1
|
Dellaquila A, Le Bao C, Letourneur D, Simon‐Yarza T. In Vitro Strategies to Vascularize 3D Physiologically Relevant Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100798. [PMID: 34351702 PMCID: PMC8498873 DOI: 10.1002/advs.202100798] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/23/2021] [Indexed: 05/04/2023]
Abstract
Vascularization of 3D models represents a major challenge of tissue engineering and a key prerequisite for their clinical and industrial application. The use of prevascularized models built from dedicated materials could solve some of the actual limitations, such as suboptimal integration of the bioconstructs within the host tissue, and would provide more in vivo-like perfusable tissue and organ-specific platforms. In the last decade, the fabrication of vascularized physiologically relevant 3D constructs has been attempted by numerous tissue engineering strategies, which are classified here in microfluidic technology, 3D coculture models, namely, spheroids and organoids, and biofabrication. In this review, the recent advancements in prevascularization techniques and the increasing use of natural and synthetic materials to build physiological organ-specific models are discussed. Current drawbacks of each technology, future perspectives, and translation of vascularized tissue constructs toward clinics, pharmaceutical field, and industry are also presented. By combining complementary strategies, these models are envisioned to be successfully used for regenerative medicine and drug development in a near future.
Collapse
Affiliation(s)
- Alessandra Dellaquila
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Elvesys Microfluidics Innovation CenterParis75011France
- Biomolecular PhotonicsDepartment of PhysicsUniversity of BielefeldBielefeld33615Germany
| | - Chau Le Bao
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Université Sorbonne Paris NordGalilée InstituteVilletaneuseF‐93430France
| | | | | |
Collapse
|
2
|
Sahoo J, Jaiswar S, Jena HS, Subramanian PS. Sensing of Phosphate and ATP by Lanthanide Complexes in Aqueous Medium and Its Application on Living Cells. ChemistrySelect 2020. [DOI: 10.1002/slct.202002714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jashobanta Sahoo
- Institution: CSIR-Central Salt and Marine Chemicals Research Institute Address 1 Gijubhai Badhega Marg Bhavnagar Gujarat 364 002 India
- Institution Academy of Scientific and Innovative Research (AcSIR) CSIR-CSMCRI Address 2 Bhavnagar Gujarat. 364 002 India
- Department of Chemistry, Hindol College, Khajuriakata Higher Education Department, State Government of Odisha India
| | - Santlal Jaiswar
- Department: Discipline of Marine Biotechnology and Ecology Institution: CSIR-Central Salt and Marine Chemicals Research Institute, Address 3: Gijubhai Badhega Marg, Bhavnagar Gujarat 364 002 India
| | - Himanshu Sekhar Jena
- Department: Department of Chemistry Institution: Ghent University, Address 4 Krijgslaan 281 - S3 B 9000 Ghent Belgium
| | - Palani S. Subramanian
- Institution: CSIR-Central Salt and Marine Chemicals Research Institute Address 1 Gijubhai Badhega Marg Bhavnagar Gujarat 364 002 India
- Institution Academy of Scientific and Innovative Research (AcSIR) CSIR-CSMCRI Address 2 Bhavnagar Gujarat. 364 002 India
| |
Collapse
|
3
|
Gamboa A, Urfano SF, Hernandez K, Fraser DA, Ayalew L, Slowinska K. Higher Order Architecture of Designer Peptides Forms Bioinspired 10 nm siRNA Delivery System. Sci Rep 2019; 9:16875. [PMID: 31728030 PMCID: PMC6856157 DOI: 10.1038/s41598-019-53462-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/01/2019] [Indexed: 11/09/2022] Open
Abstract
The higher-order architecture observed in biological systems, like viruses, is very effective in nucleic acid transport. The replications of this system has been attempted with both synthetic and naturally occurring polymers with mixed results. Here we describe a peptide/siRNA quaternary complex that functions as an siRNA delivery system. The rational design of a peptide assembly is inspired by the viral capsids, but not derived from them. We selected the collagen peptide (COL) to provide the structural stability and the folding framework, and hybridize it with the cell penetrating peptide (CPP) that allows for effective penetration of biological barriers. The peptide/siRNA quaternary complex forms stoichiometric, 10 nm nanoparticles, that show fast cellular uptake (<30 min), effective siRNA release, and gene silencing. The complex provides capsid-like protection for siRNA against nucleases without being immunostimulatory, or cytotoxic. Our data suggests that delivery vehicles based on synthetic quaternary structures that exhibit higher-order architecture may be effective in improving delivery and release of nucleic acid cargo.
