1
|
Dortaj H, Amani AM, Tayebi L, Azarpira N, Ghasemi Toudeshkchouei M, Hassanpour-Dehnavi A, Karami N, Abbasi M, Najafian-Najafabadi A, Zarei Behjani Z, Vaez A. Droplet-based microfluidics: an efficient high-throughput portable system for cell encapsulation. J Microencapsul 2024; 41:479-501. [PMID: 39077800 DOI: 10.1080/02652048.2024.2382744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
One of the goals of tissue engineering and regenerative medicine is restoring primary living tissue function by manufacturing a 3D microenvironment. One of the main challenges is protecting implanted non-autologous cells or tissues from the host immune system. Cell encapsulation has emerged as a promising technique for this purpose. It involves entrapping cells in biocompatible and semi-permeable microcarriers made from natural or synthetic polymers that regulate the release of cellular secretions. In recent years, droplet-based microfluidic systems have emerged as powerful tools for cell encapsulation in tissue engineering and regenerative medicine. These systems offer precise control over droplet size, composition, and functionality, allowing for creating of microenvironments that closely mimic native tissue. Droplet-based microfluidic systems have extensive applications in biotechnology, medical diagnosis, and drug discovery. This review summarises the recent developments in droplet-based microfluidic systems and cell encapsulation techniques, as well as their applications, advantages, and challenges in biology and medicine. The integration of these technologies has the potential to revolutionise tissue engineering and regenerative medicine by providing a precise and controlled microenvironment for cell growth and differentiation. By overcoming the immune system's challenges and enabling the release of cellular secretions, these technologies hold great promise for the future of regenerative medicine.
Collapse
Affiliation(s)
- Hengameh Dortaj
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ashraf Hassanpour-Dehnavi
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Karami
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Najafian-Najafabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Zarei Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Shao F, Li H, Hsieh K, Zhang P, Li S, Wang TH. Automated and miniaturized screening of antibiotic combinations via robotic-printed combinatorial droplet platform. Acta Pharm Sin B 2024; 14:1801-1813. [PMID: 38572105 PMCID: PMC10985126 DOI: 10.1016/j.apsb.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 04/05/2024] Open
Abstract
Antimicrobial resistance (AMR) has become a global health crisis in need of novel solutions. To this end, antibiotic combination therapies, which combine multiple antibiotics for treatment, have attracted significant attention as a potential approach for combating AMR. To facilitate advances in antibiotic combination therapies, most notably in investigating antibiotic interactions and identifying synergistic antibiotic combinations however, there remains a need for automated high-throughput platforms that can create and examine antibiotic combinations on-demand, at scale, and with minimal reagent consumption. To address these challenges, we have developed a Robotic-Printed Combinatorial Droplet (RoboDrop) platform by integrating a programmable droplet microfluidic device that generates antibiotic combinations in nanoliter droplets in automation, a robotic arm that arranges the droplets in an array, and a camera that images the array of thousands of droplets in parallel. We further implement a resazurin-based bacterial viability assay to accelerate our antibiotic combination testing. As a demonstration, we use RoboDrop to corroborate two pairs of antibiotics with known interactions and subsequently identify a new synergistic combination of cefsulodin, penicillin, and oxacillin against a model E. coli strain. We therefore envision RoboDrop becoming a useful tool to efficiently identify new synergistic antibiotic combinations toward combating AMR.
Collapse
Affiliation(s)
- Fangchi Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hui Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pengfei Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sixuan Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
3
|
Ryu J, Kim J, Han KH. dDrop-Chip: disposable film-chip microfluidic device for real-time droplet feedback control. LAB ON A CHIP 2023; 23:1896-1904. [PMID: 36877075 DOI: 10.1039/d2lc01069k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A cost-effective, simple to use, and automated technique that can provide real-time feedback control for droplet generation is required to obtain droplets with high-throughput, stability, and uniformity. This study introduces a disposable droplet generation microfluidic device (dDrop-Chip) that can simultaneously control both droplet size and production rate in real time. The dDrop-Chip consists of a reusable sensing substrate and a disposable microchannel that can be assembled using vacuum pressure. It also integrates a droplet detector and a flow sensor on-chip, enabling real-time measurement and feedback control of droplet size and sample flow rate. The dDrop-Chip has the additional advantage of being disposable, which can prevent chemical and biological contamination, due to low manufacturing cost by the film-chip technique. We demonstrate benefits of the dDrop-Chip by controlling droplet size at a fixed sample flow rate and the production rate at a fixed droplet size using real-time feedback control. The experimental results show that the dDrop-Chip consistently generates monodisperse droplets with a length of 219.36 ± 0.08 μm (CV 0.036%) at a production rate of 32.38 ± 0.48 Hz using the feedback control, while without feedback control, there is a significant deviation in droplet length (224.18 ± 6.69 μm, CV 2.98%) and production rate (33.94 ± 1.72 Hz) despite the use of identical devices. Therefore, the dDrop-Chip is a reliable, cost-effective, and automated technique for generating droplets of controlled size and production rate in real time, making it suitable for various droplet-based applications.
Collapse
Affiliation(s)
- Jaewook Ryu
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, 197, Inje-Ro, Gimhae 50834, Gyeongnam, Republic of Korea.
| | - Junhyeong Kim
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, 197, Inje-Ro, Gimhae 50834, Gyeongnam, Republic of Korea.
| | - Ki-Ho Han
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, 197, Inje-Ro, Gimhae 50834, Gyeongnam, Republic of Korea.
| |
Collapse
|
4
|
Zath GK, Sperling RA, Hoffman CW, Bikos DA, Abbasi R, Abate AR, Weitz DA, Chang CB. Rapid parallel generation of a fluorescently barcoded drop library from a microtiter plate using the plate-interfacing parallel encapsulation (PIPE) chip. LAB ON A CHIP 2022; 22:4735-4745. [PMID: 36367139 PMCID: PMC10016142 DOI: 10.1039/d2lc00909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In drop-based microfluidics, an aqueous sample is partitioned into drops using individual pump sources that drive water and oil into a drop-making device. Parallelization of drop-making devices is necessary to achieve high-throughput screening of multiple experimental conditions, especially in time-sensitive studies. Here, we present the plate-interfacing parallel encapsulation (PIPE) chip, a microfluidic chip designed to generate 50 to 90 μm diameter drops of up to 96 different conditions in parallel by interfacing individual drop makers with a standard 384-well microtiter plate. The PIPE chip is used to generate two types of optically barcoded drop libraries consisting of two-color fluorescent particle combinations: a library of 24 microbead barcodes and a library of 192 quantum dot barcodes. Barcoded combinations in the drop libraries are rapidly measured within a microfluidic device using fluorescence detection and distinct barcoded populations in the fluorescence drop data are identified using DBSCAN data clustering. Signal analysis reveals that particle size defines the source of dominant noise present in the fluorescence intensity distributions of the barcoded drop populations, arising from Poisson loading for microbeads and shot noise for quantum dots. A barcoded population from a drop library is isolated using fluorescence-activated drop sorting, enabling downstream analysis of drop contents. The PIPE chip can improve multiplexed high-throughput assays by enabling simultaneous encapsulation of barcoded samples stored in a microtiter plate and reducing sample preparation time.
