1
|
Di Spirito NA, Grizzuti N, Pasquino R. Self-assembly of Pluronics: A critical review and relevant applications. PHYSICS OF FLUIDS 2024; 36. [DOI: 10.1063/5.0238690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Pluronics, alias poloxamers, are synthetic amphiphilic copolymers owning a triblock structure with a central hydrophobic poly(propylene oxide) (PPO) segment linked to two lateral hydrophilic poly(ethylene oxide) (PEO) chains. Commercially, Pluronics exist in numerous types according to the length of PPO and PEO chains, exhibiting different behavior and phase diagrams in solution. Concentrated aqueous solutions of Pluronics form thermoreversible gel-like systems. Properties, such as versatility, biocompatibility, nontoxicity, thermosensitivity and self-assembling behavior, make them extremely attractive for numerous applications. This review paper provides an overview on Pluronics, with a focus on their properties and phase behaviors, and on the effect of the presence of salts and additives. Different strategies to endow Pluronics with improved and extra properties, such as their chemical modification and mixed micelles, are briefly illustrated. Furthermore, a synopsis of useful experimental methodologies for understanding the flow properties of Pluronic-based systems is presented, providing a practical guide to their experimental characterization. Eventually, significant advances of Pluronic-based materials are briefly reviewed to elucidate their role in diverse applications, ranging from drug delivery and tissue engineering to bioprinting, cell cultures, personal care industry, conductive hydrogels, and electrocatalytic science. The current article is a critical review of Pluronic block copolymers, not intended as just inert materials but also as systems with functional properties able to revolutionize the paradigm of many technological fields.
Collapse
Affiliation(s)
| | - Nino Grizzuti
- DICMaPI, Università degli Studi di Napoli Federico II , P. le Tecchio 80, 80125 Napoli,
| | - Rossana Pasquino
- DICMaPI, Università degli Studi di Napoli Federico II , P. le Tecchio 80, 80125 Napoli,
| |
Collapse
|
2
|
Ou X, Karmakar B, Awwad NS, Ibrahium HA, Osman HEH, El-kott AF, Abdel-Daim MM. Au nanoparticles adorned chitosan-modified magnetic nanocomposite: An investigation towards its antioxidant and anti-hepatocarcinoma activity in vitro. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Singla P, Garg S, McClements J, Jamieson O, Peeters M, Mahajan RK. Advances in the therapeutic delivery and applications of functionalized Pluronics: A critical review. Adv Colloid Interface Sci 2022; 299:102563. [PMID: 34826745 DOI: 10.1016/j.cis.2021.102563] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/15/2021] [Accepted: 11/13/2021] [Indexed: 12/22/2022]
Abstract
Pluronic (PEO-PPO-PEO) block copolymers can form nano-sized micelles with a structure composed of a hydrophobic PPO core and hydrophilic PEO shell layer. Pluronics are U.S. Food and Drug Administration approved polymers, which are widely used for solubilization of drugs and their delivery, gene/therapeutic delivery, diagnostics, and tissue engineering applications due to their non-ionic properties, non-toxicity, micelle forming ability, excellent biocompatibility and biodegradability. Although Pluronics have been employed as drug carrier systems for several decades, numerous issues such as rapid dissolution, shorter residence time in biological media, fast clearance and weak mechanical strength have hindered their efficacy. Pluronics have been functionalized with pH-sensitive, biological-responsive moieties, antibodies, aptamers, folic acid, drugs, different nanoparticles, and photo/thermo-responsive hydrogels. These functionalization strategies enable Pluronics to act as stimuli responsive and targeted drug delivery vehicles. Moreover, Pluronics have emerged in nano-emulsion formulations and have been utilized to improve the properties of cubosomes, dendrimers and nano-sheets, including their biocompatibility and aqueous solubility. Functionalization of Pluronics results in the significant improvement of target specificity, loading capacity, biocompatibility of nanoparticles and stimuli responsive hydrogels for the promising delivery of a range of drugs. Therefore, this review presents an overview of all advancements (from the last 15 years) in functionalized Pluronics, providing a valuable tool for industry and academia in order to optimize their use in drug or therapeutic delivery, in addition to several other biomedical applications.
