1
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Benner NL, Near KE, Bachmann MH, Contag CH, Waymouth RM, Wender PA. Functional DNA Delivery Enabled by Lipid-Modified Charge-Altering Releasable Transporters (CARTs). Biomacromolecules 2018; 19:2812-2824. [PMID: 29727572 PMCID: PMC6542359 DOI: 10.1021/acs.biomac.8b00401] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Safe and effective DNA delivery systems are required to enable or enhance clinical strategies and research involving gene therapy and DNA vaccinations. To address this delivery problem, a series of charge-altering releasable transporters (CARTs) with varied lipid content were prepared and evaluated for plasmid DNA (pDNA) delivery into cultured cells. These lipid-modified CART co-oligomers were synthesized in only two steps via sequential organocatalytic ring-opening polymerization of lipid-containing cyclic carbonate monomers and morpholinone monomers. Lipid variations of the CARTs substantially impacted the delivery efficiency of pDNA, with oleyl- and linoleyl-based CARTs showing enhanced performance relative to the commercial transfection agent Lipofectamine 2000 (L2000). The best-performing oleyl CART was carried forward to study stable luciferase transfection with a Sleeping Beauty ( SB) transposon system. The oleyl CART outperformed the L2000 positive control with respect to stable transfection efficiency. CART-pDNA complexes represent a new DNA delivery system for research and clinical applications.
Collapse
Affiliation(s)
- Nancy L. Benner
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Katherine E. Near
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael H. Bachmann
- Department of Pediatrics, Stanford University, Stanford, California 94305, United States
| | - Christopher H. Contag
- Department of Pediatrics, Stanford University, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Robert M. Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Bansal R, Seth B, Tiwari S, Jahan S, Kumari M, Pant AB, Chaturvedi RK, Kumar P, Gupta KC. Hexadecylated linear PEI self-assembled nanostructures as efficient vectors for neuronal gene delivery. Drug Deliv Transl Res 2018; 8:1436-1449. [DOI: 10.1007/s13346-018-0517-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Wu Y, Smith AE, Reineke TM. Lipophilic Polycation Vehicles Display High Plasmid DNA Delivery to Multiple Cell Types. Bioconjug Chem 2017; 28:2035-2040. [PMID: 28731685 DOI: 10.1021/acs.bioconjchem.7b00306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A class of cationic poly(alkylamidoamine)s (PAAAs) containing lipophilic methylene linkers were designed and examined as in vitro plasmid DNA (pDNA) delivery agents. The PAAAs were synthesized via step-growth polymerization between a diamine monomer and each of four different diacid chloride monomers with varying methylene linker lengths, including glutaryl chloride, adipoyl chloride, pimeloyl chloride, and suberoyl chloride, which served to systematically increase the lipophilicity of the polymers. The synthesized polymers successfully complexed with pDNA in reduced serum medium at N/P ratios of 5 and greater, resulting in polyplexes with hydrodynamic diameters of approximately 1 μm. These polyplexes were tested for in vitro transgene expression and cytotoxicity using HDFa (human dermal fibroblast), HeLa (human cervical carcinoma), HMEC (human mammary epithelial), and HUVEC (human umbilical vein endothelial) cells. Interestingly, select PAAA polyplex formulations were found to be more effective than Lipofectamine 2000 at promoting transgene expression (GFP) while maintaining comparable or higher cell viability. Transgene expression was highest in HeLa cells (∼90% for most formulations) and lowest in HDFa cells (up to ∼20%) as measured by GFP fluorescence. In addition, the cytotoxicity of PAAA polyplex formulations was significantly increased as the molecular weight, N/P ratio, and methylene linker length were increased. The PAAA vehicles developed herein provide a new delivery vehicle design strategy of displaying attributes of both polycations and lipids, which show promise as a tunable scaffold for refining the structure-activity-toxicity profiles for future genome editing studies.