Collapse
Affiliation(s)
- Geoffrey K Zath
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Ralph A Sperling
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Fraunhofer Institute for Microengineering and Microsystems IMM, Mainz, Germany
| | - Carter W Hoffman
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Dimitri A Bikos
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Reha Abbasi
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - David A Weitz
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Connie B Chang
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Breukers J, Op de Beeck H, Rutten I, López Fernández M, Eyckerman S, Lammertyn J. Highly flexible and accurate serial picoinjection in droplets by combined pressure and flow rate control. LAB ON A CHIP 2022; 22:3475-3488. [PMID: 35943442 DOI: 10.1039/d2lc00368f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Picoinjection is a robust method for reagent addition into microfluidic droplets and has enabled the implementation of numerous multistep droplet assays. Although serial picoinjectors allow to screen many conditions in one run by injecting different combinations of reagents, their use is limited because it is complex to accurately control each injector independently. Here, we present a novel method for flexible, individual picoinjector control that allows to inject a predefined range of volumes by controlling the flow rate of the injector as well as turning off injection by setting the equilibrium pressure, which resulted in a stable interface of the injector liquid with the main microfluidic channel. Robust setting of the equilibrium pressure of an injector was achieved by applying accurate (R2 > 0.94) linear models between the injector and oil pressure in real-time. To illustrate the flexibility of this method, we performed several proof-of-concepts using 1, 2 or 3 picoinjectors loaded with fluorescent dyes. We successfully demonstrated picoinjection approaches using time-invariant settings, in which an injector setting was applied for prolonged times, and time-variant picoinjection, in which the injector settings were continuously varied in order to sweep the injected volumes, both resulting in monodisperse (CV < 3.4%) droplet libraries with different but reproducible fluorescent intensities. To illustrate the potential of the technology for fast compound concentration screenings, we studied the effect of a concentration range of a detergent on single-cell lysis. We anticipate that this robust and versatile methodology will make the serial picoinjection technology more accessible to researchers, allowing its wide implementation in numerous life science applications.
Collapse
Affiliation(s)
- Jolien Breukers
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Hannah Op de Beeck
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Iene Rutten
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| | - Montserrat López Fernández
- Confo Therapeutics, Technologiepark-Zwijnaarde 30, Ghent 9052, Belgium
- Center for Medical Biotechnology, VIB-Ghent University, Technologiepark-Zwijnaarde 75, Ghent 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, Ghent 9052, Belgium
| | - Sven Eyckerman
- Center for Medical Biotechnology, VIB-Ghent University, Technologiepark-Zwijnaarde 75, Ghent 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, Ghent 9052, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven 3001, Belgium.
| |
Collapse
|
6
|
Ogo A, Okayama S, Nakatani M, Hashimoto M. CO 2-Laser-Micromachined, Polymer Microchannels with a Degassed PDMS slab for the Automatic Production of Monodispersed Water-in-Oil Droplets. MICROMACHINES 2022; 13:1389. [PMID: 36144013 PMCID: PMC9502940 DOI: 10.3390/mi13091389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
In our recent study, we fabricated a pump/tube-connection-free microchip comprising top and bottom polydimethylsiloxane (PDMS) slabs to produce monodispersed water-in-oil droplets in a fully automated, fluid-manipulation fashion. All microstructures required for droplet production were directly patterned on the surfaces of the two PDMS slabs through CO2-laser micromachining, facilitating the fast fabrication of the droplet-production microchips. In the current extension study, we replaced the bottom PDMS slab, which served as a microfluidic layer in the microchip, with a poly(methyl methacrylate) (PMMA) slab. This modification was based on our idea that the bottom PDMS slab does not contribute to the automatic fluid manipulation and that replacing the bottom PDMS slab with a more affordable and accessible, ready-to-use polymer slab, such as a PMMA, would further facilitate the rapid and low-cost fabrication of the connection-free microchips. Using a new PMMA/PDMS microchip, we produced water-in-oil droplets with high degree of size-uniformity (a coefficient of variation for droplet diameters of <5%) without a decrease in the droplet production rate (~270 droplets/s) as compared with that achieved via the previous PDMS/PDMS microchip (~220 droplets/s).
Collapse
|
7
|
Facile and scalable tubing-free sample loading for droplet microfluidics. Sci Rep 2022; 12:13340. [PMID: 35922529 PMCID: PMC9349288 DOI: 10.1038/s41598-022-17352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Droplet microfluidics has in recent years found a wide range of analytical and bioanalytical applications. In droplet microfluidics, the samples that are discretized into droplets within the devices are predominantly loaded through tubings, but such tubing-based sample loading has drawbacks such as limited scalability for processing many samples, difficulty for automation, and sample wastage. While advances in autosamplers have alleviated some of these drawbacks, sample loading that can instead obviate tubings offers a potentially promising alternative but has been underexplored. To fill the gap, we introduce herein a droplet device that features a new Tubing Eliminated Sample Loading Interface (TESLI). TESLI integrates a network of programmable pneumatic microvalves that regulate vacuum and pressure sources so that successive sub-microliter samples can be directly spotted onto the open-to-atmosphere TESLI inlet, vacuumed into the device, and pressurized into nanoliter droplets within the device with minimal wastage. The same vacuum and pressure regulation also endows TESLI with cleaning and sample switching capabilities, thus enabling scalable processing of many samples in succession. Moreover, we implement a pair of TESLIs in our device to parallelize and alternate their operation as means to minimizing idle time. For demonstration, we use our device to successively process 44 samples into droplets—a number that can further scale. Our results demonstrate the feasibility of tubing-free sample loading and a promising approach for advancing droplet microfluidics.
Collapse
|
8
|
Postek W, Garstecki P. Droplet Microfluidics for High-Throughput Analysis of Antibiotic Susceptibility in Bacterial Cells and Populations. Acc Chem Res 2022; 55:605-615. [PMID: 35119826 PMCID: PMC8892833 DOI: 10.1021/acs.accounts.1c00729] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibiotic-resistant bacteria are an increasing concern both in everyday life and specialized environments such as healthcare. As the rate of antibiotic-resistant infections rises, so do complications to health and the risk of disability and death. Urgent action is required regarding the discovery of new antibiotics and rapid diagnosis of the resistance profile of an infectious pathogen as well as a better understanding of population and single-cell distribution of the resistance level. High-throughput screening is the major affordance of droplet microfluidics. Droplet screens can be exploited both to look for combinations of drugs that could stop an infection of multidrug-resistant bacteria and to search for the source of resistance via directed-evolution experiments or the analysis of various responses to a drug by genetically identical bacteria. In droplet techniques that have been used in this way for over a decade, aqueous droplets containing antibiotics and bacteria are manipulated both within and outside of the microfluidic devices. The diagnostics problem was approached by producing a series of microfluidic systems with integrated dilution modules for automated preparation of antibiotic concentration gradients, achieving the speed that allowed for high-throughput combinatorial assays. We developed a method for automated emulsification of a series of samples that facilitated measuring the resistance levels of thousands of individual cells encapsulated in droplets and quantifying the inoculum effect, the dependence of resistance level on bacterial cell count. Screening of single cells encapsulated in droplets with varying antibiotic contents has revealed a distribution of resistance levels within populations of clonally identical cells. To be able to screen bacteria from clinical samples, a study of fluorescent dyes in droplets determined that a derivative of a popular viability marker is more suitable for droplet assays. We have developed a detection system that analyzes the growth or death state of bacteria with antibiotics for thousands of droplets per second by measuring the scattering of light hitting the droplets without labeling the cells or droplets. The droplet-based microchemostats enabled long-term evolution of resistance experiments, which will be integrated with high-throughput single-cell assays to better understand the mechanism of resistance acquisition and loss. These techniques underlie automated combinatorial screens of antibiotic resistance in single cells from clinical samples. We hope that this Account will inspire new droplet-based research on the antibiotic susceptibility of bacteria.