Collapse
Affiliation(s)
- Pankaj Singla
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Saweta Garg
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Jake McClements
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Oliver Jamieson
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Marloes Peeters
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom.
| | - Rakesh Kumar Mahajan
- Department of Chemistry, UGC-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
4
|
Song HM, Zink JI. Ag(i)-mediated self-assembly of anisotropic rods and plates in the surfactant mixture of CTAB and Pluronics. RSC Adv 2019; 9:4380-4389. [PMID: 35520198 PMCID: PMC9060553 DOI: 10.1039/c8ra10517k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/29/2019] [Indexed: 11/21/2022] Open
Abstract
One-dimensional (1D) metallogels are commonly observed in metal-coordinated complexes, but there are not many examples of soft crystalline solids which are generated by the self-assembly of metal–polymer complexation in a non-gel state. In a continued effort to obtain 1D materials by utilizing the tendency of Pluronic triblock copolymers to be micellized anisotropically at an elevated temperature, we investigate Ag(i)-mediated self-assembly of the surfactant mixture of Pluronic copolymers and cetyltrimethylammonium bromide (CTAB). At sufficiently high temperature, Pluronic copolymers are known to organize into many crystalline mesophases, such as body-centered-cubic, hexagonal, and lamellar phases. Four Pluronics of L-31, L-64, P-123, and F-108 were studied, and at the concentration of 17.9%, macroscale 1D rods with the aspect ratios ranging from 3.07 to 12.8 are obtained. At the concentration of 35.7%, anisotropic two dimensional (2D) planar plates are observed. These planar structures were believed to be generated from 2D lamellar mesophases, which is consistent with the general phase diagram of Pluronic copolymers that shows lamellar phase with the highest concentration. In the absence of ascorbic acid, rods and plates of larger size are produced. Rather than as a reductant, ascorbic acid is thought to play the roles of an agent to increase the hydrophilicity, and as a mediator to determine the dimension of rods and plates by hindering the long range self-assembly of alkyl chains. Dehydration by the addition of AgNO3, and the increase of hydrophobicity enable self-assembly of alkyl groups of CTAB and Pluronics and promote the formation of crystalline soft solids. Macroscale anisotropic rods and plates were generated by the self-assembly of CTAB and Pluronics in the presence of AgNO3.![]()
Collapse
Affiliation(s)
- Hyon-Min Song
- Department of Chemistry
- Dong-A University
- Busan 604-714
- South Korea
| | - Jeffrey I. Zink
- Department of Chemistry and Biochemistry
- University of California
- Los Angeles
- USA
| |
Collapse
|
5
|
Liu S, Wang Z, Ban M, Song P, Song X, Khan B. Chelation–assisted in situ self-assembly route to prepare the loose PAN–based nanocomposite membrane for dye desalination. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Ling L, Ismail M, Du Y, Xia Q, He W, Yao C, Li X. High Drug Loading, Reversible Disulfide Core-Cross-Linked Multifunctional Micelles for Triggered Release of Camptothecin. Mol Pharm 2018; 15:5479-5492. [DOI: 10.1021/acs.molpharmaceut.8b00585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Longbing Ling
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Muhammad Ismail
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yawei Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Qing Xia
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Wei He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Chen Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
7
|
Bodratti AM, Alexandridis P. Amphiphilic block copolymers in drug delivery: advances in formulation structure and performance. Expert Opin Drug Deliv 2018; 15:1085-1104. [DOI: 10.1080/17425247.2018.1529756] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Andrew M. Bodratti
