art uses as efficient nanomedicine tools.
Collapse
Affiliation(s)
- Audrey Parat
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG CEDEX 2, France
| | - Catalina Bordeianu
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG CEDEX 2, France
| | - Hanna Dib
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG CEDEX 2, France
| | - Antonio Garofalo
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG CEDEX 2, France
| | - Aurélie Walter
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG CEDEX 2, France
| | - Sylvie Bégin-Colin
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG CEDEX 2, France
| | - Delphine Felder-Flesch
- Institut de Physique et de Chimie des Matériaux de Strasbourg IPCMS, UMR CNRS-UdS 7504, 23 rue du Loess, BP 43, 67034 STRASBOURG CEDEX 2, France
| |
Collapse
|
41
|
Walter A, Garofalo A, Parat A, Jouhannaud J, Pourroy G, Voirin E, Laurent S, Bonazza P, Taleb J, Billotey C, Vander Elst L, Muller RN, Begin-Colin S, Felder-Flesch D. Validation of a dendron concept to tune colloidal stability, MRI relaxivity and bioelimination of functional nanoparticles. J Mater Chem B 2015; 3:1484-1494. [DOI: 10.1039/c4tb01954g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A dendritic coating induces colloidal stability of nanoparticles through electrostatic and steric interactions.
Collapse
|
42
|
Maurizi L, Sakulkhu U, Gramoun A, Vallee JP, Hofmann H. A fast and reproducible method to quantify magnetic nanoparticle biodistribution. Analyst 2014; 139:1184-91. [PMID: 24448415 DOI: 10.1039/c3an02153j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The quantification of nanoparticles, particularly superparamagnetic iron oxide nanoparticles (SPIONs), both in vitro and in vivo has become highly important in recent years. Some methods, such as induced coupled plasma (ICP) spectroscopy and UV-visible chemical titration using Prussian Blue (PB), already exist however they consist of the titration of the whole iron content. These standard methods need sample preparations leading to their destruction and long measurement time. In this study, we used magnetic susceptibility measurements (MSM) to titrate the concentration and biodistribution of magnetic particles in the organs of rats. The advantages of the MSM SPION quantification technique are presented and compared to widely used methods of iron oxide titration such as ICP and PB UV-visible titration. We have demonstrated that MSM is a simpler, faster (1 second per measurement), more reproducible and highly sensitive technique for SPION detection with minimal detection around 2 μgFe mL(-1) without being influenced by neither the SPION coating nor their surrounding environment. Moreover, MSM is a more robust method as it is not affected by endogenous iron facilitating the distinction of SPIONs (iron present as nanoparticles) from background iron in tissues. This advantage allows the decrease of control samples needed in biological studies. In conclusion, we have demonstrated that MSM is a standard method that can be easily setup to determine the biodistribution of SPIONs regardless of their environment.
Collapse
Affiliation(s)
- Lionel Maurizi
- Powder Technology Laboratory, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
43
|
Aufaure R, Lalatonne Y, Lièvre N, Heintz O, Motte L, Guénin E. One pot microwave assisted synthesis of bisphosphonate alkene capped gold nanoparticles. RSC Adv 2014. [DOI: 10.1039/c4ra11847b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One pot microwave assisted synthesis of bisphosphonate alkene capped gold nanoparticles.
Collapse
Affiliation(s)
- Romain Aufaure
- Université Paris 13
- Sorbonne Paris Cité
- Laboratoire CSPBAT
- CNRS (UMR 7244)
- 93017 Bobigny, France
| | - Yoann Lalatonne
- Université Paris 13
- Sorbonne Paris Cité
- Laboratoire CSPBAT
- CNRS (UMR 7244)
- 93017 Bobigny, France
| | - Nicole Lièvre
- Université Paris 13
- Sorbonne Paris Cité
- UPRES 3410 Biothérapies Bénéfices et Risques
- CNRS (UMR 7244)
- 93017 Bobigny, France
| | - Olivier Heintz
- Université de Bourgogne
- Laboratoire Interdisciplinaire Carnot de Bourgogne
- CNRS (UMR 5209)
- 21078 Dijon Cedex, France
| | - Laurence Motte
- Université Paris 13
- Sorbonne Paris Cité
- Laboratoire CSPBAT
- CNRS (UMR 7244)
- 93017 Bobigny, France
| | - Erwann Guénin
- Université Paris 13
- Sorbonne Paris Cité
- Laboratoire CSPBAT
- CNRS (UMR 7244)
- 93017 Bobigny, France
| |
Collapse
|
44
|
Chevallier P, Walter A, Garofalo A, Veksler I, Lagueux J, Bégin-Colin S, Felder-Flesch D, Fortin MA. Tailored biological retention and efficient clearance of pegylated ultra-small MnO nanoparticles as positive MRI contrast agents for molecular imaging. J Mater Chem B 2014; 2:1779-1790. [DOI: 10.1039/c3tb21634a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ultra-small MnO nanoparticles pegylated with bis-phosphonate dendrons are efficient positive MRI contrast agents. They show prolonged vascular signal enhancement, followed by efficient excretion through the hepatobiliairy and urinary pathways. This considerably decreases the potential toxicity of MnO NPs.
