1
|
Jeong SH, Kim M, Kim TY, Choi H, Hahn SK. Biomimetic Supramolecular Drug Delivery Hydrogels for Accelerated Skin Tissue Regeneration. ACS Biomater Sci Eng 2021; 7:4581-4590. [PMID: 34254791 DOI: 10.1021/acsbiomaterials.1c00705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Skin tissue is regenerated by the combinational function of skin cells, extracellular matrix (ECM), and bioactive molecules. As an artificial ECM, supramolecular hydrogels exhibited outstanding capability to mimic the physical properties of ECM. However, the lack of biochemical function in supramolecular hydrogels has limited further tissue engineering applications. Here, we developed self-assembling supramolecular drug delivery hydrogels to mimic the skin tissue regeneration process. The supramolecular hydrogels were prepared to encapsulate fibroblasts by the host-guest interaction of cyclodextrin-modified gelatin (GE-CD) and adamantane-modified hyaluronate (Ad-HA) in conjugation with human growth hormone (hGH) for accelerated skin tissue regeneration. In vitro, GE-CD/Ad-HA-hGH hydrogels showed highly facilitated cell growth by the controlled hGH delivery. After a subcutaneous injection into the back of mice, IVIS imaging of bioengineered fibroblasts to express red fluorescence protein (RFP) revealed prolonged cell survival and proliferation in the supramolecular hydrogels for more than 21 days. We could also observe the improved skin tissue regeneration by the facilitated fibroblast proliferation with angiogenesis. Taken together, we could confirm the feasibility of biomimetic supramolecular drug delivery GE-CD/Ad-HA-hGH hydrogels for various tissue engineering applications.
Collapse
Affiliation(s)
- Sang Hoon Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk 790-784, Korea
| | - Mungu Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk 790-784, Korea.,PHI Biomed Co., 175 Yeoksam-ro, Gangnam-gu, Seoul 06247, South Korea
| | - Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk 790-784, Korea
| | - Hyunsik Choi
- PHI Biomed Co., 175 Yeoksam-ro, Gangnam-gu, Seoul 06247, South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk 790-784, Korea.,PHI Biomed Co., 175 Yeoksam-ro, Gangnam-gu, Seoul 06247, South Korea
| |
Collapse
|
2
|
Şen Ö, Emanet M, Ciofani G. Nanotechnology-Based Strategies to Evaluate and Counteract Cancer Metastasis and Neoangiogenesis. Adv Healthc Mater 2021; 10:e2002163. [PMID: 33763992 PMCID: PMC7610913 DOI: 10.1002/adhm.202002163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/11/2021] [Indexed: 12/15/2022]
Abstract
Cancer metastasis is the major cause of cancer-related morbidity and mortality. It represents one of the greatest challenges in cancer therapy, both because of the ability of metastatic cells to spread into different organs, and because of the consequent heterogeneity that characterizes primary and metastatic tumors. Nanomaterials can potentially be used as targeting or detection agents owing to unique chemical and physical features that allow tailored and tunable theranostic functions. This review highlights nanomaterial-based approaches in the detection and treatment of cancer metastasis, with a special focus on the evaluation of nanostructure effects on cell migration, invasion, and angiogenesis in the tumor microenvironment.
Collapse
Affiliation(s)
- Özlem Şen
- Istituto Italiano di TecnologiaSmart Bio‐InterfacesViale Rinaldo Piaggio 34PontederaPisa56025Italy
| | - Melis Emanet
- Istituto Italiano di TecnologiaSmart Bio‐InterfacesViale Rinaldo Piaggio 34PontederaPisa56025Italy
- Sabanci University Nanotechnology Research and Application Center (SUNUM)Sabanci UniversityUniversite Caddesi 27‐1TuzlaIstanbul34956Turkey
| | - Gianni Ciofani
- Istituto Italiano di TecnologiaSmart Bio‐InterfacesViale Rinaldo Piaggio 34PontederaPisa56025Italy
| |
Collapse
|
3
|
Wu MY, Yiang GT, Cheng PW, Chu PY, Li CJ. Molecular Targets in Hepatocarcinogenesis and Implications for Therapy. J Clin Med 2018; 7:jcm7080213. [PMID: 30104473 PMCID: PMC6112027 DOI: 10.3390/jcm7080213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocarcinogenesis comprises of multiple, complex steps that occur after liver injury and usually involve several pathways, including telomere dysfunction, cell cycle, WNT/β-catenin signaling, oxidative stress and mitochondria dysfunction, autophagy, apoptosis, and AKT/mTOR signaling. Following liver injury, gene mutations, accumulation of oxidative stress, and local inflammation lead to cell proliferation, differentiation, apoptosis, and necrosis. The persistence of this vicious cycle in turn leads to further gene mutation and dysregulation of pro- and anti-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-10, IL-12, IL-13, IL-18, and transforming growth factor (TGF)-β, resulting in immune escape by means of the NF-κB and inflammasome signaling pathways. In this review, we summarize studies focusing on the roles of hepatocarcinogenesis and the immune system in liver cancer. In addition, we furnish an overview of recent basic and clinical studies to provide a strong foundation to develop novel anti-carcinogenesis targets for further treatment interventions.