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| |
Collapse
|
8
|
Skinner M, Johnston BM, Liu Y, Hammer B, Selhorst R, Xenidou I, Perry SL, Emrick T. Synthesis of Zwitterionic Pluronic Analogs. Biomacromolecules 2018; 19:3377-3389. [PMID: 30024744 DOI: 10.1021/acs.biomac.8b00676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Novel polymer amphiphiles with chemical structures designed as zwitterionic analogs of Pluronic block copolymers were prepared by controlled free radical polymerization of phosphorylcholine (PC) or choline phosphate (CP) methacrylate monomers from a difunctional poly(propylene oxide) (PPO) macroinitiator. Well-defined, water-dispersible zwitterionic triblock copolymers, or "zwitteronics", were prepared with PC content ranging from 5 to 47 mol percent and composition-independent surfactant characteristics in water, which deviate from the properties of conventional Pluronic amphiphiles. These PC-zwitteronics assembled into nanoparticles in water, with tunable sizes and critical aggregation concentrations (CACs) based on their hydrophilic-lipophilic balance (HLB). Owing to the lower critical solution temperature (LCST) miscibility of the hydrophobic PPO block in water, PC-zwitteronics exhibited thermoreversible aqueous solubility tuned by block copolymer composition. The chemical versatility of this approach was demonstrated by embedding functionality, in the form of alkyne groups, directly into the zwitterion moieties. These alkynes proved ideal for cross-linking the zwitteronic nanoparticles and for generating nanoparticle-cross-linked hydrogels using UV-initiated thiol-yne "click" chemistry.
Collapse
|
9
|
Bhaw-Luximon A, Jhurry D. Redox-responsive Drug Delivery Systems. STIMULI-RESPONSIVE DRUG DELIVERY SYSTEMS 2018. [DOI: 10.1039/9781788013536-00109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Disbalanced reactive oxygen species (ROS) and glutathione (GSH) are characteristic features of tumor cells. High intracellular GSH concentration in tumor cells is a well-documented fact that leads to a very high reducing intracellular bio-milieu. High accumulation of ROS is known to occur in almost all cancers and can act as a two-edged sword during tumor development, by either promoting or inhibiting growth. These two features present unique opportunities to design drug delivery systems that are responsive to reduction or/and oxidation stimuli and has attracted accrued interest from researchers. These nanocarriers change their structural integrity, either through disassembly or degradation, to deliver their payload in the presence of the trigger. The aim of this chapter is to summarize the key developments in the design of materials with redox-responsive behaviour and their subsequent application in the field of nanomedicine targeting cancer. Strategies into exploiting both stimuli in a single nano drug delivery system to enhance therapeutic efficacy are also addressed.
Collapse
Affiliation(s)
- Archana Bhaw-Luximon
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius Réduit Mauritius
| | - Dhanjay Jhurry
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius Réduit Mauritius
| |
Collapse
|
10
|
Han L, Zhang XY, Wang YL, Li X, Yang XH, Huang M, Hu K, Li LH, Wei Y. Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials. J Control Release 2017; 259:40-52. [DOI: 10.1016/j.jconrel.2017.03.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/23/2017] [Accepted: 03/08/2017] [Indexed: 12/19/2022]
|
11
|
Quinn JF, Whittaker MR, Davis TP. Glutathione responsive polymers and their application in drug delivery systems. Polym Chem 2017. [DOI: 10.1039/c6py01365a] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Materials which respond to biological cues are the subject of intense research interest due to their possible application in smart drug delivery vehicles.
