1
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
2
|
Deng C, Xu J, Zhang Q, Fan Y. Phosphorescent iridium (III) complex with covalent organic frameworks as scaffolds for highly selective and sensitive detection of homocysteine. Front Chem 2024; 12:1399519. [PMID: 38899162 PMCID: PMC11186017 DOI: 10.3389/fchem.2024.1399519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction: Developing a convenient and cost-effective platform for detecting homocysteine (Hcy) is of great interest as Hcy has been found to be a biomarker for Alzheimer's disease, gastric cancer, and other diseases. Methods: In this study, we synthesized five phosphorescent Ir(C∧N)2(N∧N)+ compounds (Irn, n = 1-5) with various substituents (-CHO or -CHO/-NH2), which were then doped into a covalent organic framework (COF) host via covalent bonding. Results and Discussion: The resulting optimal composites (denoted as Ir4/5@EBCOF) with -CHO/-NH2 substituents not only overcame the self-quenching issue of the bare Ir4/5 complexes but also showed rapid, highly selective, and sensitive detection of Hcy, with a limit of detection (LOD) of 0.23 μM and reaction time of 88 s. The sensing mechanism was revealed as the unique cyclization reaction between Ir(III) and Hcy that forms a six-membered ring. During the process, the color changes in the composites can be observed visually. It is expected that these phosphorescent Iridium (III) complexes with COFs will have the potential to serve as promising platforms for detecting thiols.
Collapse
Affiliation(s)
- Chuti Deng
- Department of Chemistry, Fudan University, Shanghai, China
| | - Juntong Xu
- Shanghai RNA Cure Biopharma Co., Ltd., Shanghai, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, China
| | - Yong Fan
- Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Lee W, Yudhistira T, Youn W, Han S, Halle MB, Choi JH, Kim Y, Choi IS, Churchill DG. Inexpensive water soluble methyl methacrylate-functionalized hydroxyphthalimide: variations of the mycophenolic acid core for selective live cell imaging of free cysteine. Analyst 2021; 146:2212-2220. [PMID: 33595018 DOI: 10.1039/d0an02185g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evident from numerous studies, cysteine plays a crucial role in cellular function. Reactions with analyte also enables for molecular recognition to adhere to molecular therapeutic potential; integration between synthetic probes therefore allows for a potentially deep therapy-related interogation of biological systems (theranostics). The development of molecular cysteine probes with extremely accurate detection is still a key challenge for the field. The development of water-soluble organic molecular fluorescent probes able to efficiently distinguish common biothiols such as cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) by chemical recognition means i.e. by (binding, cleavage) in biological systems is a greatly sought research challenge due to the similarity of the small sulfhydryl-containing species. Herein, we have developed a water-soluble and highly cell viable fluorescent organic molecule (log P = 0.82) for the selective detection of cysteine. The probe (Myco-Cys) shows a "turn-on" response with the cleavage ester linkage of the methacrylate as cysteine is encountered in solution. The probe shows strong fluorescence enhancement (16.5-fold) when treated with Cys (1 equiv., 10 μM) compared to closely related species such as amino acids, including HCy/GSH, and the limit of detection was determined as 45.0 nM. DFT calculations helped confirm the photomechanism of Myco-Cys. Furthermore, the sensing ability of the probe was demonstrated by living cell assays through the use of confocal fluorescence microscopy. Myco-Cys could selectively detect cysteine among biothiols. Myco-Cys was able to monitor the cysteine level, apart from the oxidative stress present in the form of H2O2 in A549 cells.
Collapse
Affiliation(s)
- Woohyun Lee
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Yang M, Ma L, Li J, Kang L. Fluorescent probe for Cu 2+ and the secondary application of the resultant complex to detect cysteine. RSC Adv 2019; 9:16812-16818. [PMID: 35516383 PMCID: PMC9064411 DOI: 10.1039/c9ra02360g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/14/2019] [Indexed: 11/21/2022] Open
Abstract
A special fluorescent probe has been developed, one that demonstrated excellent "off-on-type" change in fluorescence with high selectivity toward Cu2+. Interestingly, the probe-Cu2+ complex could detect cysteine due to the ability of this amino acid to strongly coordinate Cu2+, and no obvious interference was observed from other amino acids and anions. According to the proposed mechanism, addition of cysteine induced decomplexation of the probe-Cu2+ form. Furthermore, the results of confocal microscopy experiments demonstrated the potential of using the probe to image Cu2+ in living cells and mice.