Collapse
Affiliation(s)
- Alicia Gamboa
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, California, 90840, USA
| | - Selina F Urfano
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, California, 90840, USA
| | - Katrina Hernandez
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, California, 90840, USA
| | - Deborah A Fraser
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, California, 90840, USA
| | - Luladey Ayalew
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, California, 90840, USA
| | - Katarzyna Slowinska
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, California, 90840, USA.
| |
Collapse
|
4
|
Sun X, He M, Wang L, Luo L, Wang J, Xiao J. Luminescent Biofunctional Collagen Mimetic Nanofibers. ACS OMEGA 2019; 4:16270-16279. [PMID: 31616804 PMCID: PMC6787889 DOI: 10.1021/acsomega.9b00740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Collagen has long been one of the top targets for biomimetic design due to its superior structural and functional properties. Significant progress has been achieved to construct self-assembling peptides to mimic the fibrous nanostructure of native collagen, while it is still very demanding to fabricate peptide assemblies that can recapitulate both structural and biofunctional features of collagen. Herein, collagen-like peptides have been synthesized to contain negatively charged amino acids as the binding groups of lanthanide ions and the integrin-binding motif GFOGER. The simultaneous inclusion of negatively charged amino acids in the middle as well as at both terminals drives the peptides to self-assemble to form well-ordered nanofibers with distinct periodic banding patterns specifically mediated by lanthanide ions. The aggregation tendency and the morphology of the final assembled materials for the peptides are modulated in a pH-cooperative manner, which well mimics the pH-dependent fibrillogenesis of Type I collagen. The utilization of lanthanide ions in the system not only offers a convenient external stimulus but also functionalizes assembled materials with excellent luminescent features. Most notably, the lanthanide-triggered peptide assembled nanomaterials possess good cell adhesion properties, which resemble the biological function of collagen. This peptide-Ln3+ system provides a facile and potent strategy to generate nanofibers that mimic both the structural and functional properties of natural collagen. These novel pH-responsive, luminescent, and biofunctional collagen mimetic nanofibers open fascinating opportunities in the development of improved functional biomaterials in tissue engineering, drug delivery, and medical diagnostics.
Collapse
Affiliation(s)
- Xiuxia Sun
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, P. R. China
| | - Manman He
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, P. R. China
| | - Lang Wang
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, P. R. China
| | - Liting Luo
- Key
laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese
Academy of Sciences, Wuhan 430071, China
| | - Jie Wang
- Key
laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese
Academy of Sciences, Wuhan 430071, China
| | - Jianxi Xiao
- State
Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous
Metal Chemistry and Resources Utilization of Gansu Province, College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, P. R. China
| |
Collapse
|
5
|
Programmable Fabrication of Multilayer Collagen Nanosheets of Defined Composition. Methods Mol Biol 2018. [PMID: 29744838 DOI: 10.1007/978-1-4939-7811-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Two-dimensional nanostructures offer significant promise as components for the construction of functional biomaterials. However, the controllable fabrication of these structures remains a challenge. Ideally, one desires to control the composition, structure, and surface functionality of the resultant materials with precision, in order to tailor properties for a particular application and minimize the unintended side effects. We recently reported the synthesis of triple-layer nanosheets from template-driven assembly of a negatively charged collagen-mimetic peptide CP - on a preassembled nanosheet of a positively charged collagen-mimetic peptide CP + [1]. This process enabled the fabrication of nanosheets of defined composition, internal structure, and surface chemistry using a modified layer-by-layer approach. Herein, we describe the synthesis and purification procedures for these two 45-mer peptides, CP + and CP - , and guidelines for the directed assembly of triple-layer structures, along with routine methods of structural analysis.
Collapse
|
6
|
Yeh MY, Huang CT, Lai TS, Chen FY, Chu NT, Tseng DTH, Hung SC, Lin HC. Effect of Peptide Sequences on Supramolecular Interactions of Naphthaleneimide/Tripeptide Conjugates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7630-8. [PMID: 27385634 DOI: 10.1021/acs.langmuir.6b01809] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study, we reported a significant difference in the supramolecular hydrogelation of newly discovered NI-GFF (NI-Gly-l-Phe-l-Phe) and NI-FFG (NI-l-Phe-l-Phe-Gly) on the basis of their phase diagrams. With a small difference in the peptide chain between NI-GFF and NI-FFG, we observed a significant difference in their self-assembly properties; NI-GFF formed a stable gel at neutral pH, whereas NI-FFG did not, under the same conditions. From spectroscopic and computational studies, intermolecular π-π interactions and extended hydrogen bonding interactions might reinforce the intermolecular interactions of NI-GFF, which may facilitate the formation of the self-assembled nanostructures and the hydrogel. In addition, the aggregation-induced emission (AIE)-active NI-GFF reveals relatively good biocompatibility compared with that of NI-FFG for two commonly used cell lines, suggesting that it is a promising candidate for use as a supramolecular material in biomedical applications. Our results highlight the importance of tripeptide sequences in a self-assembling hydrogel system.