Collapse
Affiliation(s)
- John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| |
Collapse
|
12
|
Cho J, Wang M, Gonzalez-Lepera C, Mawlawi O, Cho SH. Development of bimetallic (Zn@Au) nanoparticles as potential PET-imageable radiosensitizers. Med Phys 2016; 43:4775. [PMID: 27487895 PMCID: PMC4967079 DOI: 10.1118/1.4958961] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/16/2016] [Accepted: 07/03/2016] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Gold nanoparticles (GNPs) are being investigated actively for various applications in cancer diagnosis and therapy. As an effort to improve the imaging of GNPs in vivo, the authors developed bimetallic hybrid Zn@Au NPs with zinc cores and gold shells, aiming to render them in vivo visibility through positron emission tomography (PET) after the proton activation of the zinc core as well as capability to induce radiosensitization through the secondary electrons produced from the gold shell when irradiated by various radiation sources. METHODS Nearly spherical zinc NPs (∼5-nm diameter) were synthesized and then coated with a ∼4.25-nm gold layer to make Zn@Au NPs (∼13.5-nm total diameter). 28.6 mg of these Zn@Au NPs was deposited (∼100 μm thick) on a thin cellulose target and placed in an aluminum target holder and subsequently irradiated with 14.15-MeV protons from a GE PETtrace cyclotron with 5-μA current for 5 min. After irradiation, the cellulose matrix with the NPs was placed in a dose calibrator to assess the induced radioactivity. The same procedure was repeated with 8-MeV protons. Gamma ray spectroscopy using an high-purity germanium detector was conducted on a very small fraction (<1 mg) of the irradiated NPs for each proton energy. In addition to experimental measurements, Monte Carlo simulations were also performed with radioactive Zn@Au NPs and solid GNPs of the same size irradiated with 160-MeV protons and 250-kVp x-rays. RESULTS The authors measured 168 μCi of activity 32 min after the end of bombardment for the 14.15-MeV proton energy sample using the (66)Ga setting on a dose calibrator; activity decreased to 2 μCi over a 24-h period. For the 8-MeV proton energy sample, PET imaging was additionally performed for 5 min after a 12-h delay. A 12-h gamma ray spectrum showed strong peaks at 511 keV (2.05 × 10(6) counts) with several other peaks of smaller magnitude for each proton energy sample. PET imaging showed strong PET signals from mostly decaying (66)Ga. The Monte Carlo results showed that radioactive Zn@Au NPs and solid GNPs provided similar characteristics in terms of their secondary electron spectra when irradiated. CONCLUSIONS The Zn@Au NPs developed in this investigation have the potential to be used as PET-imageable radiosensitizers for radiotherapy applications as well as PET tracers for molecular imaging applications.
Collapse
Affiliation(s)
- Jongmin Cho
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Min Wang
- Department of Chemistry, Rice University, Houston, Texas 77005
| | - Carlos Gonzalez-Lepera
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Osama Mawlawi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Sang Hyun Cho
- Departments of Radiation Physics and Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
13
|
Tian L, Lu L, Qiao Y, Ravi S, Salatan F, Melancon MP. Stimuli-Responsive Gold Nanoparticles for Cancer Diagnosis and Therapy. J Funct Biomater 2016. [PMID: 27455336 PMCID: PMC5040992 DOI: 10.3390/jfb7030019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An emerging concept is that cancers strongly depend on both internal and external signals for growth and invasion. In this review, we will discuss pathological and physical changes in the tumor microenvironment and how these changes can be exploited to design gold nanoparticles for cancer diagnosis and therapy. These intrinsic changes include extracellular and intracellular pH, extracellular matrix enzymes, and glutathione concentration. External stimuli include the application of laser, ultrasound and X-ray. The biology behind these changes and the chemistry behind the responding mechanisms to these changes are reviewed. Examples of recent in vitro and in vivo studies are also presented, and the clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Li Tian
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Linfeng Lu
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA;
| | - Yang Qiao
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Saisree Ravi
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA;
| | - Ferandre Salatan
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Graduate School for Biomedical Science, University of Texas Health Science Center at Houston, 6767 Bertner Ave., Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-794-5387
| |
Collapse
|
14
|
Tian L, Lu L, Qiao Y, Ravi S, Salatan F, Melancon MP. Stimuli-Responsive Gold Nanoparticles for Cancer Diagnosis and Therapy. J Funct Biomater 2016; 7:E19. [PMID: 27455336 PMCID: PMC5040992 DOI: 10.3390/jfb7020019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 01/03/2023] Open
Abstract
An emerging concept is that cancers strongly depend on both internal and external signals for growth and invasion. In this review, we will discuss pathological and physical changes in the tumor microenvironment and how these changes can be exploited to design gold nanoparticles for cancer diagnosis and therapy. These intrinsic changes include extracellular and intracellular pH, extracellular matrix enzymes, and glutathione concentration. External stimuli include the application of laser, ultrasound and X-ray. The biology behind these changes and the chemistry behind the responding mechanisms to these changes are reviewed. Examples of recent in vitro and in vivo studies are also presented, and the clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Li Tian
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Linfeng Lu
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA;
| | - Yang Qiao
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Saisree Ravi
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA;
| | - Ferandre Salatan
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (L.T.); (Y.Q.); (F.S.)