Collapse
Affiliation(s)
- Meipan Yang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University Xianyang 712082 China
- Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University Xianyang 712082 China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University Xianyang 712082 China
| | - Lifeng Ma
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University Xianyang 712082 China
- Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University Xianyang 712082 China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University Xianyang 712082 China
| | - Jing Li
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University Xianyang 712082 China
- Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University Xianyang 712082 China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University Xianyang 712082 China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University Xianyang 712082 China
- Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University Xianyang 712082 China
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University Xianyang 712082 China
| |
Collapse
|
5
|
Yang Y, Wang S, Wang C, Tian C, Shen Y, Zhu M. Engineered Targeted Hyaluronic Acid–Glutathione‐Stabilized Gold Nanoclusters/Graphene Oxide–5‐Fluorouracil as a Smart Theranostic Platform for Stimulus‐Controlled Fluorescence Imaging‐Assisted Synergetic Chemo/Phototherapy. Chem Asian J 2019; 14:1418-1423. [DOI: 10.1002/asia.201900153] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/03/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Ying Yang
- Institute of Physical Science and Information TechnologyAnhui University Hefei 230601 P.R. China
| | - Shuxin Wang
- College of Chemistry and Chemical EngineeringCollaborative innovation center of modern bio-manufactureAnhui University Hefei 230601 P.R. China
| | - Chen Wang
- College of Chemistry and Chemical EngineeringCollaborative innovation center of modern bio-manufactureAnhui University Hefei 230601 P.R. China
| | - Chen Tian
- College of Chemistry and Chemical EngineeringCollaborative innovation center of modern bio-manufactureAnhui University Hefei 230601 P.R. China
| | - Yuhua Shen
- College of Chemistry and Chemical EngineeringCollaborative innovation center of modern bio-manufactureAnhui University Hefei 230601 P.R. China
| | - Manzhou Zhu
- College of Chemistry and Chemical EngineeringCollaborative innovation center of modern bio-manufactureAnhui University Hefei 230601 P.R. China
| |
Collapse
|
6
|
Yip Y, Yan Z, Law G, Wong W. Reaction‐Based Europium Complex for Specific Detection of Cysteine Over Homocysteine and Glutathione with Variable‐Temperature Kinetic Studies. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuk‐Wang Yip
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen PR China
- State Key Laboratory of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| | - Zhiyuan Yan
- State Key Laboratory of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| | - Ga‐Lai Law
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen PR China
- State Key Laboratory of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| | - Wing‐Tak Wong
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen PR China
- State Key Laboratory of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| |
Collapse
|
7
|
Lan JS, Zeng RF, Liu Y, Xiang YW, Jiang XY, Liu L, Xie SS, Ding Y, Zhang T. A near-infrared Nile red fluorescent probe for the discrimination of biothiols by dual-channel response and its bioimaging applications in living cells and animals. Analyst 2019; 144:3676-3684. [DOI: 10.1039/c9an00280d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Biothiols, including cysteine (Cys), homocysteine (Hcy), glutathione (GSH) and H2S, play important roles in human physiological processes.
Collapse
Affiliation(s)
- Jin-Shuai Lan
- Experiment Center of Teaching & Learning
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Rui-Feng Zeng
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Yun Liu
- Experiment Center of Teaching & Learning
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Yan-Wei Xiang
- Headmaster's office
- Shanghai University of Traditional Chinese Medicine
- Shanghai
- China
| | - Xiao-yi Jiang
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Li Liu
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Sai-Sai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330006
- China
| | - Yue Ding
- Experiment Center of Teaching & Learning
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Tong Zhang
- Experiment Center of Teaching & Learning
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| |
Collapse
|
8
|
Rajaram R, Mathiyarasu J. An electrochemical sensor for homocysteine detection using gold nanoparticle incorporated reduced graphene oxide. Colloids Surf B Biointerfaces 2018; 170:109-114. [DOI: 10.1016/j.colsurfb.2018.05.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 11/28/2022]
|
9
|
Liu X, Yang T, Han Y, Zou L, Yang H, Jiang J, Liu S, Zhao Q, Huang W. In Situ Growth of CuS/SiO 2-Based Multifunctional Nanotherapeutic Agents for Combined Photodynamic/Photothermal Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31008-31018. [PMID: 30130088 DOI: 10.1021/acsami.8b10339] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A scalable and low-cost strategy is developed to fabricate a novel CuS/SiO2-based nanotherapeutic agent for dual-model imaging-guided photothermal/photodynamic combined therapy. In this design, mesoporous silica nanoparticles (MSNs) with CuS bundled in the channel are obtained in aqueous solution via in situ growth route for the first time. Furthermore, to achieve a more efficient therapy, photosensitizer (complex Ir-2) and bovine serum albumin are sequentially assembled via layer-by-layer method. The as-prepared complex Ir-2 presents a remarkably high 1O2 generation (ΦΔ = 1.3) under light illumination to offer effective photodynamic cell killing, and MSN/CuS exhibits high photothermal conversion efficiency (η = 31.7%) under illumination by 808 nm light to offer hyperthermia tumor ablation. In vitro and in vivo analyses show that the as-obtained nanotherapeutic agents exhibit excellent performance in tumor therapy even under irradiation with low power because of the high yield of 1O2 combined with the high photothermal conversion efficiency. Additionally, the nanotherapeutic agents are readily visualized in vivo via near-infrared fluorescence and thermal imaging. More importantly, based on the strategy of in situ growth and layer-by-layer assembly developed in this study, the development of other "all-in-one" multifunctional theranostic platform with high efficiency can be predictable.