Collapse
Affiliation(s)
- Yaoying Wu
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Adam E Smith
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.,Department of Chemical Engineering, University of Mississippi , 134 Anderson, University, Mississippi 38677, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Bansal R, Kumar P. Engineered polymeric amphiphiles self-assembling into nanostructures and acting as efficient gene and drug carriers. J Biomater Appl 2017; 32:40-53. [PMID: 28532300 DOI: 10.1177/0885328217710125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nonviral gene delivery systems are finding widespread use due to their safety, rapid and economical production, and ease of modification. In this work, series of N-alkyl-substituted linear polyethylenimine (CP) polymers have been synthesized, characterized, and investigated about how degree of substitution (hydrophobic-hydrophilic balance) (i.e. N-alkylation) influenced the transfection efficiency. Mobility shift assay demonstrated efficient binding of plasmid DNA (pDNA). Transfection efficiency and cytotoxicity of CP polymers were assessed in vitro, which revealed that all the formulations exhibited higher transfection activity than linear polyethylenimine (lPEI) and commercial transfection reagents, Lipofectamine and Superfect, with negligible toxicity (MTT assay). In the projected series, one of the formulations, CP-3-pDNA complex, displayed the highest transfection efficiency (∼1.6-12 folds vs. lPEI and commercial transfection reagents) and effectively carried GFP-specific siRNA inside the cells as monitored by measuring the suppression in the gene expression of the target gene. Further, flow cytometry experiments confirmed that CP-3-pDNA complex transfected the highest number of cells. Besides, CP-3 was also evaluated in terms of its capability to entrap hydrophobic drug molecules. The results showed that it efficiently encapsulated an anti-cancer drug, etoposide, and released it in a controlled fashion over a period of time. Altogether, the data support that CP-3 is a promising vector for nucleic acid as well as hydrophobic drug delivery.
Collapse
Affiliation(s)
- Ruby Bansal
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Pradeep Kumar
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
6
|
Wan W, Yang X, Smith RC. Convenient synthetic route to tetraarylphosphonium polyelectrolytes via palladium-catalyzed P-C coupling of aryl triflates and diphenylphosphine. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wang Wan
- Department of Chemistry; Clemson University; Clemson South Carolina 29634
| | - Xiaoyan Yang
- Department of Chemistry; Clemson University; Clemson South Carolina 29634
| | - Rhett C. Smith
- Department of Chemistry; Clemson University; Clemson South Carolina 29634
- Center for Optical Materials Science and Engineering Technologies; Clemson University; Anderson South Carolina 29634
| |
Collapse
|
7
|
Abstract
Phosphonium salt-containing polymers have very recently started to emerge as attractive materials for engineering non-viral gene delivery systems.
Collapse
Affiliation(s)
- Vanessa Loczenski Rose
- School of Pharmacy
- Boots Science Building
- University Park
- University of Nottingham
- Nottingham NG7 2RD
| | - Francesca Mastrotto
- School of Pharmacy
- Boots Science Building
- University Park
- University of Nottingham
- Nottingham NG7 2RD
| | - Giuseppe Mantovani
- School of Pharmacy
- Boots Science Building
- University Park
- University of Nottingham
- Nottingham NG7 2RD
| |
Collapse
|
8
|
Kang KS, Lee HU, Kim MI, Park SY, Chang SJ, Park JH, Huh YS, Lee J, Yang M, Lee YC, Park HG. In-vitro cytotoxicity assessment of carbon-nanodot-conjugated Fe-aminoclay (CD-FeAC) and its bio-imaging applications. J Nanobiotechnology 2015; 13:88. [PMID: 26612177 PMCID: PMC4662025 DOI: 10.1186/s12951-015-0151-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/18/2015] [Indexed: 11/28/2022] Open
Abstract
We have investigated the cytotoxic assay of Fe-aminoclay (FeAC) nanoparticles (NPs) and simultaneous imaging in HeLa cells by photoluminescent carbon nanodots (CD) conjugation. Non-cytotoxic, photostable, and CD NPs are conjugated with cationic FeAC NPs where CD NPs play a role in bio-imaging and FeAC NPs act as a substrate for CD conjugation and help to uptake of NPs into cancer cells due to positively charged surface of FeAC NPs in physiological media. As increase of CD-FeAC NPs loading in HeLa cell in vitro, it showed slight cytotoxicity at 1000 μg/mL but no cytotoxicity for normal cells up to concentration of 1000 μg/mL confirmed by two 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and neutral red (NR) assays, with further observations by 4',6-diamidino-2-phenylindole (DAPI) stained confocal microscopy images, possessing that CD-FeAC NPs can be used as potential drug delivery platforms in cancer cells with simultaneous imaging. Graphical abstract CD conjugation with organo-building blocks of delaminated FeAC NPs.
