1
|
Wang Z, Zou T, Feng S, Wu F, Zhang J. Boronic acid-functionalized magnetic porphyrin-based covalent organic framework for selective enrichment of cis-diol-containing nucleosides. Anal Chim Acta 2023; 1278:341691. [PMID: 37709444 DOI: 10.1016/j.aca.2023.341691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/07/2023] [Accepted: 08/05/2023] [Indexed: 09/16/2023]
Abstract
In this study, a novel boronic acid-functionalized magnetic porphyrin-based covalent organic framework (COF) with a core-shell structure was designed and synthesized for the selective enrichment and detection of nucleosides. Firstly, brominated porphyrin-based COF was in situ grown on Fe3O4-NH2 nanospheres (denoted as Fe3O4@Br-COF), then a post-synthetic modification strategy was used to introduce boronic acid into the framework via Suzuki-Miyaura cross-coupling reaction to obtain boronic acid functionalized magnetic COF (denoted as Fe3O4@BA-COF). Suzuki-Miyaura cross-coupling possesses the advantages of mild synthesis conditions, high tolerance to functionalities, and ease of handling and separation, which is considered as a promising candidate for functionalizing COF. It is worth mentioning that the porphyrin-based COF possesses a unique nitrogen-rich skeleton and "trap" structure formed by four pyrrole rings, which can provide hydrogen bond and make it more suitable for trapping analytes than other types of COF. The boronic acid group provides boronate affinity, which enables better selective enrichment of cis-diol-containing nucleoside. The morphology and structure of the prepared Fe3O4@BA-COF was characterized by various methods. Based on the Fe3O4@BA-COF, a facile magnetic solid phase extraction coupled with high performance liquid chromatography method (MSPE-HPLC) was used to extract and detect adenosine, guanosine, uridine, and cytidine in urine samples. This work not only provides a mild and feasible post-synthetic modification method for fabrication of boronic acid-functionalized magnetic COF, but also provides an efficient and rapid method to selectively enrich and detect hydrophilic nucleosides.
Collapse
Affiliation(s)
- Ziyi Wang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ting Zou
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shitao Feng
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Fengshou Wu
- School of Chemical Engineering and Pharmacy, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Juan Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
2
|
Liu M, Chen H, Huang Y, Liu J, Chen Q, Zuo H, Fang L, Mao C. Enriching adenosine by thymine-rich DNA oligomers. Analyst 2023; 148:1858-1866. [PMID: 36942467 DOI: 10.1039/d3an00297g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Adenosine levels are important in various physiological and pathological activities, but detecting them is difficult because of interference from a complex matrix. This study designed a series of DNA oligomers rich in thymine to enrich adenosine. Their binding affinity (Kd range: 1.25-5.0 mM) to adenosine varied based on the DNA secondary structures, with a clamped hairpin structure showing the highest binding affinity. Compared to other designs, this clamped DNA hairpin underwent the least conformational change during adenosine binding. These DNAs also suppressed the precipitation of supersaturated adenine. Taken together, these results suggest that thymine-rich DNAs could be used to enrich and separate adenosine.
Collapse
Affiliation(s)
- Mingchun Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Huaiqing Chen
- Biological Sciences Research Center, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Yuhan Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jian Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qianfeng Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hua Zuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Liang Fang
- Department of Oncology, The Ninth Chongqing People's Hospital, Chongqing 400700, China.
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chengde Mao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Department of Chemistry, Purdue University, West Lafayette 47907, IN, USA.