Collapse
Affiliation(s)
- Xiangmei Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China
| | - Tianshe Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China
| | - Yifan Han
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China
| | - Liang Zou
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China
| | - Huiran Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China
| | - Jiayang Jiang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts and Telecommunications (NUPT) , Nanjing 210023 , P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , 127 West Youyi Road , Xi'an 710072 , Shaanxi , China
| |
Collapse
|
10
|
Chen Z, Yan P, Zou L, Zhao M, Jiang J, Liu S, Zhang KY, Huang W, Zhao Q. Using Ultrafast Responsive Phosphorescent Nanoprobe to Visualize Elevated Peroxynitrite In Vitro and In Vivo via Ratiometric and Time-Resolved Photoluminescence Imaging. Adv Healthc Mater 2018; 7:e1800309. [PMID: 29968378 DOI: 10.1002/adhm.201800309] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/08/2018] [Indexed: 12/13/2022]
Abstract
Peroxynitrite (ONOO- ), a potent biological oxidant, which has a short half-life in physiological conditions, is related to many diseases. Accurate peroxynitrite determination with superior selectivity and sensitivity is important for understanding biological roles of peroxynitrite in different health and disease tissues. Autofluorescence is an inevitable interference in luminescence biodetection and bioimaging, which often reduces signal-to-noise ratio during detection. In this work, a phosphorescent peroxynitrite nanoprobe (MSN-ONOO) which displays two emission bands is prepared by immobilizing two long-lived phosphorescent iridium(III) complexes that are peroxynitrite-activable and -inert, respectively, into water-dispersible mesoporous silica nanoparticles. Owing to the fast response rate, excellent sensitivity and outstanding selectivity of the nanoprobe toward peroxynitrite, it is further used for peroxynitrite determination in vitro and in vivo via ratiometric photoluminescence imaging. More notably, taking advantage of the long-lived phosphorescence of MSN-ONOO, in vivo elevated peroxynitrite is imaged with diminished autofluorescence interference and improved signal-to-noise ratio via time-resolved photoluminescence imaging. As far as it is known, this is the first time for endogenous peroxynitrite detection in vivo via the time-resolved photoluminescence imaging. Furthermore, the production of peroxynitrite in inflamed tissues is visualized.
Collapse
Affiliation(s)
- Zejing Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors; Institute of Advanced Materials (IAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P. R. China
| | - Peng Yan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors; Institute of Advanced Materials (IAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P. R. China
| | - Liang Zou
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors; Institute of Advanced Materials (IAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P. R. China
| | - Menglong Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors; Institute of Advanced Materials (IAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P. R. China
| | - Jiayang Jiang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors; Institute of Advanced Materials (IAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors; Institute of Advanced Materials (IAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P. R. China
| | - Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors; Institute of Advanced Materials (IAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors; Institute of Advanced Materials (IAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE); Northwestern Polytechnical University (NPU); Xi'an 710072 Shaanxi China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors; Institute of Advanced Materials (IAM); Nanjing University of Posts and Telecommunications (NUPT); Nanjing 210023 P. R. China
| |
Collapse
|
11
|
Jiang R, Liu N, Li F, Fu W, Zhou Y, Zhang Y. Novel PSMA-Coated On-Off-On Fluorescent Chemosensor Based on Organic Dots with AIEgens for Detection of Copper (II), Iron (III) and Cysteine. Polymers (Basel) 2018; 10:E786. [PMID: 30960711 PMCID: PMC6403782 DOI: 10.3390/polym10070786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/08/2018] [Accepted: 07/14/2018] [Indexed: 01/01/2023] Open
Abstract
Herein, a novel on-off-on fluorescent chemosensor for copper (II) ion (Cu2+), iron (III) ion (Fe3+) and cysteine is developed simply by the nano-precipitation method. The prepared organic dots with AIEgens (AIE dots) are advantageous over other metal ions in detecting Cu2+, Fe3+ with high selectivity and sensitivity by forming agglomerations (on-off). The agglomerations formed by AIE dots and Cu2+ redistributed and the fluorescence was obviously recovered in the presence of cysteine (off-on). This sensor has a wide linear range for Cu2+, Fe3+ and cysteine. The fluorescent detection limits of AIE dots are calculated to be 107 nM for Cu2+, 120 nM for Fe3+ and 78 nM for cysteine, respectively. These results indicate that the AIE dots can be used as a potential probe for Cu2+, Fe3+ and cysteine detection.
Collapse
Affiliation(s)
- Rui Jiang
- Chongqing Key Laboratory of Green Synthesis and Applications, and Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Na Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, and Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Fan Li
- Chongqing Key Laboratory of Green Synthesis and Applications, and Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Synthesis and Applications, and Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Yun Zhou
- Chongqing Key Laboratory of Green Synthesis and Applications, and Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Yan Zhang
- Chongqing Key Laboratory of Green Synthesis and Applications, and Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
12
|
Knoblauch R, Bui B, Raza A, Geddes CD. Heavy carbon nanodots: a new phosphorescent carbon nanostructure. Phys Chem Chem Phys 2018; 20:15518-15527. [PMID: 29808871 PMCID: PMC6013832 DOI: 10.1039/c8cp02675k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon nanodots are nanometer sized fluorescent particles studied for their distinct photoluminescent properties and biocompatibility. Although extensive literature reports the modification and application of carbon nanodot fluorescence, little has been published pertaining to phosphorescence emission from carbon nanodots. The use of phosphors in biological imaging can lead to clearer detection, as the long lifetimes of phosphorescent emission permit off-gated collection that avoids noise from biological autofluorescence. Carbon nanodots present a desirable scaffold for this application, with advantageous qualities ranging from photostability to multi-color emission. This research reports the generation of a novel phosphorescent "heavy carbon" nanodot via halogenation of the carbon nanodot structure. By employing a collection pathway that effectively incorporates bromine into the nanostructure, T1 triplet character is introduced, and subsequently phosphorescence is observed in liquid media at room temperature for the first time in the nanodot literature. Further experiments are reported characterizing the conditions of observed phosphorescence and its pH-dependence. Our approach for producing "heavy carbon nanodots" is a low-cost and relatively simple method for generating the phosphorescent nanodots, which sets the foundation for its potential future use as a phosphorescent probe in application.