Collapse
Affiliation(s)
- Kyoung Suk Kang
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehakno, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| | - Hyun Uk Lee
- Advanced Nano-Surface Research Group, Korea Basic Science Institute (KBSI), Daejeon, 305-333, Republic of Korea.
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, Republic of Korea.
| | - So Young Park
- Advanced Nano-Surface Research Group, Korea Basic Science Institute (KBSI), Daejeon, 305-333, Republic of Korea.
| | - Sung-Jin Chang
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 156-756, Republic of Korea.
| | - Ji-Ho Park
- Department of Bio and Brain Engineering (BK21+ Program), KAIST, 291 Daehakno, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| | - Yun Suk Huh
- Department of Biological Engineering, College of Engineering, Inha University, Incheon, 402-751, Republic of Korea.
| | - Jouhahn Lee
- Advanced Nano-Surface Research Group, Korea Basic Science Institute (KBSI), Daejeon, 305-333, Republic of Korea.
| | - Mino Yang
- Division of Analytical Research, Korea Basic Science Institute (KBSI), Gangneung, 200-701, Republic of Korea.
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, Republic of Korea.
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, 291 Daehakno, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
9
|
Bansal R, Gupta KC, Kumar P. Biodegradable and versatile polyethylenimine derivatives efficiently transfer DNA and siRNA into mammalian cells. Colloids Surf B Biointerfaces 2015; 135:661-668. [DOI: 10.1016/j.colsurfb.2015.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/23/2015] [Accepted: 08/18/2015] [Indexed: 01/25/2023]
|
10
|
From broad-spectrum biocides to quorum sensing disruptors and mussel repellents: antifouling profile of alkyl triphenylphosphonium salts. PLoS One 2015; 10:e0123652. [PMID: 25897858 PMCID: PMC4405350 DOI: 10.1371/journal.pone.0123652] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/19/2015] [Indexed: 01/30/2023] Open
Abstract
'Onium' compounds, including ammonium and phosphonium salts, have been employed as antiseptics and disinfectants. These cationic biocides have been incorporated into multiple materials, principally to avoid bacterial attachment. In this work, we selected 20 alkyl-triphenylphosphonium salts, differing mainly in the length and functionalization of their alkyl chains, in fulfilment of two main objectives: 1) to provide a comprehensive evaluation of the antifouling profile of these molecules with relevant marine fouling organisms; and 2) to shed new light on their potential applications, beyond their classic use as broad-spectrum biocides. In this regard, we demonstrate for the first time that these compounds are also able to act as non-toxic quorum sensing disruptors in two different bacterial models (Chromobacterium violaceum and Vibrio harveyi) as well as repellents in the mussel Mytilus galloprovincialis. In addition, their inhibitory activity on a fouling-relevant enzymatic model (tyrosinase) is characterized. An analysis of the structure-activity relationships of these compounds for antifouling purposes is provided, which may result useful in the design of targeted antifouling solutions with these molecules. Altogether, the findings reported herein provide a different perspective on the biological activities of phosphonium compounds that is particularly focused on, but, as the reader will realize, is not limited to their use as antifouling agents.
Collapse
|
11
|
Bansal R, Tayal S, Gupta KC, Kumar P. Bioreducible polyethylenimine nanoparticles for the efficient delivery of nucleic acids. Org Biomol Chem 2015; 13:3128-35. [DOI: 10.1039/c4ob02614d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrostatically crosslinked bioreducible nanoparticles of polyethylenimine (DP NPs) have been prepared and evaluated for their cytotoxicity and capability to transport nucleic acids inside the cells.