| |
Collapse
|
3
|
Zhang Y, Qing L, Xu L. Highly efficient separation and enrichment of polyphenols by 6-aminopyridine-3-boronic acid-functionalized magnetic nanoparticles assisted by polyethylenimine. RSC Adv 2022; 12:6881-6887. [PMID: 35424593 PMCID: PMC8981934 DOI: 10.1039/d1ra08751g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/21/2022] [Indexed: 01/18/2023] Open
Abstract
Polyphenols have found a lot of therapeutic effects and potential applications such as antioxidant, anti-inflammatory, mutant resistance, immunosuppressant and anti-tumor properties. They can be divided into five main classes, namely flavonoids, phenolic acids, stilbenes, lignans, and others. Thus, the content detection of polyphenols in real samples such as fruit juice and tea is of great significance. Due to the presence of complex interfering components in actual samples, separation and enrichment of polyphenols prior to analysis is key. Therefore, it is quite necessary to establish a simple, low-cost and efficient purification method for cis-diol-containing polyphenols from real samples. Boronate affinity materials are able to reversibly bind cis-diol-containing compounds by forming a five- or six-membered boronic cyclic ester in aqueous media. However, conventional boronate affinity materials exhibited low binding capacity and high binding pH. In this study, the polyethyleneimine (PEI)-assisted 6-aminopyridine-3-boronic acid functionalized magnetic nanoparticles (MNPs) were developed to capture efficiently cis-diol-containing polyphenols under neutral condition. PEI was applied as a scaffold to amplify the number of boronic acid moieties. While 6-aminopyridine-3-boronic acid was used as an affinity ligand due to low pK a value and excellent water solubility toward polyphenols. The results indicated that the prepared boronic acid-functionalized MNPs provided high binding capacity and fast binding kinetics under neutral conditions. In addition, the obtained MNPs exhibited relatively high binding affinity (K d ≈ 10-4 M), low binding pH (pH ≥ 6.0) and tolerance of the interference of abundant sugars.
Collapse
Affiliation(s)
- Yansong Zhang
- College of Food and Drug, Luoyang Normal University Luoyang 471934 China
| | - Lianglei Qing
- College of Food and Drug, Luoyang Normal University Luoyang 471934 China
| | - Linna Xu
- College of Food and Drug, Luoyang Normal University Luoyang 471934 China
| |
Collapse
|
4
|
Fan Y, Yang Y, Huang Y, Cai K, Qiao Y. Polyamidoamine dendrimer-assisted 3-carboxybenzoboroxole-functionalized magnetic nanoparticles for highly efficient capture of trace cis-diol-containing biomacromolecules. NEW J CHEM 2022. [DOI: 10.1039/d2nj01242a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Boronate affinity materials have attracted more and more attention in recent years due to their highly selective capture of cis-diol-containing biomacromolecules.
Collapse
Affiliation(s)
- Yanli Fan
- School of Food and Drug, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Yumin Yang
- School of Food and Drug, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Yan Huang
- School of Food and Drug, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Ke Cai
- School of Food and Drug, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Yuqing Qiao
- School of Food and Drug, Luoyang Normal University, Luoyang, 471934, P. R. China
| |
Collapse
|
5
|
Li D, Tang N, Wang Y, Zhang Z, Ding Y, Tian X. Efficient synthesis of boronate affinity-based catecholamine-imprinted magnetic nanomaterials for trace analysis of catecholamine in human urine. NEW J CHEM 2022. [DOI: 10.1039/d2nj02552c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catecholamines, a class of cis-diol-containing compounds, play a major role in the central nervous system.
Collapse
Affiliation(s)
- Daojin Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Na Tang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Yipei Wang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Zixin Zhang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Yihan Ding
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| | - Xiping Tian
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China
| |
Collapse
|
6
|
Simultaneous determination of five antiviral drug residues and stability studies in honey using a two-step fraction capture coupled to liquid chromatography tandem mass spectrometry. J Chromatogr A 2021; 1638:461890. [PMID: 33465584 DOI: 10.1016/j.chroma.2021.461890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/24/2022]
Abstract
An effective sample pretreatment method followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) was first developed for simultaneous determination of five antiviral drug residues including ribavirin, moroxydine, amantadine, rimantadine and memantine in honey. To adsorb analytes with different binding properties and overcome the interference of sugars and uridine as endogenous ribavirin structural analogs in honey, the target drugs were extracted with 1% formic acid and then purified by a phenylboronic acid (PBA) solid phase extraction cartridge using two-step fraction capture prior to LC-MS/MS analysis. This method was validated by analyzing honey samples from nine floral origins including miscellaneous flowers, citrus, vitex, rape, acacia, sunflower, linden, buckwheat and jujube spiking at multiple levels, and the recoveries ranged from 82.46% to 116.34%, with relative standard deviations (RSDs) less than 14.58%. The limits of detection (LODs) and limits of quantitation (LOQs) of moroxydine, ribavirin, amantadine, rimantadine, and memantine were 0.1-2 µg/kg and 0.2-5 µg/kg, respectively. Depletion experiments of five antiviral drugs in honey at different storage and process temperatures demonstrated that moroxydine can potentially be used as a drug to cure sacbrood disease in honeybees.