Collapse
Affiliation(s)
- Rachael Knoblauch
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 701 East Pratt Street, Baltimore, Maryland 21202, USA.
| | | | | | | |
Collapse
|
13
|
Chen C, Zhou L, Liu W, Liu W. Coumarinocoumarin-Based Two-Photon Fluorescent Cysteine Biosensor for Targeting Lysosome. Anal Chem 2018; 90:6138-6143. [DOI: 10.1021/acs.analchem.8b00434] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chunyang Chen
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Liuqing Zhou
- Department of Otolaryngology Head and Neck Surgery, Ningxia People’s Hospital, Yinchuan 75002, People’s Republic of China
| | - Wei Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
14
|
Huo F, Zhang Y, Yin C. Recent Progress in Chemosensors Using Aldehyde-bearing Fluorophores for the Detection of Specific Analytes and their Bioimaging. Curr Med Chem 2018; 26:4003-4028. [PMID: 29345575 DOI: 10.2174/0929867325666180117095528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/16/2017] [Accepted: 09/21/2017] [Indexed: 11/22/2022]
Abstract
In recent years, aldehyde-appended fluorescence probes have attracted increasing attention. Fluorescent biological imaging includes many modern applications for cell and tissue imaging in biomedical research. Meanwhile, the nucleophilic mechanism is a very simple and convenient procedure for the preparation of aldehyde-sensing probes. This tutorial review focuses on aldehyde-bearing chemosensors based on nucleophilic addition mechanism with biological applications.
Collapse
Affiliation(s)
- Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, China
| | - Yaqiong Zhang
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, China
| |
Collapse
|
15
|
Shen Y, Zhang X, Zhang Y, Zhang C, Jin J, Li H. A new simple phthalimide-based fluorescent probe for highly selective cysteine and bioimaging for living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 185:371-375. [PMID: 28601704 DOI: 10.1016/j.saa.2017.05.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
A new turn-on phthalimide fluorescent probe has designed and synthesized for sensing cysteine (Cys) based on excited state intramolecular proton transfer (ESIPT) process. It is consisted of a 3-hydroxyphthalimide derivative moiety as the fluorophore and an acrylic ester group as a recognition receptor. The acrylic ester acts as an ESIPT blocking agent. Upon addition of cystein, intermolecular nucleophilic attack of cysteine on acrylic ester releases the fluorescent 3-hydroxyphthalimide derivative, thereby enabling the ESIPT process and leading to enhancement of fluorescence. The probe displays high sensitivity, excellent selectivity and with large Stokes shift toward cysteine. The linear interval range of the fluorescence titration ranged from 0 to 1.0×10-5M and detection limit is low (6×10-8M). In addition, the probe could be used for bio-imaging in living cells.
Collapse
Affiliation(s)
- Youming Shen
- Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, PR China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Preparation and Application of Environmentally Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China
| | - Xiangyang Zhang
- Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, PR China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Chunxiang Zhang
- Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Junling Jin
- Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
16
|
Chen S, Li H, Hou P. Imidazo[1,5-α]pyridine-derived fluorescent turn-on probe for cellular thiols imaging with a large Stokes shift. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.05.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Highly sensitive detection of cysteine over glutathione and homo-cysteine: New insight into the Michael addition of mercapto group to maleimide. Biosens Bioelectron 2017; 91:553-559. [DOI: 10.1016/j.bios.2017.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/30/2016] [Accepted: 01/06/2017] [Indexed: 11/24/2022]
|
18
|
Li X, Yin Y, Gao P, Li W, Yan H, Lu C, Zhao Q. A novel phosphorescent iridium(iii) complex bearing a donor–acceptor-type o-carboranylated ligand for endocellular hypoxia imaging. Dalton Trans 2017; 46:13802-13810. [DOI: 10.1039/c7dt03097e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first o-carborane functionalized red phosphorescent cationic iridium complex probe was developed for endocellular hypoxia imaging.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Yongheng Yin
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Pengli Gao
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials
- Nanjing University of Posts and Telecommunications
- Nanjing 210023
- P. R. China
| | - Weijie Li
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials
- Nanjing University of Posts and Telecommunications
- Nanjing 210023
- P. R. China
| |
Collapse
|
19
|
Guo J, Kuai Z, Zhang Z, Yang Q, Shan Y, Li Y. A simple colorimetric and fluorescent probe with high selectivity towards cysteine over homocysteine and glutathione. RSC Adv 2017. [DOI: 10.1039/c6ra28829d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel turn-on fluorescent sensor AQDA with high selective towards cysteine.
Collapse
Affiliation(s)
- Jing Guo
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Ziyu Kuai
- National Engineering Laboratory for AIDS Vaccine
- College of Life Sciences
- Jilin University
- Changchun 130021
- P. R. China
| | - Zhixiang Zhang
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Qingbiao Yang
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine
- College of Life Sciences
- Jilin University
- Changchun 130021
- P. R. China
| | - Yaoxian Li
- College of Chemistry
- Jilin University
- Changchun 130021
- P. R. China
| |
Collapse
|
20
|
Yu H, Liu Y, Wang J, Liang Q, Liu H, Xu J, Shao S. A gold nanocluster-based ratiometric fluorescent probe for cysteine and homocysteine detection in living cells. NEW J CHEM 2017. [DOI: 10.1039/c6nj04134e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel organic–inorganic ratiometric fluorescent probe AuNCs–NBD was developed for the detection of cysteine (Cys) and homocysteine (Hcy).
