1
|
Bissen A, Yunussova N, Myrkhiyeva Z, Salken A, Tosi D, Bekmurzayeva A. Unpacking the packaged optical fiber bio-sensors: understanding the obstacle for biomedical application. Front Bioeng Biotechnol 2024; 12:1401613. [PMID: 39144482 PMCID: PMC11322460 DOI: 10.3389/fbioe.2024.1401613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
A biosensor is a promising alternative tool for the detection of clinically relevant analytes. Optical fiber as a transducer element in biosensors offers low cost, biocompatibility, and lack of electromagnetic interference. Moreover, due to the miniature size of optical fibers, they have the potential to be used in microfluidic chips and in vivo applications. The number of optical fiber biosensors are extensively growing: they have been developed to detect different analytes ranging from small molecules to whole cells. Yet the widespread applications of optical fiber biosensor have been hindered; one of the reasons is the lack of suitable packaging for their real-life application. In order to translate optical fiber biosensors into clinical practice, a proper embedding of biosensors into medical devices or portable chips is often required. A proper packaging approach is frequently as challenging as the sensor architecture itself. Therefore, this review aims to give an unpack different aspects of the integration of optical fiber biosensors into packaging platforms to bring them closer to actual clinical use. Particularly, the paper discusses how optical fiber sensors are integrated into flow cells, organized into microfluidic chips, inserted into catheters, or otherwise encased in medical devices to meet requirements of the prospective applications.
Collapse
Affiliation(s)
- Aidana Bissen
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Nigara Yunussova
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Zhuldyz Myrkhiyeva
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | | | - Daniele Tosi
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | | |
Collapse
|
2
|
Kang W, Luan T, Zhou W, Yin Y, Liu L, Wang S, Li Z, Yang J, Ho HP, Shou Q, Xing X. Coupled photothermal vortices for capture, sorting, and transportation of particles. OPTICS LETTERS 2024; 49:3974-3977. [PMID: 39008754 DOI: 10.1364/ol.530077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024]
Abstract
Optofluidic techniques have evolved as a prospering strategy for microparticle manipulation via fluid. Unfortunately, there is still a lack of manipulation with simple preparation, easy operation, and multifunctional integration. In this Letter, we present an optofluidic device based on a graphite oxide (GO)-coated dual-fiber structure for multifunctional particle manipulation. By changing the optical power and the relative distance of the fibers, the system can excite thermal fluidic vortices with three inter-coupled states, namely uncoupled, partially coupled and completely coupled states, and therefore can realize capture, sorting, and transportation of the target particles. We conduct a numerical analysis of the whole system, and the results are consistent with the experimental phenomena. This versatile device can be utilized to manipulate target particles in complex microscopic material populations with the advantages of flexible operation, user-friendly control, and low cost.
Collapse
|
3
|
Martinez LP, Mina Villarreal MC, Zaza C, Barella M, Acuna GP, Stefani FD, Violi IL, Gargiulo J. Thermometries for Single Nanoparticles Heated with Light. ACS Sens 2024; 9:1049-1064. [PMID: 38482790 DOI: 10.1021/acssensors.4c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The development of efficient nanoscale photon absorbers, such as plasmonic or high-index dielectric nanostructures, allows the remotely controlled release of heat on the nanoscale using light. These photothermal nanomaterials have found applications in various research and technological fields, ranging from materials science to biology. However, measuring the nanoscale thermal fields remains an open challenge, hindering full comprehension and control of nanoscale photothermal phenomena. Here, we review and discuss existent thermometries suitable for single nanoparticles heated under illumination. These methods are classified in four categories according to the region where they assess temperature: (1) the average temperature within a diffraction-limited volume, (2) the average temperature at the immediate vicinity of the nanoparticle surface, (3) the temperature of the nanoparticle itself, and (4) a map of the temperature around the nanoparticle with nanoscale spatial resolution. In the latter, because it is the most challenging and informative type of method, we also envisage new combinations of technologies that could be helpful in retrieving nanoscale temperature maps. Finally, we analyze and provide examples of strategies to validate the results obtained using different thermometry methods.
Collapse
Affiliation(s)
- Luciana P Martinez
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina
| | - M Cristina Mina Villarreal
- Instituto de Nanosistemas, Universidad Nacional de San Martín, Av. 25 de mayo 1069, B1650HML San Martín, Buenos Aires, Argentina
| | - Cecilia Zaza
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
| | - Mariano Barella
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH-1700, Switzerland
| | - Guillermo P Acuna
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH-1700, Switzerland
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Ianina L Violi
- Instituto de Nanosistemas, Universidad Nacional de San Martín, Av. 25 de mayo 1069, B1650HML San Martín, Buenos Aires, Argentina
| | - Julian Gargiulo
- Instituto de Nanosistemas, Universidad Nacional de San Martín, Av. 25 de mayo 1069, B1650HML San Martín, Buenos Aires, Argentina
| |
Collapse
|
4
|
Malik U, Hubesch R, Koley P, Mazur M, Mehla S, Butti SK, Brandt M, Selvakannan PR, Bhargava S. Surface functionalized 3D printed metal structures as next generation recyclable SERS substrates. Chem Commun (Camb) 2023; 59:13406-13420. [PMID: 37850470 DOI: 10.1039/d3cc04154a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Combining the design flexibility and rapid prototyping capabilities of additive manufacturing with photocatalytic and plasmonic functionalities is promising for the development of next-generation SERS applications such as point of care diagnostics and in situ monitoring of chemical reactions in fuels and chemical processing. Laser powder bed fusion (LPBF) is a well-matured additive manufacturing technique which generates metallic structures through localised melting and joining of metal powders using a laser. LPBF reduces material wastage during manufacturing, is applicable to a wide range of metals and alloys, and allows printing of complex internal structures. This feature article elaborates the use of soot templating, chemical vapour deposition and electroless plating techniques for grafting plasmonic and semiconductor nanoparticles on the surface of LPBF manufactured metallic substrates. The capability to fabricate different types of intricate metallic lattices using additive manufacturing is demonstrated and technical challenges in their adequate functionalization are elaborated. The developed methodology allows tailoring of the substrate structure, composition, morphology, plasmonic and photocatalytic activities and thus unveils a new class of recyclable SERS substrates.
Collapse
Affiliation(s)
- Uzma Malik
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, 3001 Victoria, Australia.
| | - Roxanne Hubesch
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, 3001 Victoria, Australia.
| | - Paramita Koley
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, 3001 Victoria, Australia.
| | - Maciej Mazur
- Centre for Additive Manufacturing, School of Engineering, RMIT University, 3001 Victoria, Australia
| | - Sunil Mehla
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, 3001 Victoria, Australia.
| | - Sai Kishore Butti
- Chemical Engineering and Process Technology Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Milan Brandt
- Centre for Additive Manufacturing, School of Engineering, RMIT University, 3001 Victoria, Australia
| | - P R Selvakannan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, 3001 Victoria, Australia.
| | - Suresh Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, 3001 Victoria, Australia.
| |
Collapse
|
5
|
Kashyap R, Boro PR, Yasmin R, Nath J, Sonowal D, Doley R, Mondal B. Multiple protein-patterned surface plasmon resonance biochip for the detection of human immunoglobulin-G. JOURNAL OF BIOPHOTONICS 2023; 16:e202200263. [PMID: 36683194 DOI: 10.1002/jbio.202200263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/18/2022] [Accepted: 01/02/2023] [Indexed: 05/17/2023]
Abstract
A portable surface plasmon resonance (SPR) measurement prototype integrated with a multiple protein-patterned SPR biochip is introduced for label-free and selective detection of human immunoglobulin-G (H-IgG). The polyclonal anti-H-IgG antibodies derived from goat, rabbit, and mouse were immobilized through polydimethylsiloxane (PDMS) microchannels to fabricate the patterned SPR biochip. The PDMS surface was functionalized using 3-aminopropyltrimethoxysilane and bonded to carbodiimide-activated gold substrates to construct irreversibly bonded hydrophilic microfluidic chip at room temperature. For SPR measurement, a custom-made system is developed with a high angular scanning accuracy of 0.005° and a wide scanning range of 30°-80° that avoids the conventional requirement of expensive goniometric stages and detector arrays. The SPR biochip immobilized with 750 μg/mL goat anti-H-IgG demonstrated detection of H-IgG with a detection limits of 15 μg/mL, and linear response through a wide concentration range (15-225 μg/mL) of high coefficient of determination (R2 = 0.99661). The selectivity of the sensor was investigated by exposing them to two different non-specific targets (bovine serum albumin and polyvalent antivenom). The results indicate negligible sensor response towards nonspecific targets (0.25° for 30 μg/mL bovine serum albumin (BSA) and 0.25° for 30 μg/mL polyvalent antivenom) in comparison to H-IgG (1.5° for 30 μg/mL).