Collapse
|
7
|
Qin X, Zhang Z, Shao H, Zhang R, Chen L, Yang X. Boronate affinity material-based sensors for recognition and detection of glycoproteins. Analyst 2020; 145:7511-7527. [DOI: 10.1039/d0an01410a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review comprehensively presents the current overview and development potential of BAMs-based sensors for glycoprotein recognition and detection.
Collapse
Affiliation(s)
- Xiaoxiao Qin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P.R. China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P.R. China
| | - Hongjun Shao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P.R. China
| | - Runguang Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P.R. China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Research Centre for Coastal Environmental Engineering and Technology
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an
- P.R. China
| |
Collapse
|
8
|
Li G, Shi Z, Li D. Efficient synthesis of boronate affinity-based chlorogenic acid-imprinted magnetic nanomaterials for the selective recognition of chlorogenic acid in fruit juices. NEW J CHEM 2020. [DOI: 10.1039/d0nj01716g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chlorogenic acid (CGA), a cis-diol-containing compound, can exhibit anti-inflammatory, antiviral, antimicrobial and anti-oxidation properties.
Collapse
Affiliation(s)
- Guanfeng Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University
- Luoyang
- P. R. China
| | - Zehua Shi
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University
- Luoyang
- P. R. China
| | - Daojin Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University
- Luoyang
- P. R. China
| |
Collapse
|
9
|
Li N, Qiu J, Liu H, Chen Z, Qian Y. Thermoregulated extraction of luteolin under neutral conditions using oligo(ethylene glycol)-based magnetic nanoparticles with Wulff-type boronate affinity. J Chromatogr A 2019; 1607:460396. [PMID: 31471134 DOI: 10.1016/j.chroma.2019.460396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 11/26/2022]
Abstract
Oligo(ethylene glycol)-based thermoresponsive polymers with Wulff-type boronate affinity were anchored on magnetic nanoparticles. The resultant magnetic nanoparticles were used as sorbents for extracting luteolin, a cis-diol-containing model analyte. By exploiting the thermoresponsive properties and Wulff-type boronate affinity of the sorbents, target adsorption at room temperature (25 °C) and target release at high temperature (40 °C) were achieved under neutral conditions without pH alteration. The proposed thermoregulated extraction method was favorable for automated boronate affinity extraction, preventing degradation of the target and avoiding acidic elution for breaking Wulff-type boronate sites. Compared to reported sorbents for extracting luteolin, the sorbents possessed higher maximum adsorption capacity (98.7 mg g-1) with acceptable sensitivity, simplified operation procedure, and mild extraction condition. Furthermore, the sorbents were applied in thermoregulated extraction of luteolin from honey samples. Satisfactory recoveries in the range of 83.2% - 89.1% with RSD ranging from 2.2% to 4.6% were achieved. The results demonstrated that this work provided a new research direction to design and synthesize efficient thermoresponsive materials for recognition and release of cis-diol compounds under neutral conditions.
Collapse
Affiliation(s)
- Nan Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Huiying Liu
- School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Zhijun Chen
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yongzhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-Food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
10
|
Chen Y, Huang A, Zhang Y, Bie Z. Recent advances of boronate affinity materials in sample preparation. Anal Chim Acta 2019; 1076:1-17. [DOI: 10.1016/j.aca.2019.04.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 11/28/2022]
|
11
|
Sun W, Dai R, Li B, Dai G, Wang D, Yang D, Chu P, Deng Y, Luo A. Combination of Three Functionalized Temperature-Sensitive Chromatographic Materials for Serum Protein Analysis. Molecules 2019; 24:E2626. [PMID: 31330945 PMCID: PMC6680567 DOI: 10.3390/molecules24142626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
We have developed a methodology to capture acidic proteins, alkaline proteins, and glycoproteins separately in mouse serum using a combination of three functionalized temperature-responsive chromatographic stationary phases. The temperature-responsive polymer poly(N-isopropylacrylamide) was attached to the stationary phase, silica. The three temperature-responsive chromatographic stationary phase materials were prepared by reversible addition-fragmentation chain transfer polymerization. Alkaline, acidic, and boric acid functional groups were introduced to capture acidic proteins, alkaline proteins, and glycoproteins, respectively. The protein enrichment and release properties of the materials were examined using the acidic protein, bovine serum albumin; the alkaline protein, protamine; and the glycoprotein, horseradish peroxidase. Finally, the three materials were used to analyze mouse serum. Without switching the mobile phase, the capture and separation of mouse serum was achieved by the combination of three temperature-responsive chromatographic stationary phase materials. On the whole, 313 proteins were identified successfully. The number of different proteins identified using the new method was 1.46 times greater than the number of proteins that has been identified without applying this method. To our knowledge, this method is the first combinatorial use of three functionalized temperature-responsive chromatographic stationary phase silica materials to separate proteins in mouse serum.