Collapse
Affiliation(s)
- P. Chevallier
- Centre de recherche du Centre hospitalier universitaire de Québec (CR-CHUQ)
- Axe médecine régénératrice
- Québec, Canada
- Centre de recherche sur les matériaux avancés (CERMA)
- Université Laval
| | - A. Walter
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)
- UMR 7504 CNRS-Université de Strasbourg
- 67034 Strasbourg Cedex 2, France
| | - A. Garofalo
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)
- UMR 7504 CNRS-Université de Strasbourg
- 67034 Strasbourg Cedex 2, France
| | - I. Veksler
- Centre de recherche du Centre hospitalier universitaire de Québec (CR-CHUQ)
- Axe médecine régénératrice
- Québec, Canada
- Centre de recherche sur les matériaux avancés (CERMA)
- Université Laval
| | - J. Lagueux
- Centre de recherche du Centre hospitalier universitaire de Québec (CR-CHUQ)
- Service d’imagerie animale (SIA)
- Québec, Canada
| | - S. Bégin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)
- UMR 7504 CNRS-Université de Strasbourg
- 67034 Strasbourg Cedex 2, France
| | - D. Felder-Flesch
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)
- UMR 7504 CNRS-Université de Strasbourg
- 67034 Strasbourg Cedex 2, France
| | - M.-A. Fortin
- Centre de recherche du Centre hospitalier universitaire de Québec (CR-CHUQ)
- Axe médecine régénératrice
- Québec, Canada
- Centre de recherche sur les matériaux avancés (CERMA)
- Université Laval
| |
Collapse
|
45
|
Garofalo A, Parat A, Bordeianu C, Ghobril C, Kueny-Stotz M, Walter A, Jouhannaud J, Begin-Colin S, Felder-Flesch D. Efficient synthesis of small-sized phosphonated dendrons: potential organic coatings of iron oxide nanoparticles. NEW J CHEM 2014. [DOI: 10.1039/c4nj00654b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Tudisco C, Bertani F, Cambria MT, Sinatra F, Fantechi E, Innocenti C, Sangregorio C, Dalcanale E, Condorelli GG. Functionalization of PEGylated Fe3O4 magnetic nanoparticles with tetraphosphonate cavitand for biomedical application. NANOSCALE 2013; 5:11438-11446. [PMID: 24056724 DOI: 10.1039/c3nr02188b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this contribution, Fe3O4 magnetic nanoparticles (MNPs) have been functionalized with a tetraphosphonate cavitand receptor (Tiiii), capable of complexing N-monomethylated species with high selectivity, and polyethylene glycol (PEG) via click-chemistry. The grafting process is based on MNP pre-functionalization with a bifunctional phosphonic linker, 10-undecynylphosphonic acid, anchored on an iron surface through the phosphonic group. The Tiiii cavitand and the PEG modified with azide moieties have then been bonded to the resulting alkyne-functionalized MNPs through a "click" reaction. Each reaction step has been monitored by using X-ray photoelectron and FTIR spectroscopies. PEG and Tiiii functionalized MNPs have been able to load N-methyl ammonium salts such as the antitumor drug procarbazine hydrochloride and the neurotransmitter epinephrine hydrochloride and release them as free bases. In addition, the introduction of PEG moieties promoted biocompatibility of functionalized MNPs, thus allowing their use in biological environments.
Collapse
Affiliation(s)
- C Tudisco
- Dipartimento di Scienze Chimiche, Università di Catania and INSTM UdR di Catania, v.le A. Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ghobril C, Popa G, Parat A, Billotey C, Taleb J, Bonazza P, Begin-Colin S, Felder-Flesch D. A bisphosphonate tweezers and clickable PEGylated PAMAM dendrons for the preparation of functional iron oxide nanoparticles displaying renal and hepatobiliary elimination. Chem Commun (Camb) 2013; 49:9158-60. [DOI: 10.1039/c3cc43161d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|