Collapse
Affiliation(s)
- Hui Yu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- P. R. China
| | - Yan Liu
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences
- Institute of Modern Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- P. R. China
| | - Jiamin Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- P. R. China
| | - Qing Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- P. R. China
| | - Hong Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- P. R. China
| | - Jian Xu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- P. R. China
| | - Shijun Shao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- P. R. China
| |
Collapse
|
21
|
Wu Y, Wu R, Li H, Zeng H, Li Y, Wang Q, Shi M, Fan X. A near-infrared phosphorescent iridium(iii) complex for imaging of cysteine and homocysteine in living cells and in vivo. RSC Adv 2017. [DOI: 10.1039/c7ra09798k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel NIR-emitting iridium(iii) complex was developed to detect Cys/Hcy levels in vitro and in vivo.
Collapse
Affiliation(s)
- Yongquan Wu
- School of Chemistry and Chemical Engineering
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Renmiao Wu
- School of Chemistry and Chemical Engineering
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Huifang Li
- School of Chemistry and Chemical Engineering
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Hong Zeng
- School of Chemistry and Chemical Engineering
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Yuanyan Li
- School of Chemistry and Chemical Engineering
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Qiuhong Wang
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Mei Shi
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Xiaolin Fan
- School of Chemistry and Chemical Engineering
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou
- P. R. China
| |
Collapse
|
22
|
A AH, Ali F, Kushwaha S, Taye N, Chattopadhyay S, Das A. A Cysteine-Specific Fluorescent Switch for Monitoring Oxidative Stress and Quantification of Aminoacylase-1 in Blood Serum. Anal Chem 2016; 88:12161-12168. [DOI: 10.1021/acs.analchem.6b03066] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anila H A
- Organic
Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Firoj Ali
- Organic
Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Shilpi Kushwaha
- Organic
Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Nandaraj Taye
- Chromatin
and Disease Laboratory, National Center for Cell Science, Pune 411007, India
| | - Samit Chattopadhyay
- Chromatin
and Disease Laboratory, National Center for Cell Science, Pune 411007, India
- CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Amitava Das
- Organic
Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujrat, India
| |
Collapse
|
23
|
Zhang X, Li H, Liu G, Pu S. A novel diarylethene-based fluorescent switch with a carboxamidoquinoline unit for sensing of Zn(II) ion. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.07.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Li X, Tong X, Yan H, Lu C, Zhao Q, Huang W. A Convenient Approach To Synthesizeo-Carborane-Functionalized Phosphorescent Iridium(III) Complexes for Endocellular Hypoxia Imaging. Chemistry 2016; 22:17282-17290. [DOI: 10.1002/chem.201603340] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Xiang Li
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Xiao Tong
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; Nanjing University of Posts and Telecommunications; Nanjing 210023 P.R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P.R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; Nanjing University of Posts and Telecommunications; Nanjing 210023 P.R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials; Nanjing University of Posts and Telecommunications; Nanjing 210023 P.R. China
| |
Collapse
|
25
|
Li G, Liu G, Zhang DB, Pu SZ. A new fluorescence probe based on fluorescein-diarylethene fluorescence resonance energy transfer system for rapid detection of Cd2+. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.08.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Wang J, Zhou C, Zhang J, Zhu X, Liu X, Wang Q, Zhang H. A new fluorescence turn-on probe for biothiols based on photoinduced electron transfer and its application in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 166:31-37. [PMID: 27203232 DOI: 10.1016/j.saa.2016.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 04/25/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
A new biothiol-selective fluorescent probe 1 based on photoinduced electron transfer (PET) mechanism was designed and synthesized. The UV-Vis absorption and fluorescent emission properties of probe 1 towards various analytes were studied in detail. The probe exhibited a large stokes shift (~200nm) after reacted with biothiols and could selectively detect cysteine (Cys) in dimethyl sulfoxide (DMSO)/H2O solution (9:1, v/v, 10mM phosphate buffer saline, pH3.5) over glutathione (GSH), homocysteine (Hcy) and other analytes with a detection limit of 0.117μM. In addition, probe 1 responded well to GSH, Hcy and Cys in the same above solution with pH5.5 and got the detection limits of 0.151μM, 0.128μM and 0.037μM, respectively. Probe 1 was of very low cytotoxicity and successfully applied for imaging of thiols in living cells.
Collapse
Affiliation(s)
- Jianxi Wang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Cheng Zhou
- Department of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Jianjian Zhang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Xinyue Zhu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Xiaoyan Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Qin Wang
- Department of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Haixia Zhang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
27
|
Liu S, Zhang J, Shen D, Liang H, Liu X, Zhao Q, Huang W. Reaction-based phosphorescent nanosensor for ratiometric and time-resolved luminescence imaging of fluoride in live cells. Chem Commun (Camb) 2016; 51:12839-42. [PMID: 26167887 DOI: 10.1039/c5cc04276c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-channel phosphorescent nanosensor for fluoride with excellent selectivity and sensitivity has been designed and synthesized. By using the specific chemical affinity between silicon and fluoride, the nanosensor has been used for ratiometric and time-resolved luminescence detection of F(-) in aqueous media and live cells.