Collapse
Affiliation(s)
- Ritayan Kashyap
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, India
| | - Pearleshwari Rani Boro
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, India
| | - Rafika Yasmin
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Jugabrat Nath
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, India
| | - Durlav Sonowal
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, India
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Biplob Mondal
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
6
|
Bai JJ, Zhang X, Wei X, Wang Y, Du C, Wang ZJ, Chen ML, Wang JH. Dean-Flow-Coupled Elasto-Inertial Focusing Accelerates Exosome Purification to Facilitate Single Vesicle Profiling. Anal Chem 2023; 95:2523-2531. [PMID: 36657481 DOI: 10.1021/acs.analchem.2c04898] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Exosomes are recognized as noteworthy biomarkers playing unprecedented roles in intercellular communication and disease diagnosis and treatment. It is a prerequisite to obtain high-purity exosomes for the comprehension of exosome biochemistry and further illustration of their functionality/mechanisms. However, the isolation of nanoscale exosomes from endogenous proteins is particularly challenging for small-volume biological samples. Herein, a Dean-flow-coupled elasto-inertial microfluidic chip (DEIC) was developed. It consists of a spiral microchannel with dimensional confined concave structures and facilitates elasto-inertial separation of exosomes with lower protein contaminants from cell culture medium and human serum. The presence of 0.15% (w/v) poly-(oxyethylene) controls the elastic lift force acting on suspended nanoscale particles and makes it feasible for field-free purification of integrity exosomes with a 70.6% recovery and a 91.4% removal rate for proteins. As a proof of concept, the technique demonstrated the individual-vesicle-level biomarker (EpCAM and PD-L1) profiling in combination with simultaneous aptamer-mediated analysis to disclose the sensibility for immune response. Overall, DEIC enables the collection of high-purity exosomes and exhibits potential in integration with downstream analyses of exosomes.
Collapse
Affiliation(s)
- Jun-Jie Bai
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning110819, P. R. China
| | - Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning110819, P. R. China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning110819, P. R. China
| | - Yu Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning110819, P. R. China
| | - Cheng Du
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning110819, P. R. China
| | - Ze-Jun Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning110819, P. R. China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning110819, P. R. China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning110819, P. R. China
| |
Collapse
|
7
|
Wei Y, Ren Z, Ran Z, Wang R, Liu CB, Shi C, Liu CL, Wang C, Zhang YH. All-fiber SPR microfluidic chip for GDF11 detection. BIOMEDICAL OPTICS EXPRESS 2022; 13:6659-6670. [PMID: 36589582 PMCID: PMC9774855 DOI: 10.1364/boe.477303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/10/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
In order to perform microfluidic detection of cytokines with low concentration, such as growth differentiation factor 11 (GDF11), the most common method is to construct microfluidic channels and integrate them with SPR sensing units. In this paper, we proposed a novel all-fiber SPR microfluidic chip for GDF11 detection. The method was to construct the SPR sensing area on a designed D-shaped multimode fiber, which was nested inside a quartz tube to form a semi-cylindrical microfluidic channel. The surface of the SPR sensing area experienced sensitization and specifically modification to achieve the specific detection of GDF11. When the sensitivity of detection was 1.38 nm/lg(g/mL) and the limit of detection was 0.52 pg/mL, the sample consumption was only 0.4 µL for a single detection. The novel all-fiber SPR microfluidic detection chip has the advantages of flexible design, compact structure and low sample consumption, which is expected to be used in wearable biosensing devices for real-time online monitoring of trace cytokines in vivo.
Collapse
Affiliation(s)
- Yong Wei
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Zhuo Ren
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Ze Ran
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Rui Wang
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Chun-Biao Liu
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Chen Shi
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Chun-Lan Liu
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China
| | - Chen Wang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Yong-Hui Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing 404120, China
| |
Collapse
|
8
|
Wei Y, Ren Z, Liu C, Jiang T, Wang R, Shi C, Liu C. All-fiber biological detection microfluidic chip based on space division and wavelength division multiplexing technologies. LAB ON A CHIP 2022; 22:4501-4510. [PMID: 36305279 DOI: 10.1039/d2lc00681b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To further reduce the size of a microfluidic detection chip and the sample consumption and to shorten the chip manufacturing cycle, an all-fiber SPR detection multichannel microfluidic chip was proposed and demonstrated in this paper. The microfluidic channel of the proposed chip was provided by the air channel of a double side-hole fiber, the detection unit was fabricated using a dumbbell fiber with a fiber core exposed to air, and the sensing probe was composed and packaged by fiber micro-processing technology. The internal double channels of the fiber constructed from double side-hole and dumbbell fibers can realize dual channel detection based on space division multiplexing. 30 nm silver and 50 nm gold films were respectively coated on the left and right sides of the dumbbell fiber, which can realize the dual channel simultaneous detection based on wavelength division multiplexing. We employed the proposed microfluidic chip to detect immunoglobulin G and dopamine molecules, where the average sensitivity is 0.252 nm (mg mL-1)-1 and 0.061 nm (μg mL-1)-1, and the LOD is 0.397 mg mL-1 and 1.639 μg mL-1, respectively. The microfluidic channel and detection unit of all-fiber multi-channel SPR detection microfluidic chip are provided by a soft and flexible fiber, which is compact in structure, flexible in fabrication and short in manufacturing cycle, making it possible for the microfluidic chip to enter the human body for detection and enabling a new approach for the fabrication of wearable detection microfluidic devices. This provides a new idea for the development of microfluidic chips.
Collapse
Affiliation(s)
- Yong Wei
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
| | - Zhuo Ren
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
| | - Chunlan Liu
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
| | - Tianci Jiang
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
| | - Rui Wang
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
| | - Chen Shi
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
| | - Chunbiao Liu
- College of Electronic & Information Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
| |
Collapse
|
9
|
Qiu G, Du Y, Guo Y, Meng Y, Gai Z, Zhang M, Wang J, deMello A. Plasmofluidic-Based Near-Field Optical Trapping of Dielectric Nano-Objects Using Gold Nanoislands Sensor Chips. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47409-47419. [PMID: 36240070 DOI: 10.1021/acsami.2c12651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Near-field optical manipulation has been widely used for guiding and trapping nanoscale objects close to an optical-active interface. This near-field manipulation opens opportunities for next-generation biosensing with the capability of large-area trapping and in situ detection. In this article, we used the finite element method (FEM) to analyze the motion mechanism of nano-objects (50-500 nm) in the near-field optics, especially localized surface plasmon resonance (LSPR). The size-dependent optical forces and hydrodynamic forces of subwavelength nanoparticles (<500 nm) in different hydrodynamic velocity fields were calculated. When the strength of the local electric field was increased, LSPR with two-dimensional gold nanoislands (AuNIs) showed improved capability for manipulating nano-objects near the vicinity of the AuNI interface. Through the experiments of in situ interferometric testing 50-500 nm nano-objects with constant number concentration or volume fraction, it was confirmed that the local plasmonic near-field was able to trap the dielectric polystyrene beads smaller than 200 nm. The plasmofluidic system was further verified by testing biological nanovesicles such as exosomes (40-200 nm) and high- and low-density lipoproteins (10-200 nm). This concept of direct dielectric nano-objects manipulation enables large-scale parallel trapping and dynamic sensing of biological nanovesicles without the need of molecular binding tethers or labeling.
Collapse
Affiliation(s)
- Guangyu Qiu
- Institute for Environmental Engineering, ETH Zürich, Stefano-Franscini-Platz 3, CH-8093Zürich, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai200240, China
| | - Ying Du
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg1, CH-8093Zürich, Switzerland
- College of Science, Zhejiang University of Technology, Hangzhou310023, China
| | - Yujia Guo
- College of Science, Zhejiang University of Technology, Hangzhou310023, China
| | - Yingchao Meng
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg1, CH-8093Zürich, Switzerland
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zürich, Zürich8091, Switzerland
| | - Ming Zhang
- College of Science, Zhejiang University of Technology, Hangzhou310023, China
| | - Jing Wang
- Institute for Environmental Engineering, ETH Zürich, Stefano-Franscini-Platz 3, CH-8093Zürich, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland
| | - Andrew deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg1, CH-8093Zürich, Switzerland
| |
Collapse
|
10
|
Javed HMA, Sarfaraz M, Nisar MZ, Qureshi AA, e Alam MF, Que W, Yin X, Abd‐Rabboh HSM, Shahid A, Ahmad MI, Ullah S. Plasmonic Dye‐Sensitized Solar Cells: Fundamentals, Recent Developments, and Future Perspectives. ChemistrySelect 2021. [DOI: 10.1002/slct.202102177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hafiz Muhammad Asif Javed
- Department of Physics University of Agriculture Faisalabad 38000 Faisalabad Pakistan
- Electronic Materials Research Laboratory School of Electronic & Information Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi People's Republic of China
| | - Muhammad Sarfaraz
- Department of Physics University of Agriculture Faisalabad 38000 Faisalabad Pakistan
| | - M. Zubair Nisar
- Department of Physics University of Agriculture Faisalabad 38000 Faisalabad Pakistan
| | - Akbar Ali Qureshi
- School of Chemical & Materials Engineering National University of Sciences & Technology Islamabad Pakistan
- Department of Mechanical Engineering Bahauddin Zakariya University Multan 60000 Pakistan
| | - M. Fakhar e Alam
- Department of Physics GC University Faisalabad Faisalabad 38000 Pakistan
| | - Wenxiu Que
- Electronic Materials Research Laboratory School of Electronic & Information Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi People's Republic of China
| | - Xingtian Yin
- Electronic Materials Research Laboratory School of Electronic & Information Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi People's Republic of China
| | - Hisham S. M. Abd‐Rabboh
- Chemistry Department Faculty of Science King Khalid University, P.O. Box 9004 Abha 61413 Saudi Arabia
- Department of Chemistry Faculty of Science Ain Shams University, Abbassia Cairo 11566 Egypt
| | - Arslan Shahid
- Department of Physics University of Agriculture Faisalabad 38000 Faisalabad Pakistan
| | - M. Irfan Ahmad
- Department of Physics University of Agriculture Faisalabad 38000 Faisalabad Pakistan
| | - Sana Ullah
- Department of Physics Khwaja Fareed University of Engineering and information technology Pakistan
| |
Collapse
|
11
|
Peng X, Kotnala A, Rajeeva BB, Wang M, Yao K, Bhatt N, Penley D, Zheng Y. Plasmonic Nanotweezers and Nanosensors for Point-of-Care Applications. ADVANCED OPTICAL MATERIALS 2021; 9:2100050. [PMID: 34434691 PMCID: PMC8382230 DOI: 10.1002/adom.202100050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 05/12/2023]
Abstract
The capabilities of manipulating and analyzing biological cells, bacteria, viruses, DNAs, and proteins at high resolution are significant in understanding biology and enabling early disease diagnosis. We discuss progress in developments and applications of plasmonic nanotweezers and nanosensors where the plasmon-enhanced light-matter interactions at the nanoscale improve the optical manipulation and analysis of biological objects. Selected examples are presented to illustrate their design and working principles. In the context of plasmofluidics, which merges plasmonics and fluidics, the integration of plasmonic nanotweezers and nanosensors with microfluidic systems for point-of-care (POC) applications is envisioned. We provide our perspectives on the challenges and opportunities in further developing and applying the plasmofluidic POC devices.