Collapse
Affiliation(s)
- Mei-Yu Yeh
- Integrative Stem Cell Center, China Medical University Hospital , Taichung 40447, Taiwan
- Graduate Institute of Basic Medical Science, Graduate Institute of Clinical Medical Science, China Medical University , Taichung 40402, Taiwan
| | - Ching-Ting Huang
- Department of Materials Science and Engineering, National Chiao Tung University , Hsinchu 30010, Taiwan
| | - Tsung-Sheng Lai
- Department of Materials Science and Engineering, National Chiao Tung University , Hsinchu 30010, Taiwan
| | - Fang-Yi Chen
- Department of Materials Science and Engineering, National Chiao Tung University , Hsinchu 30010, Taiwan
| | - Nien-Tzu Chu
- Department of Materials Science and Engineering, National Chiao Tung University , Hsinchu 30010, Taiwan
| | - Dion Tzu-Huan Tseng
- Department of Materials Science and Engineering, National Chiao Tung University , Hsinchu 30010, Taiwan
| | - Shih-Chieh Hung
- Integrative Stem Cell Center, China Medical University Hospital , Taichung 40447, Taiwan
- Graduate Institute of Basic Medical Science, Graduate Institute of Clinical Medical Science, China Medical University , Taichung 40402, Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Chiao Tung University , Hsinchu 30010, Taiwan
| |
Collapse
|
7
|
He M, Wang L, Wu J, Xiao J. Ln3+
-Mediated Self-Assembly of a Collagen Peptide into Luminescent Banded Helical Nanoropes. Chemistry 2016; 22:1914-1917. [DOI: 10.1002/chem.201504337] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Manman He
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P.R. China
| | - Lang Wang
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P.R. China
| | - Jiang Wu
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P.R. China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P.R. China
| |
Collapse
|
8
|
Shinde A, Feher KM, Hu C, Slowinska K. Peptide internalization enabled by folding: triple helical cell-penetrating peptides. J Pept Sci 2014; 21:77-84. [PMID: 25524829 DOI: 10.1002/psc.2725] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/14/2014] [Accepted: 11/26/2014] [Indexed: 11/11/2022]
Abstract
Cell-penetrating peptides (CPPs) are known as efficient transporters of molecular cargo across cellular membranes. Their properties make them ideal candidates for in vivo applications. However, challenges in the development of effective CPPs still exist: CPPs are often fast degraded by proteases and large concentration of CPPs required for cargo transporting can cause cytotoxicity. It was previously shown that restricting peptide flexibility can improve peptide stability against enzymatic degradation and limiting length of CPP peptide can lower cytotoxic effects. Here, we present peptides (30-mers) that efficiently penetrate cellular membranes by combining very short CPP sequences and collagen-like folding domains. The CPP domains are hexa-arginine (R6) or arginine/glycine (RRGRRG). Folding is achieved through multiple proline-hydroxyproline-glycine (POG [proline-hydroxyproline-glycine])n repeats that form a collagen-like triple helical conformation. The folded peptides with CPP domains are efficiently internalized, show stability against enzymatic degradation in human serum and have minimal toxicity. Peptides lacking correct folding (random coil) or CPP domains are unable to cross cellular membranes. These features make triple helical cell-penetrating peptides promising candidates for efficient transporters of molecular cargo across cellular membranes.
Collapse
Affiliation(s)
- Aparna Shinde
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, 90840, Canada
| | | | | | | |
Collapse
|
9
|
Przybyla DE, Rubert Pérez CM, Gleaton J, Nandwana V, Chmielewski J. Hierarchical Assembly of Collagen Peptide Triple Helices into Curved Disks and Metal Ion-Promoted Hollow Spheres. J Am Chem Soc 2013; 135:3418-22. [PMID: 23402552 DOI: 10.1021/ja307651e] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- David E. Przybyla
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette,
Indiana 47907, United States
| | - Charles M. Rubert Pérez
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette,
Indiana 47907, United States
| | - Jeremy Gleaton
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette,
Indiana 47907, United States
| | - Vikas Nandwana
- Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant
Street, Amherst Massachusetts 01003, United States
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette,
Indiana 47907, United States
| |
Collapse
|
10
|
Li L, Wu R, Guang S, Su X, Xu H. The investigation of the hydrogen bond saturation effect during the dipole–dipole induced azobenzene supramolecular self-assembly. Phys Chem Chem Phys 2013; 15:20753-63. [DOI: 10.1039/c3cp52864b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
|
12
|
Sanghamitra NJM, Ueno T. Expanding coordination chemistry from protein to protein assembly. Chem Commun (Camb) 2013; 49:4114-26. [DOI: 10.1039/c2cc36935d] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|