- Graduate School for Biomedical Science, University of Texas Health Science Center at Houston, 6767 Bertner Ave., Houston, TX 77030, USA
| |
Collapse
|
15
|
Chattoraj S, Amin A, Jana B, Mohapatra S, Ghosh S, Bhattacharyya K. Selective Killing of Breast Cancer Cells by Doxorubicin-Loaded Fluorescent Gold Nanoclusters: Confocal Microscopy and FRET. Chemphyschem 2015; 17:253-9. [PMID: 26615975 DOI: 10.1002/cphc.201500982] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 11/26/2015] [Indexed: 12/22/2022]
Abstract
Fluorescent gold nanoclusters (AuNCs) capped with lysozymes are used to deliver the anticancer drug doxorubicin to cancer and noncancer cells. Doxorubicin-loaded AuNCs cause the highly selective and efficient killing (90 %) of breast cancer cells (MCF7) (IC50 =155 nm). In contrast, the killing of the noncancer breast cells (MCF10A) by doxorubicin-loaded AuNCs is only 40 % (IC50 =4500 nm). By using a confocal microscope, the fluorescence spectrum and decay of the AuNCs were recorded inside the cell. The fluorescence maxima (at ≈490-515 nm) and lifetime (≈2 ns), of the AuNCs inside the cells correspond to Au10-13 . The intracellular release of doxorubicin from AuNCs is monitored by Förster resonance energy transfer (FRET) imaging.
Collapse
Affiliation(s)
- Shyamtanu Chattoraj
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India), Fax
| | - Asif Amin
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India), Fax
| | - Batakrishna Jana
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700 032, India
| | - Saswat Mohapatra
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700 032, India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, 700 032, India.
| | - Kankan Bhattacharyya
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India), Fax.
| |
Collapse
|
16
|
Xia Y, You P, Xu F, Liu J, Xing F. Novel Functionalized Selenium Nanoparticles for Enhanced Anti-Hepatocarcinoma Activity In vitro. NANOSCALE RESEARCH LETTERS 2015; 10:1051. [PMID: 26334544 PMCID: PMC4558992 DOI: 10.1186/s11671-015-1051-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/17/2015] [Indexed: 05/26/2023]
Abstract
Selenium nanoparticles loaded with an anticancer molecule offer a new strategy for cancer treatment. In the current study, anisomycin-loaded functionalized selenium nanoparticles (SeNPs@Am) have been made by conjugating anisomycin to the surface of selenium nanoparticles to improve anticancer efficacy. The prepared nanoparticles were fully characterized by transmission electronic microscopy, energy dispersive X-ray spectroscopy, Fourier-transformed infrared spectroscopy, and X-ray photoelectron spectroscopy. The results showed that anisomycin was successfully conjugated with selenium nanoparticles. The size of particles could be effectively regulated through altering the reaction concentrations of sodium selenite and anisomycin. The SeNPs@Am particles (56 nm) exhibited the greatest capacity for cellular uptake. The further study showed that SeNPs@Am entered human hepatocellular carcinoma HepG2 cells in a dose or time-dependent manner via macropinocytosis and clathrin-mediated endocytosis pathways. SeNPs@Am significantly inhibited HepG2 cell proliferation with the low cytotoxicity against normal cells, and dramatically precluded the aggression and migration of HepG2 cells. It also arrested the cell cycle progression at the G0/G1 phase through the activation of the cyclin-dependent kinase inhibitors with inhibition of CDK-2 and ICBP90, and induced the cell apoptosis through activating the caspase cascade signaling in HepG2 cells, markedly superior to anisomycin alone. The findings indicate that SeNPs@Am may be a promising drug for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yu Xia
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Pengtao You
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Fangfang Xu
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Jing Liu
- Department of Stomatology, Jinan University, Guangzhou, 510632 People’s Republic of China
| | - Feiyue Xing
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, 510632 People’s Republic of China
| |
Collapse
|
17
|