Collapse
Affiliation(s)
- Xiaolei Peng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Abhay Kotnala
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Bharath Bangalore Rajeeva
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mingsong Wang
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kan Yao
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Neel Bhatt
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel Penley
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
12
|
Wang J, Ma P, Kim DH, Liu BF, Demirci U. Towards Microfluidic-Based Exosome Isolation and Detection for Tumor Therapy. NANO TODAY 2021; 37:101066. [PMID: 33777166 PMCID: PMC7990116 DOI: 10.1016/j.nantod.2020.101066] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Exosomes are a class of cell-secreted, nano-sized extracellular vesicles with a bilayer membrane structure of 30-150 nm in diameter. Their discovery and application have brought breakthroughs in numerous areas, such as liquid biopsies, cancer biology, drug delivery, immunotherapy, tissue repair, and cardiovascular diseases. Isolation of exosomes is the first step in exosome-related research and its applications. Standard benchtop exosome separation and sensing techniques are tedious and challenging, as they require large sample volumes, multi-step operations that are complex and time-consuming, requiring cumbersome and expensive instruments. In contrast, microfluidic platforms have the potential to overcome some of these limitations, owing to their high-precision processing, ability to handle liquids at a microscale, and integrability with various functional units, such as mixers, actuators, reactors, separators, and sensors. These platforms can optimize the detection process on a single device, representing a robust and versatile technique for exosome separation and sensing to attain high purity and high recovery rates with a short processing time. Herein, we overview microfluidic strategies for exosome isolation based on their hydrodynamic properties, size filtration, acoustic fields, immunoaffinity, and dielectrophoretic properties. We focus especially on advances in label-free isolation of exosomes with active biological properties and intact morphological structures. Further, we introduce microfluidic techniques for the detection of exosomal proteins and RNAs with high sensitivity, high specificity, and low detection limits. We summarize the biomedical applications of exosome-mediated therapeutic delivery targeting cancer cells. To highlight the advantages of microfluidic platforms, conventional techniques are included for comparison. Future challenges and prospects of microfluidics towards exosome isolation applications are also discussed. Although the use of exosomes in clinical applications still faces biological, technical, regulatory, and market challenges, in the foreseeable future, recent developments in microfluidic technologies are expected to pave the way for tailoring exosome-related applications in precision medicine.
Collapse
Affiliation(s)
- Jie Wang
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| | - Peng Ma
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, USA
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| | - Daniel H Kim
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| |
Collapse
|
13
|
Abstract
Micro and nanoparticles are not only understood as components of materials but as small functional units too. Particles can be designed for the primary transduction of physical and chemical signals and, therefore, become a valuable component in sensing systems. Due to their small size, they are particularly interesting for sensing in microfluidic systems, in microarray arrangements and in miniaturized biotechnological systems and microreactors, in general. Here, an overview of the recent development in the preparation of micro and nanoparticles for sensing purposes in microfluidics and application of particles in various microfluidic devices is presented. The concept of sensor particles is particularly useful for combining a direct contact between cells, biomolecules and media with a contactless optical readout. In addition to the construction and synthesis of micro and nanoparticles with transducer functions, examples of chemical and biological applications are reported.
Collapse
|
14
|
Campu A, Lerouge F, Craciun AM, Murariu T, Turcu I, Astilean S, Monica F. Microfluidic platform for integrated plasmonic detection in laminal flow. NANOTECHNOLOGY 2020; 31:335502. [PMID: 32348974 DOI: 10.1088/1361-6528/ab8e72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we propose a novel approach to design robust microfluidic devices with integrated plasmonic transducers allowing portability, reduced analysis time through dynamic measurements and high sensitivity. Specifically, the strategy we apply involves two steps: (i) the controlled deposition of gold bipyramidal nanoparticles (AuBPs) onto a functionalized solid glass substrate and (ii) the integration of the as-fabricated plasmonic substrate into a polydimethylsiloxane (PDMS) microfluidic circuit. The localized surface plasmon resonance (LSPR) sensitivity of the plasmonic-microfluidic device was evaluated by monitoring the optical responses at refractive index changes, proving a bulk sensitivity of 243 nm RIU-1 for the longitudinal LSPR band of isolated AuBPs and 150 nm RIU-1 for the band assigned to end-to-end linked nanoparticles. A strong electric field generated in the gaps between AuBPs-due to the generation of the so-called extrinsic 'hot-spots'-was subsequently proved by the volumetric surface enhanced Raman scattering (SERS) detection of molecules in continuous flow conditions by loading the analyte into the microfluidic channel via a syringe pump. In conclusion, our miniaturized portable microfluidic system aims to detect and identify, in real-time with high accuracy, analyte molecules in laminal flow, thus providing a groundwork for further complex biosensing applications.
Collapse
Affiliation(s)
- Andreea Campu
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean No.42, Cluj-Napoca 400271, Romania. Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu No. 1, Cluj-Napoca 400084, Romania
| | | | | | | | | | | | | |
Collapse
|
15
|
Handel B, Dinkova VV, Ximendes E, Solé JG, Jaque D, Marin R. Investigation of the concentration- and temperature-dependent motion of colloidal nanoparticles. NANOSCALE 2020; 12:12561-12567. [PMID: 32500872 DOI: 10.1039/d0nr02995e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although the motion of a single nanoparticle suspended in a fluid can be easily modeled, things get complicated for non-infinitely diluted systems. Coincidentally, these are the systems of interest in relevant fields such as, nanomedicine, microfluidics and miniaturized energy storage devices. Hence, a better understanding of the dynamics of colloidal nanoparticles is utterly needed. Herein, the motion of colloidal suspension of plasmonic nanoparticles (i.e., gold nanoshells) is investigated via laser speckle imaging. The method relies on the analysis of the speckle pattern generated by colloidal suspensions forced to flow at specific velocities. Temperature-dependent measurements corroborated that the dynamics of non-infinitely diluted nanoparticle suspensions are better described through a diffusive model rather than by the equipartition theorem. Under the tested experimental conditions, an average diffusion velocity between 0.37 and 1.57 mm s-1 was found. Most importantly, these values were largely dependent on the nanoparticle concentration. These results are in agreement with previous reports and indicate the existence of long-range interactions between nanoparticles.
Collapse
Affiliation(s)
- Barnaby Handel
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain.
| | - Vladislava Vladimirova Dinkova
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain.
| | - Erving Ximendes
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain. and Nanobiology Group, Instituto Ramón y Cajal de Investigación, Sanitaria Hospital Ramón y Cajal, Ctra. De Colmenar Viejo, Km. 9100, 28034 Madrid, Spain
| | - José García Solé
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain.
| | - Daniel Jaque
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain. and Nanobiology Group, Instituto Ramón y Cajal de Investigación, Sanitaria Hospital Ramón y Cajal, Ctra. De Colmenar Viejo, Km. 9100, 28034 Madrid, Spain
| | - Riccardo Marin
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain.
| |
Collapse
|
16
|
Khan MA, Zhu Y, Yao Y, Zhang P, Agrawal A, Reece PJ. Impact of metal crystallinity-related morphologies on the sensing performance of plasmonic nanohole arrays. NANOSCALE 2020; 12:7577-7585. [PMID: 32073105 DOI: 10.1039/d0nr00619j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plasmonic nanohole arrays for biosensing applications have attracted tremendous attention because of their flexibility in optical signature design, high multiplexing capabilities, simple optical alignment setup, and high sensitivity. The quality of the metal film, including metal crystallinity and surface roughness, plays an important role in determining the sensing performance because the interaction between free electrons in the metal and incident light is strongly influenced by the metal surface morphology. We systematically investigated the influence of metal crystallinity-related morphologies on the sensing performance of plasmonic nanohole arrays after different metal deposition processes. We utilised several non-destructive nanoscale surface characterisation techniques to perform a quantitative and comparative analysis of the Au quality of the fabricated sensor. We found empirically how the surface roughness and grain sizes influence the permittivity of the Au film and thus the sensitivity of the fabricated sensor. Finally we confirmed that the deposition conditions that provide both low surface roughness and large metal grain sizes improve the sensitivity of the plasmonic sensor.