Collapse
Affiliation(s)
- Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Mao Z, Liu J, Kang TS, Wang W, Han QB, Wang CM, Leung CH, Ma DL. An Ir(III) complex chemosensor for the detection of thiols. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2016; 17:109-114. [PMID: 27877862 PMCID: PMC5101911 DOI: 10.1080/14686996.2016.1162081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/26/2016] [Accepted: 03/02/2016] [Indexed: 05/23/2023]
Abstract
In this study, we report the use of a cyclometalated luminescent iridium(III) complex for the visualization of thiols. The detection of glutathione (GSH) by complex 1 is achieved through the reduction of its phendione N^N donor, which influences the metal-to-ligand charge-transfer (MLCT) of the complex. Complex 1 produced a maximum threefold luminescence enhancement at 587 nm in response to GSH. The linear detection range of 1 for GSH is between 0.2 and 2 M equivalents of GSH, with a detection limit of 1.67 μM. Complex 1 also displays good selectivity for thiols over other amino acids.
Collapse
Affiliation(s)
- Zhifeng Mao
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China
| | - Jinbiao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China
| | - Tian-Shu Kang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, P.R. China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China
| | - Chun-Ming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, P.R. China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, P.R. China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China
| |
Collapse
|
29
|
Gao B, Cui L, Pan Y, Zhang G, Zhou Y, Zhang C, Shuang S, Dong C. A highly selective ratiometric fluorescent probe for biothiol and imaging in live cells. RSC Adv 2016. [DOI: 10.1039/c6ra04564b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A new N-butyl-4-amino-1,8-naphthalimide-based colorimetric and ratiometric fluorescent probe for the detection of biothiols (cysteine, homocysteine, and glutathione) was designed and synthesized.
Collapse
Affiliation(s)
- Baozhen Gao
- Department of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Lixia Cui
- Department of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Yong Pan
- State Key Laboratory of NBC Protection for Civilian
- Research Institute of Chemical Defense
- Beijing
- China
| | - Guomei Zhang
- Department of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Ying Zhou
- Department of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Caihong Zhang
- Department of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Shaomin Shuang
- Department of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Chuan Dong
- Department of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
30
|
Mao Z, Wang M, Liu J, Liu LJ, Lee SMY, Leung CH, Ma DL. A long lifetime switch-on iridium(iii) chemosensor for the visualization of cysteine in live zebrafish. Chem Commun (Camb) 2016; 52:4450-3. [DOI: 10.1039/c6cc01008c] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A long lifetime iridium(iii) complex chemosensor1for cysteine detection has been synthesized.
Collapse
Affiliation(s)
- Zhifeng Mao
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Modi Wang
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Jinbiao Liu
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Li-Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Dik-Lung Ma
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| |
Collapse
|
31
|
Wang J, Liu HB, Tong Z, Ha CS. Fluorescent/luminescent detection of natural amino acids by organometallic systems. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.05.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
A colorimetric and fluorescent probe for detecting intracellular GSH. Biosens Bioelectron 2015; 71:68-74. [DOI: 10.1016/j.bios.2015.04.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/16/2015] [Accepted: 04/05/2015] [Indexed: 01/03/2023]
|
33
|
Xie P, Gao G, Liu J, Jin Q, Yang G. A New Turn on Fluorescent Probe for Selective Detection of Cysteine/Homocysteine. J Fluoresc 2015; 25:1315-21. [DOI: 10.1007/s10895-015-1619-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/05/2015] [Indexed: 11/28/2022]
|
34
|
Zhao C, Jiang H. Synthesis and Evaluation of Sulfoxide-Functionalized BODIPYs as Chemosensors for Thiols. CHINESE J CHEM 2015. [DOI: 10.1002/cjoc.201500271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Niu LY, Chen YZ, Zheng HR, Wu LZ, Tung CH, Yang QZ. Design strategies of fluorescent probes for selective detection among biothiols. Chem Soc Rev 2015; 44:6143-60. [PMID: 26027649 DOI: 10.1039/c5cs00152h] [Citation(s) in RCA: 553] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Simple thiol derivatives, such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play key roles in biological processes, and the fluorescent probes to detect such thiols in vivo selectively with high sensitivity and fast response times are critical for understanding their numerous functions. However, the similar structures and reactivities of these thiols pose considerable challenges to the development of such probes. This review focuses on various strategies for the design of fluorescent probes for the selective detection of biothiols. We classify the fluorescent probes for discrimination among biothiols according to reaction types between the probes and thiols such as cyclization with aldehydes, conjugate addition-cyclization with acrylates, native chemical ligation, and aromatic substitution-rearrangement.