Collapse
Affiliation(s)
- Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Giuo-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Pei-Wen Cheng
- Yuh-Ing Junior College of Health Care & Management, Kaohsiung 807, Taiwan.
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 231, Taiwan.
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 704, Taiwan.
| | - Chia-Jung Li
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| |
Collapse
|
4
|
Gonzalez-Pujana A, Orive G, Pedraz JL, Santos-Vizcaino E, Hernandez RM. Alginate Microcapsules for Drug Delivery. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-6910-9_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Ning R, Zhuang Q, Lin JM. Biomaterial-Based Microfluidics for Cell Culture and Analysis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-981-10-5394-8_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Yoon J, Kim J, Jeong HE, Sudo R, Park MJ, Chung S. Fabrication of type I collagen microcarrier using a microfluidic 3D T-junction device and its application for the quantitative analysis of cell–ECM interactions. Biofabrication 2016; 8:035014. [DOI: 10.1088/1758-5090/8/3/035014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
|
8
|
Kim C, Kasuya J, Jeon J, Chung S, Kamm RD. A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. LAB ON A CHIP 2015; 15:301-10. [PMID: 25370780 PMCID: PMC4311754 DOI: 10.1039/c4lc00866a] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Anti-angiogenic therapy, which suppresses tumor growth by disrupting oxygen and nutrient supply from blood to the tumor, is now widely accepted as a treatment for cancer. To investigate the mechanisms of action of these anti-angiogenesis drugs, new three dimensional (3D) cell culture-based drug screening models are increasingly employed. However, there is no in vitro high-throughput screening (HTS) angiogenesis assay that can provide uniform culture conditions for the quantitative assessment of physiological responses to chemoattractant reagents under various concentrations of anti-angiogenesis drugs. Here we describe a method for screening and quantifying the vascular endothelial growth factor (VEGF)-induced chemotactic response on human umbilical vein endothelial cells (HUVECs) cultured with different concentrations of bortezomib, a selective 26S proteasome inhibitor. With this quantitative microfluidic angiogenesis screen (QMAS), we demonstrate that bortezomib-induced endothelial cell death is preceded by a series of morphological changes that develop over several days. We also explore the mechanisms by which bortezomib can inhibit angiogenesis.
Collapse
Affiliation(s)
- Choong Kim
- Departments of Biological Engineering and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
9
|
Engineering Pre-vascularized Scaffolds for Bone Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 881:79-94. [DOI: 10.1007/978-3-319-22345-2_5] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Lim SH, Kim C, Aref AR, Kamm RD, Raghunath M. Complementary effects of ciclopirox olamine, a prolyl hydroxylase inhibitor and sphingosine 1-phosphate on fibroblasts and endothelial cells in driving capillary sprouting. Integr Biol (Camb) 2014; 5:1474-84. [PMID: 24190477 DOI: 10.1039/c3ib40082d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Capillary sprouting, a key step of neoangiogenesis in wound healing and tumor growth, also represents a therapeutic target for tissue repair. It requires crosstalk between endothelial cells (EC) and other cell types. We studied this process in a microfluidic platform that allows EC to migrate out of a channel across a collagen gel up a gradient of factors produced by a collection of encapsulated fibroblasts. Introduction of a prolyl hydroxylase inhibitor (PHi), ciclopirox olamine (CPX) to stabilize hypoxia inducible factor 1α (HIF-1α) predominantly in fibroblasts induced capillary sprouting in EC, but the most complex tubular networks with true lumina formed after combining CPX with the lysophospholipid sphingosine 1-phosphate (S1P). The enhanced angiogenesis is a possible consequence of the generation of mutually stimulating factors as each cell type responded differently to the compounds. The combination of CPX and S1P induced secretion of vascular endothelial growth factor (VEGF) in fibroblast culture whereas the angiogenic monocyte chemoattractant protein (MCP)-1 was exclusively secreted by fibroblasts, but only in the presence of EC-conditioned medium. Antibody interference with fibroblast-produced VEGF and MCP-1 inhibited the sprouting response. These observations not only demonstrate the collaboration of EC and fibroblasts in inducing capillary sprouting but also suggest that the combination of CPX and S1P enhances angiogenesis and thus might be of therapeutic value for the pharmacological induction of tissue repair and regeneration.