Collapse
Affiliation(s)
- Mansoor Ali Khan
- St George and Sutherland Clinical School, UNSW Sydney, NSW 2052, Australia.
| | | | | | | | | | | |
Collapse
|
17
|
Nisar MS, Kang S, Zhao X. Photothermal Effect in Plasmonic Nanotip for LSPR Sensing. SENSORS 2020; 20:s20030671. [PMID: 31991744 PMCID: PMC7039235 DOI: 10.3390/s20030671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 01/13/2023]
Abstract
The influence of heat generation on the conventional process of LSPR based sensing has not been explored thus far. Therefore, a need exists to draw attention toward the heat generation issue during LSPR sensing as it may affect the refractive index of the analyte, leading to incorrect sensory conclusions. This manuscript addresses the connection between the photo-thermal effect and LSPR. We numerically analyzed the heat performance of a gold cladded nanotip. The numerical results predict a change in the micro-scale temperature in the microenvironment near the nanotip. These numerical results predict a temperature increase of more than 20 K near the apex of the nanotip, which depends on numerous factors including the input optical power and the diameter of the fiber. We analytically show that this change in the temperature influences a change in the refractive index of the microenvironment in the vicinity of the nanotip. In accordance with our numerical and analytical findings, we experimentally show an LSPR shift induced by a change in the input power of the source. We believe that our work will bring the importance of temperature dependence in nanotip based LSPR sensing to the fore.
Collapse
Affiliation(s)
- Muhammad Shemyal Nisar
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (M.S.N.); (S.K.)
- Southeast University-Shenzhen Research Institute, Shenzhen 518000, China
| | - Siyu Kang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (M.S.N.); (S.K.)
- Southeast University-Shenzhen Research Institute, Shenzhen 518000, China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (M.S.N.); (S.K.)
- Southeast University-Shenzhen Research Institute, Shenzhen 518000, China
- Correspondence:
| |
Collapse
|
18
|
Yin S, He F, Green N, Fang X. Nanoparticle trapping and routing on plasmonic nanorails in a microfluidic channel. OPTICS EXPRESS 2020; 28:1357-1368. [PMID: 32121848 DOI: 10.1364/oe.384748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Plasmonic nanostructures hold great promise for enabling advanced optical manipulation of nanoparticles in microfluidic channels, resulting from the generation of strong and controllable light focal points at the nanoscale. A primary remaining challenge in the current integration of plasmonics and microfluidics is to transport trapped nanoparticles along designated routes. Here we demonstrate through numerical simulation a plasmonic nanoparticle router that can trap and route a nanoparticle in a microfluidic channel with a continuous fluidic flow. The nanoparticle router contains a series of gold nanostrips on top of a continuous gold film. The nanostrips support both localised and propagating surface plasmons under light illumination, which underpin the trapping and routing functionalities. The nanoparticle guiding at a Y-branch junction is enabled by a small change of 50 nm in the wavelength of incident light.
Collapse
|
19
|
Serological and molecular rapid diagnostic tests for Toxoplasma infection in humans and animals. Eur J Clin Microbiol Infect Dis 2019; 39:19-30. [PMID: 31428897 PMCID: PMC7087738 DOI: 10.1007/s10096-019-03680-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/11/2019] [Indexed: 02/07/2023]
Abstract
Infection by Toxoplasma gondii is prevalent worldwide. The parasite can infect a broad spectrum of vertebrate hosts, but infection of fetuses and immunocompromised patients is of particular concern. Easy-to-perform, robust, and highly sensitive and specific methods to detect Toxoplasma infection are important for the treatment and management of patients. Rapid diagnostic methods that do not sacrifice the accuracy of the assay and give reproducible results in a short time are highly desirable. In this context, rapid diagnostic tests (RDTs), especially with point-of-care (POC) features, are promising diagnostic methods in clinical microbiology laboratories, especially in areas with minimal laboratory facilities. More advanced methods using microfluidics and sensor technology will be the future trend. In this review, we discuss serological and molecular-based rapid diagnostic tests for detecting Toxoplasma infection in humans as well as animals.
Collapse
|
20
|
Kaur N, Mahajan A, Bhullar V, Singh DP, Saxena V, Debnath AK, Aswal DK, Devi D, Singh F, Chopra S. Fabrication of plasmonic dye-sensitized solar cells using ion-implanted photoanodes. RSC Adv 2019; 9:20375-20384. [PMID: 35514719 PMCID: PMC9065801 DOI: 10.1039/c9ra02657f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/14/2019] [Indexed: 12/04/2022] Open
Abstract
Plasmonic dye-sensitized solar cells containing metal nanoparticles suffer from stability issues due to their miscibility with liquid iodine-based electrolytes. To resolve the stability issue, herein, an ion implantation technique was explored to implant metal nanoparticles inside TiO2, which protected these nanoparticles with a thin coverage of TiO2 melt and maintained the localized surface plasmon resonance oscillations of the metal nanoparticles to efficiently enhance their light absorption and make them corrosion resistant. Herein, Au nanoparticles were implanted into the TiO2 matrix up to the penetration depth of 22 nm, and their influence on the structural and optical properties of TiO2 was studied. Moreover, plasmonic dye-sensitized solar cells were fabricated using N719 dye-loaded Au-implanted TiO2 photoanodes, and their power conversion efficiency was found to be 44.7% higher than that of the unimplanted TiO2-based dye-sensitized solar cells due to the enhanced light absorption of the dye molecules in the vicinity of the localized surface plasmon resonance of Au as well as the efficient electron charge transport at the TiO2@Au@N719/electrolyte interface.
Collapse
Affiliation(s)
- Navdeep Kaur
- Department of Physics, Guru Nanak Dev University Amritsar - 143 005 India
| | - Aman Mahajan
- Department of Physics, Guru Nanak Dev University Amritsar - 143 005 India
| | - Viplove Bhullar
- Department of Physics, Guru Nanak Dev University Amritsar - 143 005 India
| | | | - Vibha Saxena
- Thin Film Devices Section, Technical Physics Division, Bhabha Atomic Research Centre Mumbai - 400 085 India
| | - A K Debnath
- Thin Film Devices Section, Technical Physics Division, Bhabha Atomic Research Centre Mumbai - 400 085 India
| | - D K Aswal
- National Physical Laboratory New Delhi - 110012 India
| | - Devarani Devi
- Inter University Accelerator Centre New Delhi - 110 0067 India
| | - Fouran Singh
- Inter University Accelerator Centre New Delhi - 110 0067 India
| | - Sundeep Chopra
- Inter University Accelerator Centre New Delhi - 110 0067 India
| |
Collapse
|
21
|
Zhu X, Cicek A, Li Y, Yanik AA. Plasmofluidic Microlenses for Label-Free Optical Sorting of Exosomes. Sci Rep 2019; 9:8593. [PMID: 31197196 PMCID: PMC6565621 DOI: 10.1038/s41598-019-44801-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/16/2019] [Indexed: 11/20/2022] Open
Abstract
Optical chromatography is a powerful optofluidic technique enabling label-free fractionation of microscopic bioparticles from heterogenous mixtures. However, sophisticated instrumentation requirements for precise alignment of optical scattering and fluidic drag forces is a fundamental shortcoming of this technique. Here, we introduce a subwavelength thick (<200 nm) Optofluidic PlasmonIC (OPtIC) microlens that effortlessly achieves objective-free focusing and self-alignment of opposing optical scattering and fluidic drag forces for selective separation of exosome size bioparticles. Our optofluidic microlens provides a self-collimating mechanism for particle trajectories with a spatial dispersion that is inherently minimized by the optical gradient and radial fluidic drag forces working together to align the particles along the optical axis. We demonstrate that this facile platform facilitates complete separation of small size bioparticles (i.e., exosomes) from a heterogenous mixture through negative depletion and provides a robust selective separation capability for same size nanoparticles based on their differences in chemical composition. Unlike existing optical chromatography techniques that require complicated instrumentation (lasers, objectives and precise alignment stages), our OPtIC microlenses with a foot-print of 4 μm × 4 μm open up the possibility of multiplexed and high-throughput sorting of nanoparticles on a chip using low-cost broadband light sources.
Collapse
Affiliation(s)
- Xiangchao Zhu
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, 95064, USA
| | - Ahmet Cicek
- Department of Nanoscience and Nanotechnology, Burdur Mehmet Akif Ersoy University, Burdur, 15030, Turkey
| | - Yixiang Li
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, 95064, USA
| | - Ahmet Ali Yanik
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, 95064, USA. .,California Institute for Quantitative Biosciences (QB3), University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
22
|
Mutlu M, Kang JH, Raza S, Schoen D, Zheng X, Kik PG, Brongersma ML. Thermoplasmonic Ignition of Metal Nanoparticles. NANO LETTERS 2018; 18:1699-1706. [PMID: 29356548 DOI: 10.1021/acs.nanolett.7b04739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Explosives, propellants, and pyrotechnics are energetic materials that can store and quickly release tremendous amounts of chemical energy. Aluminum (Al) is a particularly important fuel in many applications because of its high energy density, which can be released in a highly exothermic oxidation process. The diffusive oxidation mechanism (DOM) and melt-dispersion mechanism (MDM) explain the ways powders of Al nanoparticles (NPs) can burn, but little is known about the possible use of plasmonic resonances in NPs to manipulate photoignition. This is complicated by the inhomogeneous nature of powders and very fast heating and burning rates. Here, we generate Al NPs with well-defined sizes, shapes, and spacings by electron beam lithography and demonstrate that their plasmonic resonances can be exploited to heat and ignite them with a laser. By combining simulations with thermal-emission, electron-, and optical-microscopy studies, we reveal how an improved control over NP ignition can be attained.