Collapse
Affiliation(s)
- Weiwei Sun
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Rongji Dai
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Bo Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Guoxin Dai
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Di Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Dandan Yang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Pingping Chu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Aiqin Luo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
12
|
Li D, Liu Z, Song R, Yang W, Zhai S, Wang W. Branched polyethyleneimine-assisted 3-carboxybenzoboroxole improved Wulff-type boronic acid functionalized magnetic nanoparticles for the specific capture of cis-diol-containing flavonoids under neutral conditions. RSC Adv 2019; 9:38038-38046. [PMID: 35541768 PMCID: PMC9075723 DOI: 10.1039/c9ra06250e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/11/2019] [Indexed: 01/10/2023] Open
Abstract
Flavonoids have shown a variety of biological activities such as antimicrobial, antibacterial, antifungal, antiviral, antiinflammatory, antitumor, antiatherogenic, and antihyperglycemic activities. A lot of important flavonoids contain cis-diols such as rutin (Ru), quercetin (Qu), luteolin (Lu), myricetin (Myr) and baicalein (Ba) and so on. It is necessary to establish a simple, low-cost and efficient purification method for cis-diol-containing flavonoids from plant extracts. Boronate affinity materials are able to reversibly bind the cis-diols via boronic acids by forming a five- or six-membered boronic cyclic ester in aqueous media. However, conventional boronate affinity materials have to be used in alkaline media, which can lead to the oxidation of cis-diols in compounds. In this study, the polyethyleneimine (PEI)-assisted 3-carboxybenzoboroxole-functionalized magnetic nanoparticles (MNPs) were prepared to achieve efficient capture of cis-diol-containing flavonoids under neutral conditions. Branched PEI was applied as a scaffold to amplify the number of boronic acid moieties, while 3-carboxybenzoboroxole, exhibiting high affinity and excellent water solubility toward flavonoids, was used as an affinity ligand. The prepared boronate affinity MNPs exhibited high binding capacity and fast binding kinetics (equilibrium in 3 min) under neutral conditions. In addition, the obtained boronate affinity MNPs exhibited high binding affinity (Kd ≈ 10−4 M), low binding pH (pH ≥ 6.0) and tolerance of the interference to abundant sugars. Flavonoids have shown a variety of biological activities such as antimicrobial, antibacterial, antifungal, antiviral, antiinflammatory, antitumor, antiatherogenic, and antihyperglycemic activities.![]()
Collapse
Affiliation(s)
- Daojin Li
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471022
- P. R. China
| | - Zheyao Liu
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471022
- P. R. China
| | - Rumeng Song
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471022
- P. R. China
| | - Wenliu Yang
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471022
- P. R. China
| | - Simeng Zhai
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471022
- P. R. China
| | - Wenhui Wang
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471022
- P. R. China
| |
Collapse
|
13
|
Dong Q, Chi SS, Deng XY, Lan YH, Peng C, Dong LY, Wang XH. Boronate affinity monolith via two-step atom transfer radical polymerization for specific capture of cis -diol-containing compounds. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Liang J, Yu X, Yang T, Li M, Shen L, Jin Y, Liu H. A complicated biocomputing system based on multi-responsive P(NIPAM-co-APBA) copolymer film electrodes and electrocatalysis of NADH. Phys Chem Chem Phys 2018; 19:22472-22481. [PMID: 28808714 DOI: 10.1039/c7cp04030j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, poly(N-isopropylacrylamide-co-3-aminophenylboronic acid) (P(NIPAM-co-APBA)) copolymer films were successfully electropolymerized on the Au electrode surface. The electroactive probe ferrocene carboxylic acid (FCA) in solution showed reversible thermal-, glucose- and pH-responsive on-off cyclic voltammetric (CV) behaviors at the film electrodes. The comparative experiments demonstrated that the thermo-responsive property of the film electrode was ascribed to the PNIPAM component of the films, whereas the glucose- and pH-sensitive behaviors came from the PAPBA constituent. The reduced form of nicotinamide adenine dinucleotide (NADH) could be electrocatalytically oxidized by FCA at the film electrodes, which would greatly amplify the multi-responsive CV signal difference between the on and off states. On the basis of these results, a binary 4-input/4-output logic circuit was fabricated with temperature, glucose, pH and NADH as inputs and the CV responses at 4 different levels as outputs. Moreover, a ternary CONSENSUS logic circuit was established on the same platform, which was the first report on the combination of ternary logic gate and bioelectrocatalysis without using enzymes. This work provided a novel idea for constructing complicated biocomputing systems by increasing the number of inputs/outputs with multi-sensitive interfaces and by designing new types of multi-valued logic gates on the basis of bioelectrocatalysis.