Yin Q, Yin L, Wang H, Cheng J. Synthesis and biomedical applications of functional poly(α-hydroxy acids) via ring-opening polymerization of O-carboxyanhydrides. Acc Chem Res 2015; 48:1777-87. [PMID: 26065588 DOI: 10.1021/ar500455z] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Poly(α-hydroxy acids) (PAHAs) are a class of biodegradable and biocompatible polymers that are widely used in numerous applications. One drawback of these conventional polymers, however, is their lack of side-chain functionalities, which makes it difficult to conjugate active moieties to PAHA or to fine-tune the physical and chemical properties of PAHA-derived materials through side-chain modifications. Thus, extensive efforts have been devoted to the development of methodology that allows facile preparation of PAHAs with controlled molecular weights and a variety of functionalities for widespread utilities. However, it is highly challenging to introduce functional groups into conventional PAHAs derived from ring-opening polymerization (ROP) of lactides and glycolides to yield functional PAHAs with favorable properties, such as tunable hydrophilicity/hydrophobicity, facile postpolymerization modification, and well-defined physicochemical properties. Amino acids are excellent resources for functional polymers because of their low cost, availability, and structural as well as stereochemical diversity. Nevertheless, the synthesis of functional PAHAs using amino acids as building blocks has been rarely reported because of the difficulty of preparing large-scale monomers and poor yields during the synthesis. The synthesis of functionalized PAHAs from O-carboxyanhydrides (OCAs), a class of five-membered cyclic anhydrides derived from amino acids, has proven to be one of the most promising strategies and has thus attracted tremendous interest recently. In this Account, we highlight the recent progress in our group on the synthesis of functional PAHAs via ROP of OCAs and their self-assembly and biomedical applications. New synthetic methodologies that allow the facile preparation of PAHAs with controlled molecular weights and various functionalities through ROP of OCAs are reviewed and evaluated. The in vivo stability, side-chain functionalities, and/or trigger responsiveness of several functional PAHAs are evaluated. Their biomedical applications in drug and gene delivery are also discussed. The ready availability of starting materials from renewable resources and the facile postmodification strategies such as azide-alkyne cycloaddition and the thiol-yne "click" reaction have enabled the production of a multitude of PAHAs with controlled molecular weights, narrow polydispersity, high terminal group fidelities, and structural diversities that are amenable for self-assembly and bioapplications. We anticipate that this new generation of PAHAs and their self-assembled nanosystems as biomaterials will open up exciting new opportunities and have widespread utilities for biological applications.
Collapse
Affiliation(s)
- Qian Yin
- Department
of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Lichen Yin
- Institute
of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices and Collaborative
Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Hua Wang
- Department
of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jianjun Cheng
- Department
of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Wong PT, Choi SK. Mechanisms of Drug Release in Nanotherapeutic Delivery Systems. Chem Rev 2015; 115:3388-432. [DOI: 10.1021/cr5004634] [Citation(s) in RCA: 349] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pamela T. Wong
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Seok Ki Choi
- Michigan
Nanotechnology Institute
for Medicine and Biological Sciences, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
19
|
Jeon S, Ko H, Vijayakameswara Rao N, Yoon HY, You DG, Han HS, Um W, Saravanakumar G, Park JH. A versatile gold cross-linked nanoparticle based on triblock copolymer as the carrier of doxorubicin. RSC Adv 2015. [DOI: 10.1039/c5ra14044g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gold cross-linked nanoparticles based on PCL-b-PDMAEMA-b-PEG triblock copolymer has been developed as a carrier for anticancer drugs with enhanced biostability.