Collapse
Affiliation(s)
- Mehmet Mutlu
- Geballe Laboratory for Advanced Materials , Stanford University , Stanford , California 94305 , United States
| | - Ju-Hyung Kang
- Geballe Laboratory for Advanced Materials , Stanford University , Stanford , California 94305 , United States
| | - Søren Raza
- Geballe Laboratory for Advanced Materials , Stanford University , Stanford , California 94305 , United States
| | - David Schoen
- Geballe Laboratory for Advanced Materials , Stanford University , Stanford , California 94305 , United States
- Exponent Inc., Menlo Park , California 94025 , United States
| | - Xiaolin Zheng
- Department of Mechanical Engineering , Stanford University , Stanford , California 94305 , United States
| | - Pieter G Kik
- Geballe Laboratory for Advanced Materials , Stanford University , Stanford , California 94305 , United States
- CREOL, The College of Optics and Photonics , University of Central Florida , 4000 Central Florida Boulevard , Orlando , Florida 32816 , United States
| | - Mark L Brongersma
- Geballe Laboratory for Advanced Materials , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
23
|
Bhalla N, Chiang HJ, Shen AQ. Cell biology at the interface of nanobiosensors and microfluidics. Methods Cell Biol 2018; 148:203-227. [DOI: 10.1016/bs.mcb.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Xue L, Xie W, Driessen L, Domke KF, Wang Y, Schlücker S, Gorb SN, Steinhart M. Advanced SERS Sensor Based on Capillarity-Assisted Preconcentration through Gold Nanoparticle-Decorated Porous Nanorods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603947. [PMID: 28440003 DOI: 10.1002/smll.201603947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/26/2017] [Indexed: 06/07/2023]
Abstract
A preconcentrating surface-enhanced Raman scattering (SERS) sensor for the analysis of liquid-soaked tissue, tiny liquid droplets and thin liquid films without the necessity to collect the analyte is reported. The SERS sensor is based on a block-copolymer membrane containing a spongy-continuous pore system. The sensor's upper side is an array of porous nanorods having tips functionalized with Au nanoparticles. Capillarity in combination with directional evaporation drives the analyte solution in contact with the flat yet nanoporous underside of the SERS sensor through the continuous nanopore system toward the nanorod tips where non-volatile components of the analyte solution precipitate at the Au nanoparticles. The nanorod architecture increases the sensor surface in the detection volume and facilitates analyte preconcentration driven by directional solvent evaporation. The model analyte 5,5'-dithiobis(2-nitrobenzoic acid) can be detected in a 1 × 10-3 m solution ≈300 ms after the sensor is brought into contact with the solution. Moreover, a sensitivity of 0.1 ppm for the detection of the dissolved model analyte is achieved.
Collapse
Affiliation(s)
- Longjian Xue
- Department of Materials Engineering, School of Power and Mechanical Engineering, Wuhan University, South Donghu Road 8, 430072, Wuhan, China
- Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastr. 7, 49069, Osnabrück, Germany
| | - Wei Xie
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, 300071, Tianjin, China
- Fakultät für Chemie, Universität Duisburg-Essen, 45141, Essen, Germany
| | - Leonie Driessen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katrin F Domke
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | | | - Stanislav N Gorb
- Zoologisches Institut, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24098, Kiel, Germany
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastr. 7, 49069, Osnabrück, Germany
| |
Collapse
|
25
|
Jahn IJ, Žukovskaja O, Zheng XS, Weber K, Bocklitz TW, Cialla-May D, Popp J. Surface-enhanced Raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications. Analyst 2017; 142:1022-1047. [DOI: 10.1039/c7an00118e] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The review provides an overview of the development in the field of surface-enhanced Raman spectroscopy combined with microfluidic platforms.
Collapse
Affiliation(s)
- I. J. Jahn
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| | - O. Žukovskaja
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
| | - X.-S. Zheng
- Leibniz Institute of Photonic Technology Jena
- 07745 Jena
- Germany
| | - K. Weber
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| | - T. W. Bocklitz
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| | - D. Cialla-May
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| | - J. Popp
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| |
Collapse
|
26
|
Jang YH, Jang YJ, Kim S, Quan LN, Chung K, Kim DH. Plasmonic Solar Cells: From Rational Design to Mechanism Overview. Chem Rev 2016; 116:14982-15034. [PMID: 28027647 DOI: 10.1021/acs.chemrev.6b00302] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmonic effects have been proposed as a solution to overcome the limited light absorption in thin-film photovoltaic devices, and various types of plasmonic solar cells have been developed. This review provides a comprehensive overview of the state-of-the-art progress on the design and fabrication of plasmonic solar cells and their enhancement mechanism. The working principle is first addressed in terms of the combined effects of plasmon decay, scattering, near-field enhancement, and plasmonic energy transfer, including direct hot electron transfer and resonant energy transfer. Then, we summarize recent developments for various types of plasmonic solar cells based on silicon, dye-sensitized, organic photovoltaic, and other types of solar cells, including quantum dot and perovskite variants. We also address several issues regarding the limitations of plasmonic nanostructures, including their electrical, chemical, and physical stability, charge recombination, narrowband absorption, and high cost. Next, we propose a few potentially useful approaches that can improve the performance of plasmonic cells, such as the inclusion of graphene plasmonics, plasmon-upconversion coupling, and coupling between fluorescence resonance energy transfer and plasmon resonance energy transfer. This review is concluded with remarks on future prospects for plasmonic solar cell use.
Collapse
Affiliation(s)
- Yoon Hee Jang
- Department of Chemistry and Nano Science, School of Natural Sciences, Ewha Womans University , 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Yu Jin Jang
- Department of Chemistry and Nano Science, School of Natural Sciences, Ewha Womans University , 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seokhyoung Kim
- Department of Chemistry and Nano Science, School of Natural Sciences, Ewha Womans University , 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Li Na Quan
- Department of Chemistry and Nano Science, School of Natural Sciences, Ewha Womans University , 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Kyungwha Chung
- Department of Chemistry and Nano Science, School of Natural Sciences, Ewha Womans University , 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Dong Ha Kim
- Department of Chemistry and Nano Science, School of Natural Sciences, Ewha Womans University , 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
27
|
Kang Z, Chen J, Ho HP. Surface-enhanced Raman scattering via entrapment of colloidal plasmonic nanocrystals by laser generated microbubbles on random gold nano-islands. NANOSCALE 2016; 8:10266-72. [PMID: 27125956 DOI: 10.1039/c6nr00375c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Surface-enhanced Raman scattering (SERS) typically requires hot-spots generated in nano-fabricated plasmonic structures. Here we report a highly versatile approach based on the use of random gold nano-island substrates (AuNIS). Hot spots are produced through the entrapment of colloidal plasmonic nano-crystals at the interface between AuNIS and a microbubble, which is generated from the localized plasmonic absorption of a focused laser beam. The entrapment strength is strongly dependent on the shape of the microbubble, which is in turn affected by the surface wetting characteristics of the AuNIS with respect to the solvent composition. The laser power intensity required to trigger microbubble-induced SERS is as low as 200 μW μm(-2). Experimental results indicate that the SERS limit of detection (LOD) for molecules of 4-MBA (with -SH bonds) is 10(-12) M, R6G or RhB (without -SH bonds) is 10(-7) M. The proposed strategy has potential applications in low-cost lab-on-chip devices for the label-free detection of chemical and biological molecules.
Collapse
Affiliation(s)
- Zhiwen Kang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| | | | | |
Collapse
|
28
|
Salmon AR, Esteban R, Taylor RW, Hugall JT, Smith CA, Whyte G, Scherman OA, Aizpurua J, Abell C, Baumberg JJ. Monitoring Early-Stage Nanoparticle Assembly in Microdroplets by Optical Spectroscopy and SERS. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1788-96. [PMID: 26865562 DOI: 10.1002/smll.201503513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/11/2016] [Indexed: 05/19/2023]
Abstract
Microfluidic microdroplets have increasingly found application in biomolecular sensing as well as nanomaterials growth. More recently the synthesis of plasmonic nanostructures in microdroplets has led to surface-enhanced Raman spectroscopy (SERS)-based sensing applications. However, the study of nanoassembly in microdroplets has previously been hindered by the lack of on-chip characterization tools, particularly at early timescales. Enabled by a refractive index matching microdroplet formulation, dark-field spectroscopy is exploited to directly track the formation of nanometer-spaced gold nanoparticle assemblies in microdroplets. Measurements in flow provide millisecond time resolution through the assembly process, allowing identification of a regime where dimer formation dominates the dark-field scattering and SERS. Furthermore, it is shown that small numbers of nanoparticles can be isolated in microdroplets, paving the way for simple high-yield assembly, isolation, and sorting of few nanoparticle structures.