Collapse
Affiliation(s)
- Ruby Bansal
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi-110007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Shweta Tayal
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi-110007
- India
| | - K. C. Gupta
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi-110007
- India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi-110007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
12
|
Bansal R, Pathak R, Jha D, Kumar P, Gautam HK. Enhanced Antimicrobial Activity of Amine-Phosphonium (N-P) Hybrid Polymers Against Gram-Negative and Gram-Positive Bacteria. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2014.886246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Galactomannan-PEI based non-viral vectors for targeted delivery of plasmid to macrophages and hepatocytes. Eur J Pharm Biopharm 2014; 87:461-71. [DOI: 10.1016/j.ejpb.2014.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 11/22/2022]
|
14
|
Mahato M, Yadav S, Kumar P, Sharma AK. Synthesis and evaluation of tetramethylguanidinium-polyethylenimine polymers as efficient gene delivery vectors. BIOMED RESEARCH INTERNATIONAL 2014; 2014:459736. [PMID: 24864245 PMCID: PMC4017721 DOI: 10.1155/2014/459736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/27/2014] [Indexed: 12/11/2022]
Abstract
Previously, we demonstrated that 6-(N,N,N',N'-tetramethylguanidinium chloride)-hexanoyl-polyethylenimine (THP) polymers exhibited significantly enhanced transfection efficiency and cell viability. Here, in the present study, we have synthesized a series of N,N,N',N'-tetramethylguanidinium-polyethylenimine (TP1-TP5) polymers via a single-step reaction involving peripheral primary amines of bPEI and varying amounts of 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU). These polymers were found to interact efficiently with negatively charged pDNA and formed stable complexes in the size range of ~240-450 nm. Acid-base titration profiles revealed improved buffering capacity of TP polymers as compared to bPEI. Transfection and cytotoxicity assays performed with TP/pDNA complexes on HEK293, CHO, and HeLa cells showed significantly higher transfection efficiency and cell viability with one of the complexes, TP2/pDNA complex, exhibited the highest transfection efficiency (~1.4-2.3-fold) outcompeting native bPEI and the commercially available transfection reagent, Lipofectamine 2000. Compared to previously reported THP polymers, the transfection efficiency of TP/pDNA complexes was found to be lower, as examined by flow cytometry. These results highlight the importance of the hydrophobic C-6 linker in THP polymers in forming compact nanostructures with pDNA, which might lead to efficient uptake and internalization of the complexes; however, the projected TP polymers offer an advantage of their rapid and economical one-step synthesis.
Collapse
Affiliation(s)
- Manohar Mahato
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110 007, India
| | - Santosh Yadav
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110 007, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110 007, India
| | - Ashwani Kumar Sharma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110 007, India
| |
Collapse
|
15
|
Tripathi SK, Gupta KC, Kumar P. Polyethyleneglycol crosslinked N-(2-hydroxyethyl)-polyethylenimine nanoparticles as efficient non-viral vectors for DNA and siRNA delivery in vitro and in vivo. MOLECULAR BIOSYSTEMS 2014; 9:2322-30. [PMID: 23807263 DOI: 10.1039/c3mb70150f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A series of electrostatically crosslinked nanoparticles, N-(2-hydroxyethyl)-polyethylenimine-PEG600 (HePP), was prepared by allowing N-(2-hydroxyethyl)-polyethylenimine (HeP) to interact with polyethyleneglycol (600) dicarboxylic acid (HOOC-PEG600-COOH, PEG600dc), they were then evaluated for their capability to transfect cells in vitro and in vivo. DLS studies revealed the size of the HePP nanoparticles in the range 106-170 nm, which efficiently condensed nucleic acids and provided sufficient protection against nuclease degradation. HePP-pDNA complexes exhibited a considerably higher transfection efficiency and cell viability in various mammalian cell lines, with HePP-3-pDNA displaying the highest gene expression, which outperformed HeP and the commercially available transfection reagent, Lipofectamine™. Also, HePP-3 mediated sequential delivery of GFP specific siRNA resulted in ∼76% suppression of the target gene. Intravenous administration of HePP-3-pDNA complex to mice, followed by monitoring of the reporter gene analysis post 7d, revealed the highest gene expression occurred in the spleen. Together, these results advocate the potential of HePP nanoparticles as efficient vectors for gene delivery in vitro and in vivo.
Collapse
Affiliation(s)
- Sushil K Tripathi
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi-110 007, India
| | | | | |
Collapse
|
16
|
Selective blocking of primary amines in branched polyethylenimine with biocompatible ligand alleviates cytotoxicity and augments gene delivery efficacy in mammalian cells. Colloids Surf B Biointerfaces 2014; 115:79-85. [DOI: 10.1016/j.colsurfb.2013.11.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/15/2013] [Accepted: 11/13/2013] [Indexed: 01/24/2023]
|
17
|
Yadav S, Mahato M, Pathak R, Jha D, Kumar B, Deka SR, Gautam HK, Sharma AK. Multifunctional self-assembled cationic peptide nanostructures efficiently carry plasmid DNA in vitro and exhibit antimicrobial activity with minimal toxicity. J Mater Chem B 2014; 2:4848-4861. [DOI: 10.1039/c4tb00657g] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An amphiphilic peptide–aminoglycoside (Pep–Neo) conjugate has been synthesized, self-assembled into nanostructures and evaluated for its multifunctional properties.