Collapse
Affiliation(s)
- Jiying Liang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Branched polyethyleneimine-assisted boronic acid-functionalized silica nanoparticles for the selective enrichment of trace glycoproteins. Talanta 2018; 184:235-243. [PMID: 29674038 DOI: 10.1016/j.talanta.2018.02.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 11/21/2022]
Abstract
Boronate affinity materials have attracted more and more attention in extraction, separation and enrichment of glycoproteins due to the important roles that glycoproteins take on in recent years. However, conventional boronate affinity materials suffer from low binding affinity mainly because of the use of single boronic acids. This makes the extraction of glycoproteins of trace concentration become rather difficult or impossible. Here we present a novel boronate avidity material, polyethyleneimine (PEI)-assisted boronic acid-functionalized silica nanoparticles (SNPs). Branched PEI was applied as a scaffold to amplify the number of boronic acid moieties. While 3-carboxybenzoboroxole, exhibiting high affinity and excellent water solubility toward glycoproteins, was used as an affinity ligand. Due to the PEI-assisted synergistic multivalent binding, the boronate avidity SNPs exhibited strong binding strength toward glycoproteins with dissociation constants of 10-7 M, which was the highest among reported boronic acid-functionalized materials that can be applied for glycoproteomic analysis. Such a high avidity enabled the selective extraction of trace glycoproteins as low as 0.4 pg/mL. This feature greatly favored the selective enrichment of trace glycoproteins from real samples. Meanwhile, the boronate avidity SNPs was tolerant of the interference of abundant sugars. In addition, the PEI-assisted boronate avidity SNPs exhibited high binding capacity and low binding pH. The feasibility for practical applications was demonstrated with the selective enrichment of trace glycoproteins in human saliva.
Collapse
|
16
|
Liu ZJ, Huang S, Ran YY, Chen J, Hu XM, Du HS, Wang J. Functionalization of Silica Microparticles with Multiple-Responsive Copolymers for Smart Controlled Chromatograph. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b04570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Jie Chen
- College
of Innovation and Entrepreneurship Education, Chongqing University of Post and Telecommunications, Chongqing 400065, China
| | | | | | - Jin Wang
- Suzhou
Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
17
|
Li D, Bie Z. Branched polyethyleneimine-assisted boronic acid-functionalized magnetic nanoparticles for the selective enrichment of trace glycoproteins. Analyst 2017; 142:4494-4502. [DOI: 10.1039/c7an01174a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Boronate affinity materials, as efficient sorbents for extraction, separation and enrichment of glycoproteins, have attracted more and more attention in recent years.