Collapse
Affiliation(s)
- Sangmin Jeon
- School of Chemical Engineering
- College of Engineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| | - Hyewon Ko
- Department of Health Sciences and Technology
- SAIHST
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| | - N. Vijayakameswara Rao
- School of Chemical Engineering
- College of Engineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| | - Hong Yeol Yoon
- School of Chemical Engineering
- College of Engineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| | - Dong Gil You
- School of Chemical Engineering
- College of Engineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| | - Hwa Seung Han
- School of Chemical Engineering
- College of Engineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| | - Wooram Um
- Department of Health Sciences and Technology
- SAIHST
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| | - Gurusamy Saravanakumar
- School of Chemical Engineering
- College of Engineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering
- College of Engineering
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
| |
Collapse
|
20
|
Chen W, Shah LA, Yuan L, Siddiq M, Hu J, Yang D. Polymer–paclitaxel conjugates based on disulfide linkers for controlled drug release. RSC Adv 2015. [DOI: 10.1039/c4ra12856g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Controlled drug delivery system based on hydrophilic diblock copolymer covalently linked paclitaxel (PTX) via a disulfide linker.
Collapse
Affiliation(s)
- Wulian Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Luqman Ali Shah
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Li Yuan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Mohammad Siddiq
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Jianhua Hu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Dong Yang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
21
|
Sun H, Meng F, Cheng R, Deng C, Zhong Z. Reduction-responsive polymeric micelles and vesicles for triggered intracellular drug release. Antioxid Redox Signal 2014; 21:755-67. [PMID: 24279980 PMCID: PMC4098852 DOI: 10.1089/ars.2013.5733] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 11/26/2013] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE The therapeutic effects of current micellar and vesicular drug formulations are restricted by slow and inefficient drug release at the pathological site. The development of smart polymeric nanocarriers that release drugs upon arriving at the target site has received a tremendous amount of attention for cancer therapy. RECENT ADVANCES Taking advantage of a high reducing potential in the tumor tissues and in particular inside the tumor cells, various reduction-sensitive polymeric micelles and vesicles have been designed and explored for triggered anticancer drug release. These reduction-responsive nanosystems have demonstrated several unique features, such as good stability under physiological conditions, fast response to intracellular reducing environment, triggering drug release right in the cytosol and cell nucleus, and significantly improved antitumor activity, compared to traditional reduction-insensitive counterparts. CRITICAL ISSUES Although reduction-sensitive micelles and polymersomes have accomplished rapid intracellular drug release and enhanced in vitro antitumor effect, their fate inside the cells including the mechanism, site, and rate of reduction reaction remains unclear. Moreover, the systemic fate and performance of reduction-sensitive polymeric drug formulations have to be investigated. FUTURE DIRECTIONS Biophysical studies should be carried out to gain insight into the degradation and drug release behaviors of reduction-responsive nanocarriers inside the tumor cells. Furthermore, novel ligand-decorated reduction-sensitive nanoparticulate drug formulations should be designed and explored for targeted cancer therapy in vivo.
Collapse
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
22
|
Yang S, Luo X. Mesoporous nano/micro noble metal particles: synthesis and applications. NANOSCALE 2014; 6:4438-57. [PMID: 24676151 DOI: 10.1039/c3nr06858g] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The morphology, size and composition often govern the physical and chemical properties of noble metal units with a size in the nano or micro scale. Thus, the controlled growth of noble metal crystals would help to tailor their unique properties and this would be followed by their practical application. Mesoporous nano/micro noble metal units are types of nanostructured material that have fascinating properties that can generate great potential for various applications. This review presents a general view on the growth mechanisms of porous noble metal units and is focused on recent progresses in their synthetic approaches. Then, their potential applications in the field of drug delivery, cell imaging and SERS substrates, as well as fuel cell catalysts are overviewed.