Collapse
Affiliation(s)
- Andrew R Salmon
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK
- Department of Physics, University of Cambridge, Cavendish Laboratory, JJ Thompson Avenue, Cambridge, CB3 0HE, UK
| | - Ruben Esteban
- Materials Physics Center (CSIC-UPV/EHU) and DIPC, Paseo Manuel de Lardizabal 4, Donostia-San Sebastian, ES, 20018, Spain
| | - Richard W Taylor
- Department of Physics, University of Cambridge, Cavendish Laboratory, JJ Thompson Avenue, Cambridge, CB3 0HE, UK
| | - James T Hugall
- Department of Physics, University of Cambridge, Cavendish Laboratory, JJ Thompson Avenue, Cambridge, CB3 0HE, UK
- ICFO, The Barcelona Institute of Science and Technology, Barcelona, 08860, Spain
| | - Clive A Smith
- Sphere Fluidics Limited, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Graeme Whyte
- Heriot-Watt University, School of Engineering and Physical Sciences, David Brewster Building, Edinburgh, EH14 4AS, UK
| | - Oren A Scherman
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK
| | - Javier Aizpurua
- Materials Physics Center (CSIC-UPV/EHU) and DIPC, Paseo Manuel de Lardizabal 4, Donostia-San Sebastian, ES, 20018, Spain
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK
| | - Jeremy J Baumberg
- Department of Physics, University of Cambridge, Cavendish Laboratory, JJ Thompson Avenue, Cambridge, CB3 0HE, UK
| |
Collapse
|
29
|
Kwon MS, Ku B, Kim Y. Plasmofluidic Disk Resonators. Sci Rep 2016; 6:23149. [PMID: 26979929 PMCID: PMC4793221 DOI: 10.1038/srep23149] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/01/2016] [Indexed: 11/17/2022] Open
Abstract
Waveguide-coupled silicon ring or disk resonators have been used for optical signal processing and sensing. Large-scale integration of optical devices demands continuous reduction in their footprints, and ultimately they need to be replaced by silicon-based plasmonic resonators. However, few waveguide-coupled silicon-based plasmonic resonators have been realized until now. Moreover, fluid cannot interact effectively with them since their resonance modes are strongly confined in solid regions. To solve this problem, this paper reports realized plasmofluidic disk resonators (PDRs). The PDR consists of a submicrometer radius silicon disk and metal laterally surrounding the disk with a 30-nm-wide channel in between. The channel is filled with fluid, and the resonance mode of the PDR is strongly confined in the fluid. The PDR coupled to a metal-insulator-silicon-insulator-metal waveguide is implemented by using standard complementary metal oxide semiconductor technology. If the refractive index of the fluid increases by 0.141, the transmission spectrum of the waveguide coupled to the PDR of radius 0.9 μm red-shifts by 30 nm. The PDR can be used as a refractive index sensor requiring a very small amount of analyte. Plus, the PDR filled with liquid crystal may be an ultracompact intensity modulator which is effectively controlled by small driving voltage.
Collapse
Affiliation(s)
- Min-Suk Kwon
- School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 689-798, Republic of Korea
| | - Bonwoo Ku
- School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 689-798, Republic of Korea
| | - Yonghan Kim
- School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 689-798, Republic of Korea
| |
Collapse
|
30
|
Knauer A, Koehler JM. Explanation of the size dependent in-plane optical resonance of triangular silver nanoprisms. Phys Chem Chem Phys 2016; 18:15943-9. [DOI: 10.1039/c6cp00953k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single electron excitationversusplasmon: different insights into the optical resonance of triangular silver nanoprisms.
Collapse
Affiliation(s)
- Andrea Knauer
- Department of Physical Chemistry and Micro Reaction Technology
- Institute of Chemistry and Biotechnology
- Technische Universität Ilmenau
- 98693 Ilmenau
- Germany
| | - J. Michael Koehler
- Department of Physical Chemistry and Micro Reaction Technology
- Institute of Chemistry and Biotechnology
- Technische Universität Ilmenau
- 98693 Ilmenau
- Germany
| |
Collapse
|
31
|
Patra PP, Chikkaraddy R, Thampi S, Tripathi RPN, Kumar GVP. Large-scale dynamic assembly of metal nanostructures in plasmofluidic field. Faraday Discuss 2016; 186:95-106. [PMID: 26765282 DOI: 10.1039/c5fd00127g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We discuss two aspects of the plasmofluidic assembly of plasmonic nanostructures at the metal–fluid interface. First, we experimentally show how three and four spot evanescent-wave excitation can lead to unconventional assembly of plasmonic nanoparticles at the metal–fluid interface. We observed that the pattern of assembly was mainly governed by the plasmon interference pattern at the metal–fluid interface, and further led to interesting dynamic effects within the assembly. The interference patterns were corroborated by 3D finite-difference time-domain simulations. Secondly, we show how anisotropic geometry, such as Ag nanowires, can be assembled and aligned in unstructured and structured plasmofluidic fields. We found that by structuring the metal-film, Ag nanowires can be aligned at the metal–fluid interface with a single evanescent-wave excitation, thus highlighting the prospect of assembling plasmonic circuits in a fluid. An interesting aspect of our method is that we obtain the assembly at locations away from the excitation points, thus leading to remote assembly of nanostructures. The results discussed herein may have implications in realizing a platform for reconfigurable plasmonic metamaterials, and a test-bed to understand the effect of plasmon interference on assembly of nanostructures in fluids.
Collapse
Affiliation(s)
- Partha Pratim Patra
- Photonics & Optical Nanoscopy Laboratory
- Division of Physics and Center for Energy Science
- Indian Institute of Science Education and Research
- Pune-411008
- India
| | - Rohit Chikkaraddy
- Photonics & Optical Nanoscopy Laboratory
- Division of Physics and Center for Energy Science
- Indian Institute of Science Education and Research
- Pune-411008
- India
| | - Sreeja Thampi
- Photonics & Optical Nanoscopy Laboratory
- Division of Physics and Center for Energy Science
- Indian Institute of Science Education and Research
- Pune-411008
- India
| | - Ravi P. N. Tripathi
- Photonics & Optical Nanoscopy Laboratory
- Division of Physics and Center for Energy Science
- Indian Institute of Science Education and Research
- Pune-411008
- India
| | - G. V. Pavan Kumar
- Photonics & Optical Nanoscopy Laboratory
- Division of Physics and Center for Energy Science
- Indian Institute of Science Education and Research
- Pune-411008
- India
| |
Collapse
|
32
|
Lo SC, Lin EH, Wei PK, Tsai WS. A compact imaging spectroscopic system for biomolecular detections on plasmonic chips. Analyst 2016; 141:6126-6132. [DOI: 10.1039/c6an01434h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we demonstrate a compact imaging spectroscopic system for high-throughput detection of biomolecular interactions on plasmonic chips, based on a curved grating as the key element of light diffraction and light focusing.
Collapse
Affiliation(s)
- Shu-Cheng Lo
- Department of Applied Materials and Optoelectronics Engineering
- National Chi Nan University
- Nantou 54561
- Taiwan
| | - En-Hung Lin
- Research Center for Applied Sciences
- Academia Sinica
- Taipei 11529
- Taiwan
| | - Pei-Kuen Wei
- Research Center for Applied Sciences
- Academia Sinica
- Taipei 11529
- Taiwan
| | - Wan-Shao Tsai
- Department of Applied Materials and Optoelectronics Engineering
- National Chi Nan University
- Nantou 54561
- Taiwan
| |
Collapse
|
33
|
Wang M, Zhao C, Miao X, Zhao Y, Rufo J, Liu YJ, Huang TJ, Zheng Y. Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4423-44. [PMID: 26140612 PMCID: PMC4856436 DOI: 10.1002/smll.201500970] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/07/2015] [Indexed: 05/14/2023]
Abstract
Plasmofluidics is the synergistic integration of plasmonics and micro/nanofluidics in devices and applications in order to enhance performance. There has been significant progress in the emerging field of plasmofluidics in recent years. By utilizing the capability of plasmonics to manipulate light at the nanoscale, combined with the unique optical properties of fluids and precise manipulation via micro/nanofluidics, plasmofluidic technologies enable innovations in lab-on-a-chip systems, reconfigurable photonic devices, optical sensing, imaging, and spectroscopy. In this review article, the most recent advances in plasmofluidics are examined and categorized into plasmon-enhanced functionalities in microfluidics and microfluidics-enhanced plasmonic devices. The former focuses on plasmonic manipulations of fluids, bubbles, particles, biological cells, and molecules at the micro/nanoscale. The latter includes technological advances that apply microfluidic principles to enable reconfigurable plasmonic devices and performance-enhanced plasmonic sensors. The article is concluded with perspectives on the upcoming challenges, opportunities, and possible future directions of the emerging field of plasmofluidics.
Collapse
Affiliation(s)
- Mingsong Wang
- Department of Mechanical Engineering, Materials Science and Engineering Program Texas Materials Institute The University of Texas at Austin, Austin, Texas 78712, USA
| | - Chenglong Zhao
- Department of Physics Electro-Optics, Graduate Program University of Dayton, Dayton, Ohio 45469, USA
| | - Xiaoyu Miao
- Google, Inc., 1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA
| | - Yanhui Zhao
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Materials Research Institute, Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Joseph Rufo
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Materials Research Institute, Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yan Jun Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR) 3 Research Link, Singapore 117602, Singapore
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Materials Research Institute, Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuebing Zheng
- Department of Mechanical Engineering, Materials Science and Engineering Program Texas Materials Institute The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
34
|
Niu L, Zhang N, Liu H, Zhou X, Knoll W. Integrating plasmonic diagnostics and microfluidics. BIOMICROFLUIDICS 2015; 9:052611. [PMID: 26392832 PMCID: PMC4560717 DOI: 10.1063/1.4929579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/13/2015] [Indexed: 05/31/2023]
Abstract
Plasmonics is generally divided into two categories: surface plasmon resonance (SPR) of electromagnetic modes propagating along a (noble) metal/dielectric interface and localized SPRs (LSPRs) on nanoscopic metallic structures (particles, rods, shells, holes, etc.). Both optical transducer concepts can be combined with and integrated in microfluidic devices for biomolecular analyte detections, with the benefits of small foot-print for point-of-care detection, low-cost for one-time disposal, and ease of being integrated into an array format. The key technologies in such integration include the plasmonic chip, microfluidic channel fabrication, surface bio-functionalization, and selection of the detection scheme, which are selected according to the specifics of the targeting analytes. This paper demonstrates a few examples of the many versions of how to combine plasmonics and integrated microfluidics, using different plasmonic generation mechanisms for different analyte detections. One example is a DNA sensor array using a gold film as substrate and surface plasmon fluorescence spectroscopy and microscopy as the transduction method. This is then compared to grating-coupled SPR for poly(ethylene glycol) thiol interaction detected by angle interrogation, gold nanohole based LSPR chip for biotin-strepavidin detection by wavelength shift, and gold nanoholes/nanopillars for the detection of prostate specific antigen by quantum dot labels excited by the LSPR. Our experimental results exemplified that the plasmonic integrated microfluidics is a promising tool for understanding the biomolecular interactions and molecular recognition process as well as biosensing, especially for on-site or point-of-care diagnostics.