Collapse
Affiliation(s)
- Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | | | | | | | | | | |
Collapse
|
36
|
Ru J, Chen X, Guan L, Tang X, Wang C, Meng Y, Zhang G, Liu W. Ratiometric Iridium(III) Complex-Based Phosphorescent Chemodosimeter for Hg2+ Applicable in Time-Resolved Luminescence Assay and Live Cell Imaging. Anal Chem 2015; 87:3255-62. [DOI: 10.1021/ac503878s] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiaxi Ru
- Key
Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province and State Key Laboratory of Applied Organic Chemistry,
College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xu Chen
- School
of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liping Guan
- School
of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoliang Tang
- Key
Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province and State Key Laboratory of Applied Organic Chemistry,
College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chunming Wang
- School
of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Meng
- School
of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guolin Zhang
- Key
Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province and State Key Laboratory of Applied Organic Chemistry,
College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Weisheng Liu
- Key
Laboratory of Nonferrous Metal Chemistry and Resources Utilization
of Gansu Province and State Key Laboratory of Applied Organic Chemistry,
College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
37
|
Zhu L, Tang X, Yu Q, Lv W, Yan H, Zhao Q, Huang W. Tuning the Optical Properties of 2-Thienylpyridyl Iridium Complexes through Carboranes and Anions. Chemistry 2015; 21:4721-30. [DOI: 10.1002/chem.201405897] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Indexed: 01/18/2023]
|
38
|
Shi C, Tu D, Yu Q, Liang H, Liu Y, Li Z, Yan H, Zhao Q, Huang W. Carboranes Tuning the Phosphorescence of Iridium Tetrazolate Complexes. Chemistry 2014; 20:16550-7. [DOI: 10.1002/chem.201404743] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Indexed: 11/09/2022]
|
39
|
A phosphorescent iridium(III) solvent complex for multiplex assays of cell death. Biomaterials 2014; 35:8748-55. [DOI: 10.1016/j.biomaterials.2014.06.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/22/2014] [Indexed: 11/22/2022]
|
40
|
Xu W, Zhao X, Lv W, Yang H, Liu S, Liang H, Tu Z, Xu H, Qiao W, Zhao Q, Huang W. Rational design of phosphorescent chemodosimeter for reaction-based one- and two-photon and time-resolved luminescent imaging of biothiols in living cells. Adv Healthc Mater 2014; 3:658-69. [PMID: 24243822 DOI: 10.1002/adhm.201300278] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/11/2013] [Indexed: 12/13/2022]
Abstract
A selective phosphorescent biothiols probe is synthesized based on Ir(III) complex 1, which has 2,2'-biquinoline as the N^N ligand for realizing the satisfied two-photon absorption cross-section and two-functionalized 2-phenylpyridine ligands with an α,β-unsaturated ketone moiety as the thiol reaction site. The one- and two-photon optical properties of 1 are investigated through UV-vis absorption spectrum and photoluminescence spectrum. This Ir(III) complex can act as an excellent one- and two-photon excited "OFF-ON" phosphorescent probe for biothiols based on the 1,4-addition of biothiol to α,β-unsaturated ketones. Moreover, one- and two-photon-induced luminescent imagings of biothiols in living cells are also realized. Furthermore, the experiments of time-resolved photoluminescence technique and fluorescence lifetime imaging microscopy demonstrate that 1 is able to detect biothiols in the presence of strong background fluorescence. In addition, probe 1 is adsorbed into the shell of mesoporous silica nanoparticles with core-shell structure to form a nanoprobe, which can realize the ratiometric detection of biothiols in absolute water solution and living cells based on two phosphorescent signals.
Collapse
Affiliation(s)
- Wenjuan Xu
- Center for Phosphorescent Optoelectronics (CPO) Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials Nanjing University of Posts & Telecommunications Nanjing 210046 P. R. China
| | - Xin Zhao
- Center for Phosphorescent Optoelectronics (CPO) Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials Nanjing University of Posts & Telecommunications Nanjing 210046 P. R. China
| | - Wen Lv
- Center for Phosphorescent Optoelectronics (CPO) Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials Nanjing University of Posts & Telecommunications Nanjing 210046 P. R. China
| | - Huiran Yang
- Center for Phosphorescent Optoelectronics (CPO) Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials Nanjing University of Posts & Telecommunications Nanjing 210046 P. R. China
| | - Shujuan Liu
- Center for Phosphorescent Optoelectronics (CPO) Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials Nanjing University of Posts & Telecommunications Nanjing 210046 P. R. China
| | - Hua Liang
- Center for Phosphorescent Optoelectronics (CPO) Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials Nanjing University of Posts & Telecommunications Nanjing 210046 P. R. China
| | - Zhenzhen Tu
- Center for Phosphorescent Optoelectronics (CPO) Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials Nanjing University of Posts & Telecommunications Nanjing 210046 P. R. China
| | - Hang Xu
- Center for Phosphorescent Optoelectronics (CPO) Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials Nanjing University of Posts & Telecommunications Nanjing 210046 P. R. China
| | - Weili Qiao
- Center for Phosphorescent Optoelectronics (CPO) Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials Nanjing University of Posts & Telecommunications Nanjing 210046 P. R. China
| | - Qiang Zhao
- Center for Phosphorescent Optoelectronics (CPO) Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials Nanjing University of Posts & Telecommunications Nanjing 210046 P. R. China
| | - Wei Huang
- Center for Phosphorescent Optoelectronics (CPO) Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials Nanjing University of Posts & Telecommunications Nanjing 210046 P. R. China
- Jiangsu‐Singapore Joint Research Center for Organic/Bio Electronics & Information Displays, and Institute of Advanced Materials Nanjing University of Technology Nanjing 211816 P. R. China
| |
Collapse
|
41
|
Yin C, Huo F, Zhang J, Martínez-Máñez R, Yang Y, Lv H, Li S. Thiol-addition reactions and their applications in thiol recognition. Chem Soc Rev 2014; 42:6032-59. [PMID: 23703585 DOI: 10.1039/c3cs60055f] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Because of the biological importance of thiols, the development of probes for thiols has been an active research area in recent years. In this review, we summarize the results of recent exciting reports regarding thiol-addition reactions and their applications in thiol recognition. The examples reported can be classified into four reaction types including 1,1, 1,2, 1,3, 1,4 addition reactions, according to their addition mechanisms, based on different Michael acceptors. In all cases, the reactions are coupled to color and/or emission changes, although some examples dealing with electrochemical recognition have also been included. The use of thiol-addition reactions is a very simple and straightforward procedure for the preparation of thiol-sensing probes.