Collapse
Affiliation(s)
- Sei Hien Lim
- Biosystems & Micromechanics Interdisciplinary Research Group (BioSyM), Singapore-MIT Alliance in Research & Technology (SMART), Singapore
| | | | | | | | | |
Collapse
|
11
|
Park YK, Tu TY, Lim SH, Clement IJM, Yang SY, Kamm RD. In Vitro Microvessel Growth and Remodeling within a Three-dimensional Microfluidic Environment. Cell Mol Bioeng 2013; 7:15-25. [PMID: 24660039 PMCID: PMC3960002 DOI: 10.1007/s12195-013-0315-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This paper presents in vitro microvascular network formation within 3D gel scaffolds made from different concentrations of type-I collagen, fibrin, or a mixture of collagen and fibrin, using a simple microfluidic platform. Initially, microvascular network formation of human umbilical vein endothelial cells was examined using live time-lapse confocal microscopy every 90 min from 3 h to 12 h after seeding within three different concentrations of collagen gel scaffolds. Among the three conditions of collagen gel scaffolds (2.0 mg/ml, 2.5 mg/ml, and 3.0 mg/ml), the number of skeleton within collagen gel scaffolds was consistently the highest (3.0 mg/ml), followed by those of collagen gel scaffolds (2.5 mg/ml and 2.0 mg/ml). Results demonstrated that concentration of collagen gel scaffolds, which influences matrix stiffness and ligand density, may affect microvascular network formation during the early stages of vasculogenesis. In addition, the maturation of microvascular networks in monoculture under different gel compositions within gel scaffolds (2.5 mg/ml) was examined for 7 d using live confocal microscopy. It was confirmed that pure fibrin gel scaffolds are preferable to collagen gel or collagen/fibrin combinations, significantly reducing matrix retractions during maturation of microvascular networks for 7 d. Finally, early steps in the maturation process of microvascular networks for 14 d were characterized by demonstrating sequential steps of branching, expanding, remodeling, pruning, and clear delineation of lumens within fibrin gel scaffolds. Our findings demonstrate an in vitro model for generating mature microvascular networks within 3D microfluidic fibrin gel scaffolds (2.5 mg/ml), and furthermore suggest the importance of gel concentration and composition in promoting the maturation of microvascular networks.
Collapse
Affiliation(s)
- Young K Park
- Biosystems & Micromechanics IRG, Singapore-MIT Alliance for Research and Technology Center, Singapore 117543 ; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ting-Yuan Tu
- Biosystems & Micromechanics IRG, Singapore-MIT Alliance for Research and Technology Center, Singapore 117543
| | - Sei Hien Lim
- Biosystems & Micromechanics IRG, Singapore-MIT Alliance for Research and Technology Center, Singapore 117543
| | - Ivan J M Clement
- Computational Biology Programme, Department of Biological Sciences, National University of Singapore, Singapore 119077
| | - Se Y Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Roger D Kamm
- Biosystems & Micromechanics IRG, Singapore-MIT Alliance for Research and Technology Center, Singapore 117543 ; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
12
|
ABACI HASANE, DRAZER GERMAN, GERECHT SHARON. RECAPITULATING THE VASCULAR MICROENVIRONMENT IN MICROFLUIDIC PLATFORMS. ACTA ACUST UNITED AC 2013. [DOI: 10.1142/s1793984413400011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The vasculature is regulated by various chemical and mechanical factors. Reproducing these factors in vitro is crucial for the understanding of the mechanisms underlying vascular diseases and the development of new therapeutics and delivery techniques. Microfluidic technology offers opportunities to precisely control the level, duration and extent of various cues, providing unprecedented capabilities to recapitulate the vascular microenvironment. In the first part of this article, we review existing microfluidic technology that is capable of controlling both chemical and mechanical factors regulating the vascular microenvironment. In particular, we focus on micro-systems developed for controlling key parameters such as oxygen tension, co-culture, shear stress, cyclic stretch and flow patterns. In the second part of this article, we highlight recent advances that resulted from the use of these microfluidic devices for vascular research.
Collapse
Affiliation(s)
- HASAN E. ABACI
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences — Oncology Center and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA
| | - GERMAN DRAZER
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Rd, Piscataway, NJ 08854, USA
| | - SHARON GERECHT
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences — Oncology Center and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
13
|
Betz JF, Cheng Y, Tsao CY, Zargar A, Wu HC, Luo X, Payne GF, Bentley WE, Rubloff GW. Optically clear alginate hydrogels for spatially controlled cell entrapment and culture at microfluidic electrode surfaces. LAB ON A CHIP 2013; 13:1854-1858. [PMID: 23559159 DOI: 10.1039/c3lc50079a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We describe an innovation in the immobilization, culture, and imaging of cells in calcium alginate within microfluidic devices. This technique allows unprecedented optical access to the entirety of the calcium alginate hydrogel, enabling observation of growth and behavior in a chemical and mechanical environment favored by many kinds of cells.
Collapse
Affiliation(s)
- Jordan F Betz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Therapeutic stimulation of vessel growth to improve tissue perfusion has shown promise in many regenerative medicine and tissue engineering applications. Alginate-based biomaterial systems have been investigated for growth factor and/or cell delivery as tools for modulating vessel assembly. Growth factor encapsulation allows for a sustained release of protein and protection from degradation. Implantation of growth factor-loaded alginate constructs typically shows an increase in capillary density but without vascular stabilization. Delivery of multiple factors may improve these outcomes. Cell delivery approaches focus on stimulating vascularization either via cell release of soluble factors, cell proliferation and incorporation into new vessels or alginate prevascularization prior to implantation. These methods have shown some promise but routine clinical application has not been achieved. In this review, current research on the application of alginate for therapeutic neovascularization is presented, shortcomings are addressed and the future direction of these systems discussed.
Collapse
|