Collapse
Affiliation(s)
- Witold Postek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
9
|
Jeong Y, Jang H, Kang J, Nam J, Shin K, Kwon S, Choi J. Color-Coded Droplets and Microscopic Image Analysis for Multiplexed Antibiotic Susceptibility Testing. BIOSENSORS-BASEL 2021; 11:bios11080283. [PMID: 34436085 PMCID: PMC8393621 DOI: 10.3390/bios11080283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 01/11/2023]
Abstract
Since the discovery of antibiotics, the emergence of antibiotic resistance has become a global issue that is threatening society. In the era of antibiotic resistance, finding the proper antibiotics through antibiotic susceptibility testing (AST) is crucial in clinical settings. However, the current clinical process of AST based on the broth microdilution test has limitations on scalability to expand the number of antibiotics that are tested with various concentrations. Here, we used color-coded droplets to expand the multiplexing of AST regarding the kind and concentration of antibiotics. Color type and density differentiate the kind of antibiotics and concentration, respectively. Microscopic images of a large view field contain numbers of droplets with different testing conditions. Image processing analysis detects each droplet, decodes color codes, and measures the bacterial growth in the droplet. Testing E. coli ATCC 25922 with ampicillin, gentamicin, and tetracycline shows that the system can provide a robust and scalable platform for multiplexed AST. Furthermore, the system can be applied to various drug testing systems, which require several different testing conditions.
Collapse
Affiliation(s)
- Yunjin Jeong
- Bio-MAX Institute, Seoul National University, Seoul 08826, Korea;
| | - Haewook Jang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Korea; (H.J.); (J.K.)
| | - Junwon Kang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Korea; (H.J.); (J.K.)
- Integrated Major in Innovative Medical Science, Seoul National University, Seoul 03080, Korea
| | - Juhong Nam
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea; (J.N.); (K.S.)
| | - Kyoungseob Shin
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea; (J.N.); (K.S.)
| | - Sunghoon Kwon
- Bio-MAX Institute, Seoul National University, Seoul 08826, Korea;
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Korea; (H.J.); (J.K.)
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea; (J.N.); (K.S.)
- Institute of Entrepreneurial Bio Convergence, Seoul National University, Seoul 08826, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
- Center for Medical Institute, Seoul National University Hospital, Seoul 03080, Korea
- Correspondence: (S.K.); (J.C.)
| | - Jungil Choi
- School of Mechanical Engineering, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Korea
- Correspondence: (S.K.); (J.C.)
| |
Collapse
|
10
|
Individual Control and Quantification of 3D Spheroids in a High-Density Microfluidic Droplet Array. Cell Rep 2021; 31:107670. [PMID: 32460010 PMCID: PMC7262598 DOI: 10.1016/j.celrep.2020.107670] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/20/2019] [Accepted: 04/29/2020] [Indexed: 12/29/2022] Open
Abstract
As three-dimensional cell culture formats gain in popularity, there emerges a need for tools that produce vast amounts of data on individual cells within the spheroids or organoids. Here, we present a microfluidic platform that provides access to such data by parallelizing the manipulation of individual spheroids within anchored droplets. Different conditions can be applied in a single device by triggering the merging of new droplets with the spheroid-containing drops. This allows cell-cell interactions to be initiated for building microtissues, studying stem cells’ self-organization, or observing antagonistic interactions. It also allows the spheroids’ physical or chemical environment to be modulated, as we show by applying a drug over a large range of concentrations in a single parallelized experiment. This convergence of microfluidics and image acquisition leads to a data-driven approach that allows the heterogeneity of 3D culture behavior to be addressed across the scales, bridging single-cell measurements with population measurements. Microfluidic droplet pairs sequentially trapped in capillary anchors before merging 1 spheroid/droplet, with microenvironment modulations driven by droplet merging A wide range of drug concentrations tested on hepatic-like spheroids in a single chip Data-driven approach unravels 3D tissue-level dynamic drug response
Collapse
|
11
|
Takahara H, Matsushita H, Inui E, Ochiai M, Hashimoto M. Convenient microfluidic cartridge for single-molecule droplet PCR using common laboratory equipment. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:974-985. [PMID: 33533381 DOI: 10.1039/d0ay01779e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We have previously established a cost-efficient in-house system for single-molecule droplet polymerase chain reaction (PCR) using a polydimethylsiloxane microfluidic cartridge and common laboratory equipment. However, the microfluidic cartridge was only capable of generating monodisperse water-in-oil droplets. Therefore, careful and time-consuming manual droplet handling using a micropipette was required to transfer droplets between the three discrete steps involved in the workflow of droplet PCR-i.e., (1) droplet generation; (2) PCR amplification; and (3) determination of the fluorescence intensity of the thermocycled droplets. In the current study, we developed a new microfluidic cartridge consisting of four layers, with a thin glass slide as the bottom layer. In this cartridge, droplets generated in the uppermost polydimethylsiloxane microfluidic layer are delivered to the glass slide in an online fashion. After the accumulation of many droplets on the glass slide, the cartridge is placed on the flatbed heat block of a thermocycler for PCR amplification. Direct fluorescence imaging of the thermocycled droplets on the glass slide is then carried out using a conventional fluorescence microscope. Efficient heat transfer from the heat block to the settled droplets through the thin glass slide was confirmed by successful PCR amplification inside the droplets, even from single template molecules. The new cartridge eliminates the need for manual droplet transfer between the major steps of droplet PCR analysis, allowing more convenient single-molecule droplet PCR than in our previous studies.
Collapse
Affiliation(s)
- Hirokazu Takahara
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321, Japan.
| | - Hiroo Matsushita
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321, Japan.
| | - Erika Inui
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321, Japan.
| | - Masashi Ochiai
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321, Japan.
| | - Masahiko Hashimoto
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321, Japan.
| |
Collapse
|
12
|
Zhang JQ, Siltanen CA, Dolatmoradi A, Sun C, Chang KC, Cole RH, Gartner ZJ, Abate AR. High diversity droplet microfluidic libraries generated with a commercial liquid spotter. Sci Rep 2021; 11:4351. [PMID: 33623093 PMCID: PMC7902812 DOI: 10.1038/s41598-021-83865-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/18/2020] [Indexed: 11/10/2022] Open
Abstract
Droplet libraries consisting of many reagents encapsulated in separate droplets are necessary for applications of microfluidics, including combinatorial chemical synthesis, DNA-encoded libraries, and massively multiplexed PCR. However, existing approaches for generating them are laborious and impractical. Here, we describe an automated approach using a commercial array spotter. The approach can controllably emulsify hundreds of different reagents in a fraction of the time of manual operation of a microfluidic device, and without any user intervention. We demonstrate that the droplets produced by the spotter are similarly uniform to those produced by microfluidics and automate the generation of a ~ 2 mL emulsion containing 192 different reagents in ~ 4 h. The ease with which it can generate high diversity droplet libraries should make combinatorial applications more feasible in droplet microfluidics. Moreover, the instrument serves as an automated droplet generator, allowing execution of droplet reactions without microfluidic expertise.