Collapse
Affiliation(s)
- Santosh Yadav
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi – 110007, India
| | - Manohar Mahato
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi – 110007, India
| | - Rajiv Pathak
- Microbial Biotechnology Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi – 110020, India
| | - Diksha Jha
- Microbial Biotechnology Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi – 110020, India
| | - Bipul Kumar
- Microbial Biotechnology Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi – 110020, India
| | - Smriti Rekha Deka
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi – 110007, India
| | - Hemant Kumar Gautam
- Microbial Biotechnology Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi – 110020, India
| | - Ashwani Kumar Sharma
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi – 110007, India
| |
Collapse
|
18
|
Bansal R, Singh M, Gupta KC, Kumar P. Oligoamine-tethered low generation polyamidoamine dendrimers as potential nucleic acid carriers. Biomater Sci 2014; 2:1275-1286. [DOI: 10.1039/c4bm00115j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oligoamine-tethered low generation PAMAM dendrimers (mG2–mG4) have been synthesized, which showed significantly higher transfection efficiency with minimal cytotoxicity in vitro.
Collapse
Affiliation(s)
- Ruby Bansal
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi-110007, India
- Academy of Scientific and Innovative Research
- New Delhi, India
| | - Manju Singh
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi-110007, India
| | - Kailash Chand Gupta
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi-110007, India
- CSIR-Indian Institute of Toxicology Research
- Lucknow-226001, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi-110007, India
| |
Collapse
|
19
|
Wang X, Shao N, Zhang Q, Cheng Y. Mitochondrial targeting dendrimer allows efficient and safe gene delivery. J Mater Chem B 2014; 2:2546-2553. [DOI: 10.1039/c3tb21348j] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Hemp ST, Allen MH, Smith AE, Long TE. Synthesis and Properties of Sulfonium Polyelectrolytes for Biological Applications. ACS Macro Lett 2013; 2:731-735. [PMID: 35606959 DOI: 10.1021/mz4002172] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sulfonium macromolecules displayed for the first time nucleic acid binding and transfection in vitro. Conventional and controlled radical polymerization techniques coupled with subsequent alkylation generated a sulfonium homopolymer, poly(DMSEMA), and a sulfonium diblock copolymer, poly(OEG-b-DMSEMA). DNA gel shift assays probed the ability of sulfonium macromolecules to complex nucleic acids, and luciferase assays examined the transfection efficiency and cytotoxicity of both sulfonium macromolecules. Poly(DMSEMA) and poly(OEG-b-DMSEMA) bound pDNA at a charge ratio of 1, and both induced significant luciferase expression in HeLa cells under serum-free conditions. Colloidal stability studies using dynamic light scattering highlighted the excellent colloidal stability of poly(OEG-b-DMSEMA) under salt and serum conditions due to the sterically stabilizing OEG block. Sulfonium macromolecules offer an alternate route to design cationic macromolecules for nonviral nucleic acid delivery, and future work will aim to add functionality to create more efficient delivery vehicles.
Collapse
Affiliation(s)
- Sean T. Hemp
- Department
of Chemistry and
Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael H. Allen
- Department
of Chemistry and
Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Adam E. Smith
- Department of Chemical Engineering, The University of Mississippi, University, Mississippi
38677, United States
| | - Timothy E. Long
- Department
of Chemistry and
Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
21
|
Arif M, Tripathi SK, Gupta KC, Kumar P. Self-assembled amphiphilic phosphopyridoxyl-polyethylenimine polymers exhibit high cell viability and gene transfection efficiency in vitro and in vivo. J Mater Chem B 2013; 1:4020-4031. [DOI: 10.1039/c3tb20516a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Hemp ST, Zhang M, Tamami M, Long TE. Phosphonium ionenes from well-defined step-growth polymerization: thermal and melt rheological properties. Polym Chem 2013. [DOI: 10.1039/c3py00365e] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Mahato M, Kumar P, Sharma AK. Amphiphilic polyethylenimine polymers mediate efficient delivery of DNA and siRNA in mammalian cells. MOLECULAR BIOSYSTEMS 2013; 9:780-91. [DOI: 10.1039/c3mb25444e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|