Collapse
Affiliation(s)
- Daojin Li
- College of Chemistry and Chemical Engineering
- and Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471022
- P. R. China
| | - Zijun Bie
- Department of Chemistry Bengbu Medical College
- China
| |
Collapse
|
18
|
Shen Y, Dong L, Liang Y, Liu Z, Dai R, Meng W, Deng Y. Effect of the grafting ratio of poly(N-isopropylacrylamide) on thermally responsive polymer brush surfaces. J Sep Sci 2016; 40:524-531. [DOI: 10.1002/jssc.201600890] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Yangyang Shen
- School of Life Science; Beijing Institute of Technology; Beijing P.R. China
| | - Lianqing Dong
- School of Life Science; Beijing Institute of Technology; Beijing P.R. China
| | - Yanli Liang
- School of Life Science; Beijing Institute of Technology; Beijing P.R. China
| | - Zongjian Liu
- Luhe Teaching Hospital; Capital Medical University; Beijing P.R. China
| | - Rongji Dai
- School of Life Science; Beijing Institute of Technology; Beijing P.R. China
| | - Weiwei Meng
- School of Life Science; Beijing Institute of Technology; Beijing P.R. China
| | - Yulin Deng
- School of Life Science; Beijing Institute of Technology; Beijing P.R. China
| |
Collapse
|
19
|
“Smart” molecularly imprinted monoliths for the selective capture and easy release of proteins. J Sep Sci 2016; 39:3267-73. [DOI: 10.1002/jssc.201600576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/19/2016] [Accepted: 06/20/2016] [Indexed: 12/26/2022]
|
20
|
Aikawa T, Asano Y, Kondo T, Yuasa M. Dispersion of Vesicles Composed of Industrially Produced Alkyl (Oligo) Glucoside Using Diol-Boron Complexation. J Oleo Sci 2016; 65:569-76. [DOI: 10.5650/jos.ess15215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tatsuo Aikawa
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Yuuka Asano
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
| | - Takeshi Kondo
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
- Research Institute of Science and Technology, Tokyo University of Science
| | - Makoto Yuasa
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
- Research Institute of Science and Technology, Tokyo University of Science
| |
Collapse
|
21
|
Liang Y, Geng F, Dai R, Deng Y. Enrichment of adenosine using thermally responsive chromatographic materials under friendly pH conditions. J Sep Sci 2015; 38:4036-42. [DOI: 10.1002/jssc.201500780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Yanli Liang
- The School of Life Science; Beijing Institute of Technology; Beijing China
| | - Fangfang Geng
- The School of Life Science; Beijing Institute of Technology; Beijing China
| | - Rongji Dai
- The School of Life Science; Beijing Institute of Technology; Beijing China
| | - Yulin Deng
- The School of Life Science; Beijing Institute of Technology; Beijing China
| |
Collapse
|
22
|
Liang Y, Liu Z, Dai R, Meng W, Deng Y. Influence of Graft Density of Poly (N-Isopropylacrylamide)-Grafted Silica on Separation Performance. Chromatographia 2015. [DOI: 10.1007/s10337-015-2966-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Li D, Chen Y, Liu Z. Boronate affinity materials for separation and molecular recognition: structure, properties and applications. Chem Soc Rev 2015; 44:8097-123. [PMID: 26377373 DOI: 10.1039/c5cs00013k] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Boronate affinity materials, as unique sorbents, have emerged as important media for the selective separation and molecular recognition of cis-diol-containing compounds. With the introduction of boronic acid functionality, boronate affinity materials exhibit several significant advantages, including broad-spectrum selectivity, reversible covalent binding, pH-controlled capture/release, fast association/desorption kinetics, and good compatibility with mass spectrometry. Because cis-diol-containing biomolecules, including nucleosides, saccharides, glycans, glycoproteins and so on, are the important targets in current research frontiers such as metabolomics, glycomics and proteomics, boronate affinity materials have gained rapid development and found increasing applications in the last decade. In this review, we critically survey recent advances in boronate affinity materials. We focus on fundamental considerations as well as important progress and new boronate affinity materials reported in the last decade. We particularly discuss on the effects of the structure of boronate ligands and supporting materials on the properties of boronate affinity materials, such as binding pH, affinity, selectivity, binding capacity, tolerance for interference and so on. A variety of promising applications, including affinity separation, proteomics, metabolomics, disease diagnostics and aptamer selection, are introduced with main emphasis on how boronate affinity materials can solve the issues in the applications and what merits boronate affinity materials can provide.