Collapse
Affiliation(s)
- Jesse Q Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Christian A Siltanen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Scribe Biosciences, Inc., San Francisco, CA, USA
| | - Ata Dolatmoradi
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Chen Sun
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Kai-Chun Chang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | | | - Zev J Gartner
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA. .,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA. .,California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Sharan P, Postek W, Gemming T, Garstecki P, Simmchen J. Study of Active Janus Particles in the Presence of an Engineered Oil-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:204-210. [PMID: 33373252 DOI: 10.1021/acs.langmuir.0c02752] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a systematic study of motion of Pt@SiO2 Janus particles at a liquid-liquid interface. A special microfluidic trap is used for creating such an interface. The increased surface energy of the large surface results in partial wetting of the substrate, leaving patches of oil on the glass surface. This allows us to directly compare the motion at the two interfaces, i.e., oil-water and solid-water interface within the same setting, guaranteeing identical conditions in terms of additional parameters. The propulsion behavior of Janus particles is found to be quantitatively similar at both surfaces. The interplay of reaction product absorption by oil, slip locking by surfactant, microscale friction, lubrication efficiency, and potential Marangoni effect controls the resemblance of motion characteristics at the two interfaces. Additionally, we also observed guidance effect on the Janus particles by the pinning line of oil patches, similar to solid side walls.
Collapse
Affiliation(s)
- Priyanka Sharan
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Witold Postek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Thomas Gemming
- Institute of Complex Materials, Leibniz IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Juliane Simmchen
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| |
Collapse
|
14
|
Microfluidic Chamber Design for Controlled Droplet Expansion and Coalescence. MICROMACHINES 2020; 11:mi11040394. [PMID: 32290165 PMCID: PMC7231328 DOI: 10.3390/mi11040394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 11/21/2022]
Abstract
The defined formation and expansion of droplets are essential operations for droplet-based screening assays. The volumetric expansion of droplets causes a dilution of the ingredients. Dilution is required for the generation of concentration graduation which is mandatory for many different assay protocols. Here, we describe the design of a microfluidic operation unit based on a bypassed chamber and its operation modes. The different operation modes enable the defined formation of sub-µL droplets on the one hand and the expansion of low nL to sub-µL droplets by controlled coalescence on the other. In this way the chamber acts as fluidic interface between two fluidic network parts dimensioned for different droplet volumes. Hence, channel confined droplets of about 30–40 nL from the first network part were expanded to cannel confined droplets of about 500 to about 2500 nL in the second network part. Four different operation modes were realized: (a) flow rate independent droplet formation in a self-controlled way caused by the bypassed chamber design, (b) single droplet expansion mode, (c) multiple droplet expansion mode, and (d) multiple droplet coalescence mode. The last mode was used for the automated coalescence of 12 droplets of about 40 nL volume to produce a highly ordered output sequence with individual droplet volumes of about 500 nL volume. The experimental investigation confirmed a high tolerance of the developed chamber against the variation of key parameters of the dispersed-phase like salt content, pH value and fluid viscosity. The presented fluidic chamber provides a solution for the problem of bridging different droplet volumes in a fluidic network.
Collapse
|
15
|
Menezes R, Dramé-Maigné A, Taly V, Rondelez Y, Gines G. Streamlined digital bioassays with a 3D printed sample changer. Analyst 2020; 145:572-581. [DOI: 10.1039/c9an01744e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Off-chip sample changer device increase the sample throughput of droplet digital bioassays.
Collapse
Affiliation(s)
- Roberta Menezes
- Centre de Recherche des Cordeliers
- INSERM
- Sorbonne Université
- USPC
- Université Paris Descartes
| | - Adèle Dramé-Maigné
- Laboratoire Gulliver
- UMR7083 CNRS
- ESPCI Paris
- PSL Research University
- 75005 Paris
| | - Valérie Taly
- Centre de Recherche des Cordeliers
- INSERM
- Sorbonne Université
- USPC
- Université Paris Descartes
| | - Yannick Rondelez
- Laboratoire Gulliver
- UMR7083 CNRS
- ESPCI Paris
- PSL Research University
- 75005 Paris
| | - Guillaume Gines
- Laboratoire Gulliver
- UMR7083 CNRS
- ESPCI Paris
- PSL Research University
- 75005 Paris
| |
Collapse
|
16
|
Opalski AS, Makuch K, Lai YK, Derzsi L, Garstecki P. Grooved step emulsification systems optimize the throughput of passive generation of monodisperse emulsions. LAB ON A CHIP 2019; 19:1183-1192. [PMID: 30843018 DOI: 10.1039/c8lc01096j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Microfluidic step emulsification passively produces highly monodisperse droplets and can be easily parallelized for high throughput emulsion production. The two main techniques used for step emulsification are: i) edge-based droplet generation (EDGE), where droplets are formed in a single, very wide and shallow nozzle, and ii) microchannel emulsification (MCE), where droplets are formed in many separated narrow nozzles. These techniques differ in modes of droplet formation that influence the throughput and monodispersity of produced emulsions. Here we report a systematic study of novel grooved step emulsifying geometries, a hybrid of MCE and EDGE architectures. We introduce partitions of different heights to a wide (EDGE-like) slit to establish optimal geometries for high-throughput droplet production. We demonstrate that the volume and monodispersity of the produced emulsion can be tuned solely by changing the height of these partitions. We show that the spacing of the partitions influences the size of the produced droplets, but not the population monodispersity. We also determine the moment of transition between two distinct droplet generation modes as a function of the geometrical parameters of the nozzle. The optimized grooved geometry appears to combine the advantages of both MCE and EDGE, i.e. spatial localization of droplet forming units (DFUs), high-throughput formation of tightly monodisperse droplets from parallel DFUs, and low sensitivity to variation in the flow rate of the dispersed phase. As a proof-of-concept we show grooved devices that for a 260-fold increase of flow rate produce droplets with volume increased by just 75%, as compared to 91% increase in volume over a 180-fold increase of flow rate of the dispersed phase in MCE devices. We also present the optimum microfluidic device geometry that almost doubles the throughput of an MCE device in the generation of nanoliter droplets.