Collapse
Affiliation(s)
- Lifang Niu
- Institute of Materials Research and Engineering , 3 Research Link, Singapore 117602, Singapore
| | - Nan Zhang
- Institute of Materials Research and Engineering , 3 Research Link, Singapore 117602, Singapore
| | - Hong Liu
- Institute of Materials Research and Engineering , 3 Research Link, Singapore 117602, Singapore
| | - Xiaodong Zhou
- Institute of Materials Research and Engineering , 3 Research Link, Singapore 117602, Singapore
| | | |
Collapse
|
35
|
Ahmed D, Peng X, Ozcelik A, Zheng Y, Huang TJ. Acousto-plasmofluidics: Acoustic modulation of surface plasmon resonance in microfluidic systems. AIP ADVANCES 2015; 5:097161. [PMID: 26421224 PMCID: PMC4575316 DOI: 10.1063/1.4931641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/10/2015] [Indexed: 05/18/2023]
Abstract
We acoustically modulated the localized surface plasmon resonances (LSPRs) of metal nanostructures integrated within microfluidic systems. An acoustically driven micromixing device based on bubble microstreaming quickly and homogeneously mixes multiple laminar flows of different refractive indices. The altered refractive index of the mixed fluids enables rapid modulation of the LSPRs of gold nanodisk arrays embedded within the microfluidic channel. The device features fast response for dynamic operation, and the refractive index within the channel is tailorable. With these unique features, our "acousto-plasmofluidic" device can be useful in applications such as optical switches, modulators, filters, biosensors, and lab-on-a-chip systems.
Collapse
Affiliation(s)
- Daniel Ahmed
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, The Pennsylvania State University , University Park, PA 16802 USA
| | - Xiaolei Peng
- Department of Mechanical Engineering, Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin , Austin, TX 78712 USA
| | - Adem Ozcelik
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, The Pennsylvania State University , University Park, PA 16802 USA
| | - Yuebing Zheng
- Department of Mechanical Engineering, Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin , Austin, TX 78712 USA
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, The Pennsylvania State University , University Park, PA 16802 USA
| |
Collapse
|
36
|
Tokel O, Yildiz UH, Inci F, Durmus NG, Ekiz OO, Turker B, Cetin C, Rao S, Sridhar K, Natarajan N, Shafiee H, Dana A, Demirci U. Portable microfluidic integrated plasmonic platform for pathogen detection. Sci Rep 2015; 5:9152. [PMID: 25801042 PMCID: PMC4371189 DOI: 10.1038/srep09152] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/26/2015] [Indexed: 01/22/2023] Open
Abstract
Timely detection of infectious agents is critical in early diagnosis and treatment of infectious diseases. Conventional pathogen detection methods, such as enzyme linked immunosorbent assay (ELISA), culturing or polymerase chain reaction (PCR) require long assay times, and complex and expensive instruments, which are not adaptable to point-of-care (POC) needs at resource-constrained as well as primary care settings. Therefore, there is an unmet need to develop simple, rapid, and accurate methods for detection of pathogens at the POC. Here, we present a portable, multiplex, inexpensive microfluidic-integrated surface plasmon resonance (SPR) platform that detects and quantifies bacteria, i.e., Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) rapidly. The platform presented reliable capture and detection of E. coli at concentrations ranging from ~10(5) to 3.2 × 10(7) CFUs/mL in phosphate buffered saline (PBS) and peritoneal dialysis (PD) fluid. The multiplexing and specificity capability of the platform was also tested with S. aureus samples. The presented platform technology could potentially be applicable to capture and detect other pathogens at the POC and primary care settings.
Collapse
Affiliation(s)
- Onur Tokel
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Umit Hakan Yildiz
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Canary Center at Stanford for Cancer Early Detection, Palo Alto, CA, USA
| | - Fatih Inci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Canary Center at Stanford for Cancer Early Detection, Palo Alto, CA, USA
| | - Naside Gozde Durmus
- Department of Biochemistry, Stanford School of Medicine, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
| | - Okan Oner Ekiz
- UNAM Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Burak Turker
- UNAM Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Can Cetin
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shruthi Rao
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kaushik Sridhar
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nalini Natarajan
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hadi Shafiee
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aykutlu Dana
- UNAM Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Utkan Demirci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Canary Center at Stanford for Cancer Early Detection, Palo Alto, CA, USA
| |
Collapse
|
37
|
Tunable pattern-free graphene nanoplasmonic waveguides on trenched silicon substrate. Sci Rep 2015; 5:7987. [PMID: 25614327 PMCID: PMC4303900 DOI: 10.1038/srep07987] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/29/2014] [Indexed: 11/09/2022] Open
Abstract
Graphene has emerged as a promising material for active plasmonic devices in the mid-infrared (MIR) region owing to its fast tunability, strong mode confinement, and long-lived collective excitation. In order to realize on-chip graphene plasmonics, several types of graphene plasmonic waveguides (GPWGs) have been investigated and most of them are with graphene ribbons suffering from the pattern-caused edge effect. Here we propose a novel nanoplasmonic waveguide with a pattern-free graphene monolayer on the top of a nano-trench. It shows that our GPWG with nanoscale light confinement, relatively low loss and slowed group velocity enables a significant modulation on the phase shift as well as the propagation loss over a broad band by simply applying a single low bias voltage, which is very attractive for realizing ultra-small optical modulators and optical switches for the future ultra-dense photonic integrated circuits. The strong light-matter interaction as well as tunable slow light is also of great interest for many applications such as optical nonlinearities.
Collapse
|
38
|
Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Sci Rep 2014; 4:6789. [PMID: 25346102 PMCID: PMC4209447 DOI: 10.1038/srep06789] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/06/2014] [Indexed: 12/23/2022] Open
Abstract
We demonstrate a high-throughput biosensing device that utilizes microfluidics based plasmonic microarrays incorporated with dual-color on-chip imaging toward real-time and label-free monitoring of biomolecular interactions over a wide field-of-view of >20 mm(2). Weighing 40 grams with 8.8 cm in height, this biosensor utilizes an opto-electronic imager chip to record the diffraction patterns of plasmonic nanoapertures embedded within microfluidic channels, enabling real-time analyte exchange. This plasmonic chip is simultaneously illuminated by two different light-emitting-diodes that are spectrally located at the right and left sides of the plasmonic resonance mode, yielding two different diffraction patterns for each nanoaperture array. Refractive index changes of the medium surrounding the near-field of the nanostructures, e.g., due to molecular binding events, induce a frequency shift in the plasmonic modes of the nanoaperture array, causing a signal enhancement in one of the diffraction patterns while suppressing the other. Based on ratiometric analysis of these diffraction images acquired at the detector-array, we demonstrate the proof-of-concept of this biosensor by monitoring in real-time biomolecular interactions of protein A/G with immunoglobulin G (IgG) antibody. For high-throughput on-chip fabrication of these biosensors, we also introduce a deep ultra-violet lithography technique to simultaneously pattern thousands of plasmonic arrays in a cost-effective manner.
Collapse
|
39
|
Lee H, Xu L, Koh D, Nyayapathi N, Oh KW. Various on-chip sensors with microfluidics for biological applications. SENSORS 2014; 14:17008-36. [PMID: 25222033 PMCID: PMC4208211 DOI: 10.3390/s140917008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/29/2014] [Accepted: 09/10/2014] [Indexed: 12/29/2022]
Abstract
In this paper, we review recent advances in on-chip sensors integrated with microfluidics for biological applications. Since the 1990s, much research has concentrated on developing a sensing system using optical phenomena such as surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS) to improve the sensitivity of the device. The sensing performance can be significantly enhanced with the use of microfluidic chips to provide effective liquid manipulation and greater flexibility. We describe an optical image sensor with a simpler platform for better performance over a larger field of view (FOV) and greater depth of field (DOF). As a new trend, we review consumer electronics such as smart phones, tablets, Google glasses, etc. which are being incorporated in point-of-care (POC) testing systems. In addition, we discuss in detail the current optical sensing system integrated with a microfluidic chip.
Collapse
Affiliation(s)
- Hun Lee
- Department of Electrical Engineering, University at Buffalo, State University of New York (SUNY at Buffalo), Buffalo, NY 14260, USA.
| | - Linfeng Xu
- Department of Electrical Engineering, University at Buffalo, State University of New York (SUNY at Buffalo), Buffalo, NY 14260, USA.
| | - Domin Koh
- Department of Electrical Engineering, University at Buffalo, State University of New York (SUNY at Buffalo), Buffalo, NY 14260, USA.
| | - Nikhila Nyayapathi
- Department of Electrical Engineering, University at Buffalo, State University of New York (SUNY at Buffalo), Buffalo, NY 14260, USA.
| | - Kwang W Oh
- Department of Electrical Engineering, University at Buffalo, State University of New York (SUNY at Buffalo), Buffalo, NY 14260, USA.
| |
Collapse
|
40
|
Roxworthy BJ, Bhuiya AM, Inavalli VVGK, Chen H, Toussaint KC. Multifunctional plasmonic film for recording near-field optical intensity. NANO LETTERS 2014; 14:4687-4693. [PMID: 25020242 DOI: 10.1021/nl501788a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We demonstrate the plasmonic equivalent of photographic film for recording optical intensity in the near field. The plasmonic structure is based on gold bowtie nanoantenna arrays fabricated on SiO2 pillars. We show that it can be employed for direct laser writing of image data or recording the polarization structure of optical vector beams. Scanning electron micrographs reveal a careful sculpting of the radius of curvature and height of the triangles composing the illuminated nanoantennas, as a result of plasmonic heating, that permits spatial tunability of the resonance response of the nanoantennas without sacrificing their geometric integrity. In contrast to other memory-dedicated approaches using Au nanorods embedded in a matrix medium, plasmonic film can be used in multiple application domains. To demonstrate this functionality, we utilize the structures as plasmonic optical tweezers and show sequestering of SiO2 microparticles into optically written channels formed between exposed sections of the film. The plasmonic film offers interesting possibilities for photonic applications including optofluidic channels "without walls," in situ tailorable biochemical sensing assays, and near-field particle manipulation and sorting.