Collapse
Affiliation(s)
- Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Phosphorescent Iridium(III) Complexes for Bioimaging. LUMINESCENT AND PHOTOACTIVE TRANSITION METAL COMPLEXES AS BIOMOLECULAR PROBES AND CELLULAR REAGENTS 2014. [DOI: 10.1007/430_2014_166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Lo KKW, Li SPY. Utilization of the photophysical and photochemical properties of phosphorescent transition metal complexes in the development of photofunctional cellular sensors, imaging reagents, and cytotoxic agents. RSC Adv 2014. [DOI: 10.1039/c3ra47611a] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
44
|
Wang F, An J, Zhang L, Zhao C. Construction of a fluorescence turn-on probe for highly discriminating detection of cysteine. RSC Adv 2014. [DOI: 10.1039/c4ra11167b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We developed a cysteine specific probe by utilizing the remarkable difference in reactivity toward discriminating cysteine from homocysteine and glutathione. This probe was also successfully used for detection of Cys in living cells and monitoring cystathionine γ-lyase activityin vitro.
Collapse
Affiliation(s)
- Feiyi Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science & Technology
- Shanghai 200237, P. R. China
| | - Jiancai An
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science & Technology
- Shanghai 200237, P. R. China
| | - Lili Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science & Technology
- Shanghai 200237, P. R. China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science & Technology
- Shanghai 200237, P. R. China
| |
Collapse
|
45
|
Yu D, Zhang Q, Ding S, Feng G. A colorimetric and near-infrared fluorescent probe for biothiols and its application in living cells. RSC Adv 2014. [DOI: 10.1039/c4ra06596d] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new highly selective and sensitive colorimetric and NIR fluorescent probe for detection and bioimaging of biothiols was reported.
Collapse
Affiliation(s)
- Dehuan Yu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079, P. R. China
| | - Qiong Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079, P. R. China
| | - Shuangshuang Ding
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079, P. R. China
| | - Guoqiang Feng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079, P. R. China
| |
Collapse
|
46
|
Zhang G, Zhang H, Gao Y, Tao R, Xin L, Yi J, Li F, Liu W, Qiao J. Near-Infrared-Emitting Iridium(III) Complexes as Phosphorescent Dyes for Live Cell Imaging. Organometallics 2013. [DOI: 10.1021/om400676h] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Guoliang Zhang
- Key Lab of Organic Optoelectronics and Molecular
Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Huiyuan Zhang
- MOE Key Laboratory
of Protein Science, School
of Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yuan Gao
- Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Ran Tao
- Key Lab of Organic Optoelectronics and Molecular
Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Lijun Xin
- Key Lab of Organic Optoelectronics and Molecular
Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Junyang Yi
- MOE Key Laboratory
of Protein Science, School
of Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Fuyou Li
- Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Wanli Liu
- MOE Key Laboratory
of Protein Science, School
of Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
- Collaborative Innovation Center
for Diagnosis
and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis
and Treatment of Infectious Diseases, The First Affiliated Hospital,
College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Juan Qiao
- Key Lab of Organic Optoelectronics and Molecular
Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
47
|
You Y, Cho S, Nam W. Cyclometalated Iridium(III) Complexes for Phosphorescence Sensing of Biological Metal Ions. Inorg Chem 2013; 53:1804-15. [DOI: 10.1021/ic4013872] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Youngmin You
- Department of Advanced
Materials Engineering for Information and Electronics, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Korea
| | - Somin Cho
- Department of Bioinspired Science and Department
of Chemistry and Nano Science, Ewha Womans University, Daehyun-dong,
Seodaemun-gu, Seoul 120-750, Korea
| | - Wonwoo Nam
- Department of Bioinspired Science and Department
of Chemistry and Nano Science, Ewha Womans University, Daehyun-dong,
Seodaemun-gu, Seoul 120-750, Korea
| |
Collapse
|
48
|
Guo F, Tian M, Miao F, Zhang W, Song G, Liu Y, Yu X, Sun JZ, Wong WY. Lighting up cysteine and homocysteine in sequence based on the kinetic difference of the cyclization/addition reaction. Org Biomol Chem 2013; 11:7721-8. [PMID: 24113875 DOI: 10.1039/c3ob41414k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel one- and two-photon fluorescent probe CB1 has been developed for discriminating Cys and Hcy in a successive manner with high selectivity. The discrete time-dependent fluorescent responses enable us to sequentially detect Cys and Hcy in different time windows. Two-step reaction and kinetic modes were used to explain the sensing mechanism. As a promising biosensor for cell imaging, CB1 has been confirmed to exhibit membrane permeability to intact cells, low cytotoxicity to viable cells and photostability to ultraviolet light excitation. Furthermore, the results from the control assay have shown that the one- and two-photon fluorescence of CB1 within cells is associated with intracellular mercapto biomolecules but yet there is little interference with physiological pH value, viscosity and common bioanalytes. Finally one- and two-photon fluorescent images of CB1 within living SiHa cells have been presented.
Collapse
Affiliation(s)
- Fuqiang Guo
- Center of Bio & Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
You Y. Phosphorescence bioimaging using cyclometalated Ir(III) complexes. Curr Opin Chem Biol 2013; 17:699-707. [DOI: 10.1016/j.cbpa.2013.05.023] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 05/19/2013] [Accepted: 05/21/2013] [Indexed: 12/22/2022]
|
50
|
Jung HS, Chen X, Kim JS, Yoon J. Recent progress in luminescent and colorimetric chemosensors for detection of thiols. Chem Soc Rev 2013; 42:6019-31. [DOI: 10.1039/c3cs60024f] [Citation(s) in RCA: 716] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|