Collapse
Affiliation(s)
- Adam S Opalski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
17
|
Rapid serial diluting biomicrofluidic provides EC50 in minutes. MICRO AND NANO ENGINEERING 2019. [DOI: 10.1016/j.mne.2019.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Zhang P, Kaushik A, Hsieh K, Wang TH. Customizing droplet contents and dynamic ranges via integrated programmable picodroplet assembler. MICROSYSTEMS & NANOENGINEERING 2019; 5:22. [PMID: 31636920 PMCID: PMC6799804 DOI: 10.1038/s41378-019-0062-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/07/2019] [Accepted: 03/27/2019] [Indexed: 05/03/2023]
Abstract
Droplet microfluidic technology is becoming increasingly useful for high-throughput and high-sensitivity detection of biological and biochemical reactions. Most current droplet devices function by passively discretizing a single sample subject to a homogeneous or random reagent/reaction condition into tens of thousands of picoliter-volume droplets for analysis. Despite their apparent advantages in speed and throughput, these droplet devices inherently lack the capability to customize the contents of droplets in order to test a single sample against multiple reagent conditions or multiple samples against multiple reagents. In order to incorporate such combinatorial capability into droplet platforms, we have developed the fully Integrated Programmable Picodroplet Assembler. Our platform is capable of generating customized picoliter-volume droplet groups from nanoliter-volume plugs which are assembled in situ on demand. By employing a combination of microvalves and flow-focusing-based discretization, our platform can be used to precisely control the content and volume of generated nanoliter-volume plugs, and thereafter the content and the effective dynamic range of picoliter-volume droplets. Furthermore, we can use a single integrated device for continuously generating, incubating, and detecting multiple distinct droplet groups. The device successfully marries the precise control and on-demand capability of microvalve-based platforms with the sensitivity and throughput of picoliter droplet platforms in a fully automated monolithic device. The device ultimately will find important applications in single-cell and single-molecule analyses.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 USA
| | - Aniruddha Kaushik
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 USA
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 USA
| |
Collapse
|
19
|
Postek W, Gargulinski P, Scheler O, Kaminski TS, Garstecki P. Microfluidic screening of antibiotic susceptibility at a single-cell level shows the inoculum effect of cefotaxime on E. coli. LAB ON A CHIP 2018; 18:3668-3677. [PMID: 30375609 DOI: 10.1039/c8lc00916c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Measurement of antibiotic susceptibility at the level of single cells is important as it reveals the concentration of an antibiotic that leads to drug resistance in bacterial strains. To date, no solution for large-scale studies of antibiotic susceptibility at the single-cell level has been shown. Here, we present a method for production and separation of emulsions consisting of subnanoliter droplets that allows us to identify each emulsion by their spatial position in the train of emulsions without chemical barcoding. The emulsions of droplets are separated by a third immiscible phase, thus forming large compartments-tankers-each filled with an emulsion of droplet reactors. Each tanker in a train can be set under different reaction conditions for hundreds or thousands of replications of the same reaction. The tankers allow for long term incubation - needed to check for growth of bacteria under a screen of conditions. We use microfluidic tankers to analyze susceptibility to cefotaxime in ca. 1900 replications for each concentration of the antibiotic in one experiment. We test cefotaxime susceptibility for different initial concentrations of bacteria, showing the inoculum effect down to the level of single cells for more than a hundred single-cell events per tanker. Lastly, we use tankers to observe the formation of aggregates of bacteria in the presence of cefotaxime in the increasing concentration of the antibiotic. The microfluidic tankers allow for facile studies of the inoculum effect and antibiotic susceptibility, and constitute an attractive, label-free screening method for a variety of other experiments in chemistry and biology.
Collapse
Affiliation(s)
- Witold Postek
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
| | - Pawel Gargulinski
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
| | - Ott Scheler
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland. and Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia and Department of Chemistry and Biotechnology, TalTech, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Tomasz S Kaminski
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
| | - Piotr Garstecki
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
| |
Collapse
|
20
|
Postek W, Kaminski TS, Garstecki P. A precise and accurate microfluidic droplet dilutor. Analyst 2018; 142:2901-2911. [PMID: 28676870 DOI: 10.1039/c7an00679a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We demonstrate a microfluidic system for the precise (coefficient of variance between repetitions below 4%) and highly accurate (average difference from two-fold dilution below 1%) serial dilution of solutions inside droplets with a volume of ca. 1 μl. The two-fold dilution series can be prepared with the correlation coefficient as high as R2 = 0.999. The technique that we here describe uses hydrodynamic traps to precisely meter every droplet used in subsequent dilutions. We use only one metering trap to meter each and every droplet involved in the process of preparation of the dilution series. This eliminates the error of metering that would arise from the finite fidelity of fabrication of multiple metering traps. Metering every droplet at the same trap provides for high reproducibility of the volumes of the droplets, and thus high reproducibility of dilutions. We also present a device and method to precisely and accurately dilute one substance and simultaneously maintain the concentration of another substance throughout the dilution series without mixing their stock solutions. We compare the here-described precise and accurate dilution systems with a simple microdroplet dilutor that comprises several traps - each trap for a subsequent dilution. We describe the effect of producing more reproducible dilutions in a simple microdroplet dilutor thanks to the application of an alternating electric field.
Collapse
Affiliation(s)
- W Postek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | |
Collapse
|
21
|
Kaushik AM, Hsieh K, Chen L, Shin DJ, Liao JC, Wang TH. Accelerating bacterial growth detection and antimicrobial susceptibility assessment in integrated picoliter droplet platform. Biosens Bioelectron 2018; 97:260-266. [PMID: 28609716 DOI: 10.1016/j.bios.2017.06.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/27/2017] [Accepted: 06/05/2017] [Indexed: 01/13/2023]
Abstract
There remains an urgent need for rapid diagnostic methods that can evaluate antibiotic resistance for pathogenic bacteria in order to deliver targeted antibiotic treatments. Toward this end, we present a rapid and integrated single-cell biosensing platform, termed dropFAST, for bacterial growth detection and antimicrobial susceptibility assessment. DropFAST utilizes a rapid resazurin-based fluorescent growth assay coupled with stochastic confinement of bacteria in 20 pL droplets to detect signal from growing bacteria after 1h incubation, equivalent to 2-3 bacterial replications. Full integration of droplet generation, incubation, and detection into a single, uninterrupted stream also renders this platform uniquely suitable for in-line bacterial phenotypic growth assessment. To illustrate the concept of rapid digital antimicrobial susceptibility assessment, we employ the dropFAST platform to evaluate the antibacterial effect of gentamicin on E. coli growth.
Collapse
Affiliation(s)
- Aniruddha M Kaushik
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, USA
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, USA
| | - Dong Jin Shin
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, USA
| | - Joseph C Liao
- Department of Urology, Stanford University School of Medicine, 300 Pasteur Dr. S-287, Stanford, CA, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, USA.
| |
Collapse
|
22
|
Postek W, Kaminski TS, Garstecki P. A passive microfluidic system based on step emulsification allows the generation of libraries of nanoliter-sized droplets from microliter droplets of varying and known concentrations of a sample. LAB ON A CHIP 2017; 17:1323-1331. [PMID: 28271118 DOI: 10.1039/c7lc00014f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a novel geometry of microfluidic channels that allows us to passively generate monodisperse emulsions of hundreds of droplets smaller than 1 nL from collections of larger (ca. 0.4 μL) mother droplets. We introduce a new microfluidic module for the generation of droplets via passive break-up at a step. The module alleviates a common problem in step emulsification with efficient removal of the droplets from the vicinity of the step. In our solution, the droplets are pushed away from the step by a continuous liquid that bypasses the mother droplets via specially engineered bypasses that lead to the step around the main channel. We show that the bypasses tighten the distribution of volume of daughter droplets and eliminate subpopulations of daughter droplets. Clearing away the just produced droplets from the vicinity of the step provides for similar conditions of break-up for every subsequent droplet and, consequently, leads to superior monodispersity of the generated emulsions. Importantly, this function is realized autonomously (passively) in a protocol in which only a sequence of large mother droplets is forced through the module. Our system features the advantage of step emulsification systems in that the volumes of the generated droplets depend very weakly on the rate of flow through the module - an increase in the flow rate by 300% causes only a slight increase of the average diameter of generated droplets by less than 5%. We combined our geometry with a simple T-junction and a simple trap-based microdroplet dilutor to produce a collection of libraries of droplets of gradually changing and known concentrations of a sample. The microfluidic system can be operated with only two syringe pumps set at constant rates of flow during the experiment.