Collapse
Affiliation(s)
- Shengchun Yang
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, School of Science, Xi'an Jiaotong University, Shann Xi, 710049, People's Republic of China.
| | | |
Collapse
|
23
|
Liu J, Detrembleur C, Hurtgen M, Debuigne A, De Pauw-Gillet MC, Mornet S, Duguet E, Jérôme C. Thermo-responsive gold/poly(vinyl alcohol)-b-poly(N-vinylcaprolactam) core–corona nanoparticles as a drug delivery system. Polym Chem 2014. [DOI: 10.1039/c4py00352g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preparation of thermo-responsive poly(vinyl alcohol)-b-poly(N-vinylcaprolactam) copolymer-stabilized gold nanoparticles for drug delivery.
Collapse
Affiliation(s)
- Ji Liu
- Center for Education and Research on Macromolecules (CERM)
- University of Liège
- B-4000 Liège, Belgium
- CNRS
- Univ. Bordeaux
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM)
- University of Liège
- B-4000 Liège, Belgium
| | - Marie Hurtgen
- Center for Education and Research on Macromolecules (CERM)
- University of Liège
- B-4000 Liège, Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM)
- University of Liège
- B-4000 Liège, Belgium
| | | | | | | | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM)
- University of Liège
- B-4000 Liège, Belgium
| |
Collapse
|
24
|
Wang H, Tang L, Tu C, Song Z, Yin Q, Yin L, Zhang Z, Cheng J. Redox-responsive, core-cross-linked micelles capable of on-demand, concurrent drug release and structure disassembly. Biomacromolecules 2013; 14:3706-12. [PMID: 24003893 DOI: 10.1021/bm401086d] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We developed camptothecin (CPT)-conjugated, core-cross-linked (CCL) micelles that are subject to redox-responsive cleavage of the built-in disulfide bonds, resulting in disruption of the micellar structure and rapid release of CPT. CCL micelles were prepared via coprecipitation of disulfide-containing CPT-poly(tyrosine(alkynyl)-OCA) conjugate and monomethoxy poly(ethylene glycol)-b-poly(tyrosine(alkynyl)-OCA), followed by cross-linking of the micellar core via azide-alkyne click chemistry. CCL micelles exhibited excellent stability under physiological conditions, while they underwent rapid dissociation in reduction circumstance, resulting in burst release of CPT. These redox-responsive CCL micelles showed enhanced cytotoxicity against human breast cancer cells in vitro.
Collapse
Affiliation(s)
- Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Sun H, Meng F, Cheng R, Deng C, Zhong Z. Reduction-sensitive degradable micellar nanoparticles as smart and intuitive delivery systems for cancer chemotherapy. Expert Opin Drug Deliv 2013; 10:1109-22. [DOI: 10.1517/17425247.2013.783009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Tao Y, Han J, Wang X, Dou H. Nano-formulation of paclitaxel by vitamin E succinate functionalized pluronic micelles for enhanced encapsulation, stability and cytotoxicity. Colloids Surf B Biointerfaces 2013; 102:604-10. [DOI: 10.1016/j.colsurfb.2012.08.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/10/2012] [Accepted: 08/31/2012] [Indexed: 01/25/2023]
|
27
|
Qiao J, Mu X, Qi L. A versatile method for the preparation of poly-acrylamide derivative functionalized thermo-responsive gold nanoparticles. J Mater Chem B 2013; 1:5756-5761. [DOI: 10.1039/c3tb21169j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Bhattacharjee J, Verma G, Aswal VK, Patravale V, Hassan PA. Microstructure, drug binding and cytotoxicity of Pluronic P123–aerosol OT mixed micelles. RSC Adv 2013. [DOI: 10.1039/c3ra44983a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
29
|
Tao Y, Han J, Dou H. Surface modification of paclitaxel-loaded polymeric nanoparticles: Evaluation of in vitro cellular behavior and in vivo pharmacokinetic. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|