Collapse
Affiliation(s)
- Brian J Roxworthy
- Department of Electrical and Computer Engineering and ‡Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | | | |
Collapse
|
41
|
Reconfigurable nanoantennas using electron-beam manipulation. Nat Commun 2014; 5:4427. [DOI: 10.1038/ncomms5427] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/17/2014] [Indexed: 11/08/2022] Open
|
42
|
Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles. Nat Commun 2014; 5:4357. [DOI: 10.1038/ncomms5357] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/09/2014] [Indexed: 12/24/2022] Open
|
43
|
Vélez-Cordero JR, Velázquez-Benítez AM, Hernández-Cordero J. Thermocapillary flow in glass tubes coated with photoresponsive layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5326-5336. [PMID: 24731004 DOI: 10.1021/la404221p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Thermocapillary flow has proven to be a good alternative to induce and control the motion of drops and bubbles in microchannels. Temperature gradients are usually established by implanting metallic heaters adjacent to the channel or by including a layer of photosensitive material capable of absorbing radiative energy. In this work we show that single drops can be pumped through capillaries coated with a photoresponsive composite (PDMS + carbon nanopowder) and irradiated with a light source via an optical fiber. Maximum droplet speeds achieved with this approach were found to be ~300 μm/s, and maximum displacements, around 120% of the droplet length. The heat generation capacity of the coatings was proven having either a complete coating over the capillary surface or a periodic array of pearls of the photoresponsive material along the capillary produced by the so-called Rayleigh-Plateau instability. The effect of the photoresponsive layer thickness and contact angle hysteresis of the solid-liquid interface were found to be important parameters in the photoinduced thermocapillary effect. Furthermore, a linear relationship between the optical intensity I(o) and droplet velocity v was found for a wide range of the former, allowing us to analyze the results and estimate response times for heat transfer using heat conduction theory.
Collapse
Affiliation(s)
- J Rodrigo Vélez-Cordero
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México , Apdo. Postal 70-360, México D.F. 04510, México
| | | | | |
Collapse
|
44
|
Abstract
Plasmonics provides an unparalleled method for manipulating light beyond the diffraction limit, making it a promising technology for the development of ultra-small, ultra-fast, power-efficient optical devices. To date, the majority of plasmonic devices are in the solid state and have limited tunability or configurability. Moreover, individual solid-state plasmonic devices lack the ability to deliver multiple functionalities. Here we utilize laser-induced surface bubbles on a metal film to demonstrate, for the first time, a plasmonic lens in a microfluidic environment. Our “plasmofluidic lens” device is dynamically tunable and reconfigurable. We record divergence, collimation, and focusing of surface plasmon polaritons using this device. The plasmofluidic lens requires no sophisticated nanofabrication and utilizes only a single low-cost diode laser. Our results show that the integration of plasmonics and microfluidics allows for new opportunities in developing complex plasmonic elements with multiple functionalities, high-sensitivity and high-throughput biomedical detection systems, as well as on-chip, all-optical information processing techniques.
Collapse
|
45
|
Understanding and controlling plasmon-induced convection. Nat Commun 2014; 5:3173. [DOI: 10.1038/ncomms4173] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/20/2013] [Indexed: 11/08/2022] Open
|
46
|
Chamanzar M, Xia Z, Yegnanarayanan S, Adibi A. Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy. OPTICS EXPRESS 2013; 21:32086-32098. [PMID: 24514803 DOI: 10.1364/oe.21.032086] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We experimentally demonstrate efficient extinction spectroscopy of single plasmonic gold nanorods with exquisite fidelity (SNR > 20dB) and high efficiency light coupling (e. g., 9.7%) to individual plasmonic nanoparticles in an integrated platform. We demonstrate chip-scale integration of lithographically defined plasmonic nanoparticles on silicon nitride (Si3N4) ridge waveguides for on-chip localized surface plasmon resonance (LSPR) sensing. The integration of this hybrid plasmonic-photonic platform with microfluidic sample delivery system is also discussed for on-chip LSPR sensing of D-glucose with a large sensitivity of ∼ 250 nm/RIU. The proposed architecture provides an efficient means of interrogating individual plasmonic nanoparticles with large SNR in an integrated alignment-insensitive platform, suitable for high-density on-chip sensing and spectroscopy applications.
Collapse
|
47
|
Optical sensing using dark mode excitation in an asymmetric dimer metamaterial. SENSORS 2013; 14:272-82. [PMID: 24368700 PMCID: PMC3926557 DOI: 10.3390/s140100272] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 12/05/2022]
Abstract
We study the presence of dark and bright modes in a planar metamaterial with a double rod unit cell introducing geometric asymmetry in rod lengths. The dark mode displays a Fano-type resonance with a sharp asymmetric profile, rendering it far more sensitive than the bright mode to slight variations of the dielectric environment. This peculiar feature may envisage the possible application of the asymmetric dimer metamaterial as an optical sensor for chemical or biological analysis, provided that the effect of material losses on the dark mode quality factor is properly taken into account.
Collapse
|
48
|
Krishna KS, Li Y, Li S, Kumar CS. Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications. Adv Drug Deliv Rev 2013; 65:1470-95. [PMID: 23726944 DOI: 10.1016/j.addr.2013.05.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
The past two decades have seen a dramatic raise in the number of investigations leading to the development of Lab-on-a-Chip (LOC) devices for synthesis of nanomaterials. A majority of these investigations were focused on inorganic nanomaterials comprising of metals, metal oxides, nanocomposites and quantum dots. Herein, we provide an analysis of these findings, especially, considering the more recent developments in this new decade. We made an attempt to bring out the differences between chip-based as well as tubular continuous flow systems. We also cover, for the first time, various opportunities the tools from the field of computational fluid dynamics provide in designing LOC systems for synthesis inorganic nanomaterials. Particularly, we provide unique examples to demonstrate that there is a need for concerted effort to utilize LOC devices not only for synthesis of inorganic nanomaterials but also for carrying out superior in vitro studies thereby, paving the way for faster clinical translation. Even though LOC devices with the possibility to carry out multi-step syntheses have been designed, surprisingly, such systems have not been utilized for carrying out simultaneous synthesis and bio-functionalization of nanomaterials. While traditionally, LOC devices are primarily based on microfluidic systems, in this review article, we make a case for utilizing millifluidic systems for more efficient synthesis, bio-functionalization and in vitro studies of inorganic nanomaterials tailor-made for biomedical applications. Finally, recent advances in the field clearly point out the possibility for pushing the boundaries of current medical practices towards personalized health care with a vision to develop automated LOC-based instrumentation for carrying out simultaneous synthesis, bio-functionalization and in vitro evaluation of inorganic nanomaterials for biomedical applications.
Collapse
|
49
|
Cuche A, Canaguier-Durand A, Devaux E, Hutchison JA, Genet C, Ebbesen TW. Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces. NANO LETTERS 2013; 13:4230-5. [PMID: 23927628 DOI: 10.1021/nl401922p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We exploit plasmonic and thermo-hydrodynamical forces to sort gold nanoparticles in a microfluidic environment. In the appropriate regime, the experimental data extracted from a Brownian statistical analysis of the kinetic motions are in good agreement with Mie-type theoretical evaluations of the optical forces acting on the nanoparticles in the plasmonic near field. This analysis enables us to demonstrate the importance of thermal and hydrodynamical effects in a sorting perspective.
Collapse
Affiliation(s)
- A Cuche
- ISIS & icFRC, University of Strasbourg and CNRS (UMR 7006) , 8 allée Gaspard Monge, 67000 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
50
|
Zehtabi-Oskuie A, Jiang H, Cyr BR, Rennehan DW, Al-Balushi AA, Gordon R. Double nanohole optical trapping: dynamics and protein-antibody co-trapping. LAB ON A CHIP 2013; 13:2563-8. [PMID: 23429640 DOI: 10.1039/c3lc00003f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A double nanohole in a metal film can optically trap nanoparticles such as polystyrene/silica spheres, encapsulated quantum dots and up-converting nanoparticles. Here we study the dynamics of trapped particles, showing a skewed distribution and low roll-off frequency that are indicative of Kramers-hopping at the nanoscale. Numerical simulations of trapped particles show a double-well potential normally found in Kramers-hopping systems, as well as providing quantitative agreement with the overall trapping potential. In addition, we demonstrate co-trapping of bovine serum albumin (BSA) with anti-BSA by sequential delivery in a microfluidic channel. This co-trapping opens up exciting possibilities for the study of protein interactions at the single particle level.
Collapse
Affiliation(s)
- Ana Zehtabi-Oskuie
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada V8W 3P6
| | | | | | | | | | | |
Collapse
|