Collapse
Affiliation(s)
- W Postek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - T S Kaminski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - P Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
23
|
An Automated Microfluidic System for the Generation of Droplet Interface Bilayer Networks. MICROMACHINES 2017. [PMCID: PMC6190347 DOI: 10.3390/mi8030093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Networks of droplets, in which aqueous compartments are separated by lipid bilayers, have shown great potential as a model for biological transmembrane communication. We present a microfluidic system which allows for on-demand generation of droplets that are hydrodynamically locked in a trapping structure. As a result, the system enables the formation of a network of four droplets connected via lipid bilayers and the positions of each droplet in the network can be controlled thanks to automation of microfluidic operations. We perform electrophysiological measurements of ionic currents indicating interactions between nanopores and small molecules to prove the potential of the device in screening of the inhibitors acting on membrane proteins. We also demonstrate, for the first time, a microfluidic droplet interface bilayer (DIB) system in which the testing of inhibitors can be performed without direct contact between the tested sample and the electrodes recording picoampere currents.
Collapse
|
24
|
Song Y, Jeong Y, Kwon T, Lee D, Oh DY, Park TJ, Kim J, Kim J, Kwon S. Liquid-capped encoded microcapsules for multiplex assays. LAB ON A CHIP 2017; 17:429-437. [PMID: 27995235 DOI: 10.1039/c6lc01268j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Although droplet microfludics is a promising technology for handling a number of liquids of a single type of analyte, it has limitations in handling thousands of different types of analytes for multiplex assay. Here, we present a novel "liquid-capped encoded microcapsule", which is applicable to various liquid format assays. Various liquid drops can be graphically encoded and arrayed without repeated dispensing processes, evaporation, and the risk of cross-contamination. Millions of nanoliter-scale liquids are encapsulated within encoded microcapsules and self-assembled in microwells in a single dispensing process. The graphical code on the microcapsule enables identification of randomly assembled microcapsules in each microwell. We conducted various liquid phase assays including enzyme inhibitor screening, virus transduction, and drug-induced apoptosis tests. The results showed that our liquid handling technology can be utilized widely for various solution phase assays.
Collapse
Affiliation(s)
- Younghoon Song
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 151-742, Republic of Korea. and Department of Electrical and Computer Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yunjin Jeong
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 151-742, Republic of Korea. and Department of Electrical and Computer Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Taehong Kwon
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 151-742, Republic of Korea. and Department of Electrical and Computer Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Daewon Lee
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 151-742, Republic of Korea. and Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dong Yoon Oh
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 151-742, Republic of Korea. and Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 151-742, Republic of Korea
| | - Tae-Joon Park
- Nano Systems Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Junhoi Kim
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 151-742, Republic of Korea. and Department of Electrical and Computer Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jiyun Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Sunghoon Kwon
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 151-742, Republic of Korea. and Department of Electrical and Computer Science, Seoul National University, Seoul 151-742, Republic of Korea and Interdisciplinary Program of Bioengineering, Seoul National University, Seoul 151-742, Republic of Korea and Nano Systems Institute, Seoul National University, Seoul 151-742, Republic of Korea and Seoul National University Hospital Biomedical Research Institute, Seoul National University Hospital, Seoul 151-742, Republic of Korea and Quantamatrix Inc., Seoul 151-742, Republic of Korea
| |
Collapse
|
25
|
Sesen M, Devendran C, Malikides S, Alan T, Neild A. Surface acoustic wave enabled pipette on a chip. LAB ON A CHIP 2017; 17:438-447. [PMID: 27995242 DOI: 10.1039/c6lc01318j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Mono-disperse droplet formation in microfluidic devices allows the rapid production of thousands of identical droplets and has enabled a wide range of chemical and biological studies through repeat tests performed at pico-to-nanoliter volume samples. However, it is exactly this efficiency of production which has hindered the ability to carefully control the location and quantity of the distribution of various samples on a chip - the key requirement for replicating micro well plate based high throughput screening in vastly reduced volumetric scales. To address this need, here, we present a programmable microfluidic chip capable of pipetting samples from mobile droplets with high accuracy using a non-contact approach. Pipette on a chip (PoaCH) system selectively ejects (pipettes) part of a droplet into a customizable reaction chamber using surface acoustic waves (SAWs). Droplet pipetting is shown to range from as low as 150 pL up to 850 pL with precision down to tens of picoliters. PoaCH offers ease of integration with existing lab on a chip systems as well as a robust and contamination-free droplet manipulation technique in closed microchannels enabling potential implementation in screening and other studies.
Collapse
Affiliation(s)
- Muhsincan Sesen
- Laboratory for Microsystems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Citsabehsan Devendran
- Laboratory for Microsystems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Sean Malikides
- Laboratory for Microsystems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Tuncay Alan
- Laboratory for Microsystems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Adrian Neild
- Laboratory for Microsystems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
26
|
Wang X, Liu Z, Pang Y. Concentration gradient generation methods based on microfluidic systems. RSC Adv 2017. [DOI: 10.1039/c7ra04494a] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Various concentration gradient generation methods based on microfluidic systems are summarized in this paper.
Collapse
Affiliation(s)
- Xiang Wang
- College of Mechanical Engineering and Applied Electronics Technology
- Beijing University of Technology
- Beijing 100124
- China
| | - Zhaomiao Liu
- College of Mechanical Engineering and Applied Electronics Technology
- Beijing University of Technology
- Beijing 100124
- China
| | - Yan Pang
- College of Mechanical Engineering and Applied Electronics Technology
- Beijing University of Technology
- Beijing 100124
- China
| |
Collapse
|
27
|
Reizman BJ, Wang YM, Buchwald SL, Jensen KF. Suzuki-Miyaura cross-coupling optimization enabled by automated feedback. REACT CHEM ENG 2016; 1:658-666. [PMID: 27928513 PMCID: PMC5123644 DOI: 10.1039/c6re00153j] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/27/2016] [Indexed: 12/16/2022]
Abstract
An automated, droplet-flow microfluidic system explores and optimizes Pd-catalyzed Suzuki-Miyaura cross-coupling reactions. A smart optimal DoE-based algorithm is implemented to increase the turnover number and yield of the catalytic system considering both discrete variables-palladacycle and ligand-and continuous variables-temperature, time, and loading-simultaneously. The use of feedback allows for experiments to be run with catalysts and under conditions more likely to produce an optimum; consequently complex reaction optimizations are completed within 96 experiments. Response surfaces predicting reaction performance near the optima are generated and validated. From the screening results, shared attributes of successful precatalysts are identified, leading to improved understanding of the influence of ligand selection upon transmetalation and oxidative addition in the reaction mechanism. Dialkylbiarylphosphine, trialkylphosphine, and bidentate ligands are assessed.
Collapse
Affiliation(s)
- Brandon J Reizman
- Department of Chemical Engineering , Novartis-MIT Center for Continuous Manufacturing , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , MA 02139 , USA .
| | - Yi-Ming Wang
- Department of Chemistry , Novartis-MIT Center for Continuous Manufacturing , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , MA 02139 , USA .
| | - Stephen L Buchwald
- Department of Chemistry , Novartis-MIT Center for Continuous Manufacturing , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , MA 02139 , USA .
| | - Klavs F Jensen
- Department of Chemical Engineering , Novartis-MIT Center for Continuous Manufacturing , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , MA 02139 , USA .
| |
Collapse
|
28
|
Wong D, Ren CL. Microfluidic droplet trapping, splitting and merging with feedback controls and state space modelling. LAB ON A CHIP 2016; 16:3317-3329. [PMID: 27435753 DOI: 10.1039/c6lc00626d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We combine image processing and feedback controls to regulate droplet movements. A general modelling approach is provided to describe droplet motion in a pressure-driven microfluidic channel network. A state space model is derived from electric circuit analogy and validated with experimental data. We then design simple decentralized controllers to stabilize droplet movement. The controllers can trap droplets at requested locations by fine tuning inlet pressures constantly. Finally, we demonstrate the ability to split and merge the same droplet repeatedly in a simple T-junction. No embedded electrodes are required, and this technique can be implemented solely with a camera, a personal computer, and commercially available E/P transducers.