Collapse
Affiliation(s)
- Daojin Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing 210093, China.
| | | | | |
Collapse
|
24
|
Application of polymeric macroporous supports for temperature-responsive chromatography of pharmaceuticals. J Chromatogr A 2015; 1407:90-9. [DOI: 10.1016/j.chroma.2015.06.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/01/2015] [Accepted: 06/10/2015] [Indexed: 01/29/2023]
|
25
|
Lorenzo RA, Carro AM, Concheiro A, Alvarez-Lorenzo C. Stimuli-responsive materials in analytical separation. Anal Bioanal Chem 2015; 407:4927-48. [DOI: 10.1007/s00216-015-8679-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 02/07/2023]
|
26
|
Li D, Li Y, Li X, Bie Z, Pan X, Zhang Q, Liu Z. A high boronate avidity monolithic capillary for the selective enrichment of trace glycoproteins. J Chromatogr A 2015; 1384:88-96. [DOI: 10.1016/j.chroma.2015.01.050] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 12/12/2022]
|
27
|
Gao L, Du J, Wang C, Wei Y. Fabrication of a dendrimer-modified boronate affinity material for online selective enrichment of cis-diol-containing compounds and its application in determination of nucleosides in urine. RSC Adv 2015. [DOI: 10.1039/c5ra18443f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A high binding capacity dendrimer-modified boronate affinity material (SiO2@dBA) was synthesized and coupled with large-volume injection/online column-switching solid phase extraction to facilitate the determination process of cis-diols.
Collapse
Affiliation(s)
- Li Gao
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Jin Du
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| |
Collapse
|
28
|
Man Y, Peng G, Lv X, Liang Y, Wang Y, Chen Y, Deng Y. Microchip-Grafted P(NIPAAm-co-VPBA) with Thermoresponsive Boronate Affinity for Capture–Release of cis-Diol Biomolecules. Chromatographia 2014. [DOI: 10.1007/s10337-014-2821-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Man Y, Peng G, Wang J, Lv X, Deng Y. Microfluidic chip with thermoresponsive boronate affinity for the capture-release ofcis-diol biomolecules. J Sep Sci 2014; 38:339-45. [DOI: 10.1002/jssc.201400725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/05/2014] [Accepted: 10/27/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Yan Man
- School of Life Science; Beijing Institute of Technology; Beijing China
| | - Guang Peng
- School of Life Science; Beijing Institute of Technology; Beijing China
| | - Jianshe Wang
- School of Life Science; Beijing Institute of Technology; Beijing China
| | - Xuefei Lv
- School of Life Science; Beijing Institute of Technology; Beijing China
| | - Yulin Deng
- School of Life Science; Beijing Institute of Technology; Beijing China
| |
Collapse
|
30
|
Liu Z, Su R, Liang X, Liang Y, Deng Y, Li Y, Dai R. A thermally switchable chromatographic material for selective capture and rapid release of proteins and nucleotides. RSC Adv 2014. [DOI: 10.1039/c3ra41454j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
31
|
Gao FX, Ma XT, He XW, Li WY, Zhang YK. Smart surface imprinting polymer nanospheres for selective recognition and separation of glycoprotein. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.05.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Liu Z, Geng F, Ha X, Feng Y, Che B, Wu K, Li Y, Dai R, Zhang Y, Deng Y. Evaluation of Temperature-Responsive Open Tubular Capillary Electrochromatographic Column Modified with Poly(N-isopropylacrylamide). Chromatographia 2013. [DOI: 10.1007/s10337-012-2383-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Wang ST, Chen D, Ding J, Yuan BF, Feng YQ. Borated titania, a new option for the selective enrichment of cis-diol biomolecules. Chemistry 2012. [PMID: 23180666 DOI: 10.1002/chem.201203109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
As low abundance cis-diol biomolecules are of great significance in biological organisms, preparation of materials for the selective enrichment of such compounds is highly favorable for the development of the related proteomics and metabolomics. To this end, we have prepared monolithic borated titania by a non-aqueous sol-gel strategy as a new inorganic affinity material for the specific capture of nucleosides, glycopeptides and glycoproteins. Benefiting from the inorganic framework, this material prevented the hydrophobic interference, which was somewhat inevitable for the mainstream organic-based boronate affinity materials. The prepared material was carefully characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and nitrogen-sorption experiments to investigate the morphology and elemental composition. The excellent performance of borated titania on enrichment of cis-diol biomolecules was demonstrated by extracting the glycopeptides from horseradish peroxidase (HRP) digestion, standard glycoproteins, and nucleosides from a human-urine matrix. This kind of inorganic affinity material offers a new option for selective enrichment or separation of cis-diol biomolecules.
Collapse
Affiliation(s)
- Shao-Ting Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, PR China
| | | | | | | | | |
Collapse
|