Collapse
Affiliation(s)
- David Wong
- Mechanical and Mechatronics Engineering, University of Waterloo, 200, University Avenue West, Waterloo, Canada.
| | - Carolyn L Ren
- Mechanical and Mechatronics Engineering, University of Waterloo, 200, University Avenue West, Waterloo, Canada.
| |
Collapse
|
29
|
Abolhasani M, Jensen KF. Oscillatory multiphase flow strategy for chemistry and biology. LAB ON A CHIP 2016; 16:2775-2784. [PMID: 27397146 DOI: 10.1039/c6lc00728g] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Continuous multiphase flow strategies are commonly employed for high-throughput parameter screening of physical, chemical, and biological processes as well as continuous preparation of a wide range of fine chemicals and micro/nano particles with processing times up to 10 min. The inter-dependency of mixing and residence times, and their direct correlation with reactor length have limited the adaptation of multiphase flow strategies for studies of processes with relatively long processing times (0.5-24 h). In this frontier article, we describe an oscillatory multiphase flow strategy to decouple mixing and residence times and enable investigation of longer timescale experiments than typically feasible with conventional continuous multiphase flow approaches. We review current oscillatory multiphase flow technologies, provide an overview of the advancements of this relatively new strategy in chemistry and biology, and close with a perspective on future opportunities.
Collapse
Affiliation(s)
- Milad Abolhasani
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 66-342, Cambridge, MA 02139, USA.
| | - Klavs F Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 66-342, Cambridge, MA 02139, USA.
| |
Collapse
|
30
|
Kaminski TS, Scheler O, Garstecki P. Droplet microfluidics for microbiology: techniques, applications and challenges. LAB ON A CHIP 2016; 16:2168-87. [PMID: 27212581 DOI: 10.1039/c6lc00367b] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Droplet microfluidics has rapidly emerged as one of the key technologies opening up new experimental possibilities in microbiology. The ability to generate, manipulate and monitor droplets carrying single cells or small populations of bacteria in a highly parallel and high throughput manner creates new approaches for solving problems in diagnostics and for research on bacterial evolution. This review presents applications of droplet microfluidics in various fields of microbiology: i) detection and identification of pathogens, ii) antibiotic susceptibility testing, iii) studies of microbial physiology and iv) biotechnological selection and improvement of strains. We also list the challenges in the dynamically developing field and new potential uses of droplets in microbiology.
Collapse
Affiliation(s)
- Tomasz S Kaminski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | |
Collapse
|
31
|
Scheler O, Kaminski TS, Ruszczak A, Garstecki P. Dodecylresorufin (C12R) Outperforms Resorufin in Microdroplet Bacterial Assays. ACS APPLIED MATERIALS & INTERFACES 2016; 8:11318-11325. [PMID: 27100211 DOI: 10.1021/acsami.6b02360] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper proves that dodecylresorufin (C12R) outperforms resorufin (the conventional form of this dye) in droplet microfluidic bacterial assays. Resorufin is a marker dye that is widely used in different fields of microbiology and has increasingly been applied in droplet microfluidic assays and experiments. The main concern associated with resorufin in droplet-based systems is dye leakage into the oil phase and neighboring droplets. The leakage decreases the performance of assays because it causes averaging of the signal between the positive (bacteria-containing) and negative (empty) droplets. Here we show that C12R is a promising alternative to conventional resorufin because it maintains higher sensitivity, specificity, and signal-to-noise ratio over time. These characteristics make C12R a suitable reagent for droplet digital assays and for monitoring of microbial growth in droplets.
Collapse
Affiliation(s)
- Ott Scheler
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
- Institute of Molecular and Cell Biology, University of Tartu , Riia 23, 51010 Tartu, Estonia
| | - Tomasz S Kaminski
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Artur Ruszczak
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
32
|
Enhancing Throughput of Combinatorial Droplet Devices via Droplet Bifurcation, Parallelized Droplet Fusion, and Parallelized Detection. MICROMACHINES 2015. [DOI: 10.3390/mi6101434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Tangen U, Minero GAS, Sharma A, Wagler PF, Cohen R, Raz O, Marx T, Ben-Yehezkel T, McCaskill JS. DNA-library assembly programmed by on-demand nano-liter droplets from a custom microfluidic chip. BIOMICROFLUIDICS 2015. [PMID: 26221198 PMCID: PMC4499045 DOI: 10.1063/1.4926616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nanoscale synthetic biology can benefit from programmable nanoliter-scale processing of DNA in microfluidic chips if they are interfaced effectively to biochemical arrays such as microwell plates. Whereas active microvalve chips require complex fabrication and operation, we show here how a passive and readily fabricated microchip can be employed for customizable nanoliter scale pipetting and reaction control involving DNA. This recently developed passive microfluidic device, supporting nanoliter scale combinatorial droplet generation and mixing, is here used to generate a DNA test library with one member per droplet exported to addressed locations on microwell plates. Standard DNA assembly techniques, such as Gibson assembly, compatible with isothermal on-chip operation, are employed and checked using off-chip PCR and assembly PCR. The control of output droplet sequences and mixing performance was verified using dyes and fluorescently labeled DNA solutions, both on-chip and in external capillary channels. Gel electrophoresis of products and DNA sequencing were employed to further verify controlled combination and functional enzymatic assembly. The scalability of the results to larger DNA libraries is also addressed by combinatorial input expansion using sequential injection plugs from a multiwell plate. Hence, the paper establishes a proof of principle of the production of functional combinatorial mixtures at the nanoliter scale for one sequence per well DNA libraries.
Collapse
Affiliation(s)
- Uwe Tangen
- Faculty of Chemistry and Biochemistry, Microsystems Chemistry and BioIT (BioMIP), Ruhr-University Bochum , 44780 Bochum, Germany
| | - Gabriel Antonio S Minero
- Faculty of Chemistry and Biochemistry, Microsystems Chemistry and BioIT (BioMIP), Ruhr-University Bochum , 44780 Bochum, Germany
| | - Abhishek Sharma
- Faculty of Chemistry and Biochemistry, Microsystems Chemistry and BioIT (BioMIP), Ruhr-University Bochum , 44780 Bochum, Germany
| | - Patrick F Wagler
- Faculty of Chemistry and Biochemistry, Microsystems Chemistry and BioIT (BioMIP), Ruhr-University Bochum , 44780 Bochum, Germany
| | - Rafael Cohen
- Department of Biological Chemistry, Weizmann Institute of Science , Rehovot, Israel
| | - Ofir Raz
- Department of Biological Chemistry, Weizmann Institute of Science , Rehovot, Israel
| | - Tzipy Marx
- Department of Biological Chemistry, Weizmann Institute of Science , Rehovot, Israel
| | - Tuval Ben-Yehezkel
- Department of Biological Chemistry, Weizmann Institute of Science , Rehovot, Israel
| | - John S McCaskill
- Faculty of Chemistry and Biochemistry, Microsystems Chemistry and BioIT (BioMIP), Ruhr-University Bochum , 44780 Bochum, Germany
| |
Collapse
|
34
|
Tanaka H, Yamamoto S, Nakamura A, Nakashoji Y, Okura N, Nakamoto N, Tsukagoshi K, Hashimoto M. Hands-Off Preparation of Monodisperse Emulsion Droplets Using a Poly(dimethylsiloxane) Microfluidic Chip for Droplet Digital PCR. Anal Chem 2015; 87:4134-43. [DOI: 10.1021/ac503169h] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hironari Tanaka
- Department of Chemical Engineering
and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Shunsuke Yamamoto
- Department of Chemical Engineering
and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Arichika Nakamura
- Department of Chemical Engineering
and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Yuta Nakashoji
- Department of Chemical Engineering
and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Naoaki Okura
- Department of Chemical Engineering
and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Norimitsu Nakamoto
- Department of Chemical Engineering
and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Kazuhiko Tsukagoshi
- Department of Chemical Engineering
and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Masahiko Hashimoto
- Department of Chemical Engineering
and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
35
|
Ng EX, Miller MA, Jing T, Lauffenburger DA, Chen CH. Low-volume multiplexed proteolytic activity assay and inhibitor analysis through a pico-injector array. LAB ON A CHIP 2015; 15:1153-1159. [PMID: 25553996 DOI: 10.1039/c4lc01162g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Secreted active proteases, from families of enzymes such as matrix metalloproteinases (MMPs) and ADAMs (a disintegrin and metalloproteinases), participate in diverse pathological processes. To simultaneously measure multiple specific protease activities, a series of parallel enzyme reactions combined with a series of inhibitor analyses for proteolytic activity matrix analysis (PrAMA) are essential but limited due to the sample quantity requirements and the complexity of performing multiple reactions. To address these issues, we developed a pico-injector array to generate 72 different reactions in picoliter-volume droplets by controlling the sequence of combinational injections, which allowed simultaneous recording of a wide range of multiple enzyme reactions and measurement of inhibitor effects using small sample volumes (~10 μL). Multiple MMP activities were simultaneously determined by 9 different substrates and 2 inhibitors using injections from a pico-injector array. Due to the advantages of inhibitor analysis, the MMP/ADAM activities of MDA-MB-231, a breast cancer cell line, were characterized with high MMP-2, MMP-3 and ADAM-10 activity. This platform could be customized for a wide range of applications that also require multiple reactions with inhibitor analysis to enhance the sensitivity by encapsulating different chemical sensors.
Collapse
Affiliation(s)
- Ee Xien Ng
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
| | | | | | | | | |
Collapse
|
36
|
Czekalska MA, Kaminski TS, Jakiela S, Tanuj Sapra K, Bayley H, Garstecki P. A droplet microfluidic system for sequential generation of lipid bilayers and transmembrane electrical recordings. LAB ON A CHIP 2015; 15:541-8. [PMID: 25412368 DOI: 10.1039/c4lc00985a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper demonstrates a microfluidic system that automates i) formation of a lipid bilayer at the interface between a pair of nanoliter-sized aqueous droplets in oil, ii) exchange of one droplet of the pair to form a new bilayer, and iii) current measurements on single proteins. A new microfluidic architecture is introduced - a set of traps designed to localize the droplets with respect to each other and with respect to the recording electrodes. The system allows for automated execution of experimental protocols by active control of the flow on chip with the use of simple external valves. Formation of stable artificial lipid bilayers, incorporation of α-hemolysin into the bilayers and electrical measurements of ionic transport through the protein pore are demonstrated.
Collapse
Affiliation(s)
- Magdalena A Czekalska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
37
|
Sun S, Kennedy RT. Droplet electrospray ionization mass spectrometry for high throughput screening for enzyme inhibitors. Anal Chem 2014; 86:9309-14. [PMID: 25137241 PMCID: PMC4165461 DOI: 10.1021/ac502542z] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/19/2014] [Indexed: 12/20/2022]
Abstract
High throughput screening (HTS) is important for identifying molecules with desired properties. Mass spectrometry (MS) is potentially powerful for label-free HTS due to its high sensitivity, speed, and resolution. Segmented flow, where samples are manipulated as droplets separated by an immiscible fluid, is an intriguing format for high throughput MS because it can be used to reliably and precisely manipulate nanoliter volumes and can be directly coupled to electrospray ionization (ESI) MS for rapid analysis. In this study, we describe a "MS Plate Reader" that couples standard multiwell plate HTS workflow to droplet ESI-MS. The MS plate reader can reformat 3072 samples from eight 384-well plates into nanoliter droplets segmented by an immiscible oil at 4.5 samples/s and sequentially analyze them by MS at 2 samples/s. Using the system, a label-free screen for cathepsin B modulators against 1280 chemicals was completed in 45 min with a high Z-factor (>0.72) and no false positives (24 of 24 hits confirmed). The assay revealed 11 structures not previously linked to cathepsin inhibition. For even larger scale screening, reformatting and analysis could be conducted simultaneously, which would enable more than 145,000 samples to be analyzed in 1 day.
Collapse
Affiliation(s)
- Shuwen Sun
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert T. Kennedy
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
38
|
Sesen M, Alan T, Neild A. Microfluidic on-demand droplet merging using surface acoustic waves. LAB ON A CHIP 2014; 14:3325-3333. [PMID: 24972001 DOI: 10.1039/c4lc00456f] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Individual droplets can be isolated within microfluidic systems by use of an immiscible carrier layer. This type of two phase systems, often termed "digital microfluidics", find wide ranging applications in chemical synthesis and analysis. To conduct on-chip biochemical analysis, a key step is to be able to merge droplets selectively in order to initiate the required reactions. In this paper, a novel microfluidic chip integrating interdigital transducers is designed to merge multiple droplets on-demand. The approach uses surface acoustic wave induced acoustic radiation forces to immobilize droplets as they pass from a channel into a small expansion chamber, there they can be held until successive droplets arrive. Hence, no requirement is placed on the initial spacing between droplets. When the merged volume reaches a critical size, drag forces exerted by the flowing oil phase act to overcome the retaining acoustic radiation forces, causing the merged volume to exit the chamber. This will occur after a predetermined number of droplets have merged depending on the initial droplet size and selected actuation power.
Collapse
Affiliation(s)
- Muhsincan Sesen
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | | | | |
Collapse
|
39
|
Abstract
Over the past two decades, the application of microengineered systems in the chemical and biological sciences has transformed the way in which high-throughput experimentation is performed. The ability to fabricate complex microfluidic architectures has allowed scientists to create new experimental formats for processing ultra-small analytical volumes in short periods and with high efficiency. The development of such microfluidic systems has been driven by a range of fundamental features that accompany miniaturization. These include the ability to handle small sample volumes, ultra-low fabrication costs, reduced analysis times, enhanced operational flexibility, facile automation, and the ability to integrate functional components within complex analytical schemes. Herein we discuss the impact of microfluidics in the area of high-throughput screening and drug discovery and highlight some of the most pertinent studies in the recent literature.
Collapse
Affiliation(s)
- Oliver J. Dressler
- Department of Chemistry & Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Richard M. Maceiczyk
- Department of Chemistry & Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Soo-Ik Chang
- Department of Biochemistry, Chungbuk National University, Cheongju, Republic of Korea
| | - Andrew J. deMello
- Department of Chemistry & Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
40
|
Jakiela S, Kaminski TS, Cybulski O, Weibel DB, Garstecki P. Bacterial growth and adaptation in microdroplet chemostats. Angew Chem Int Ed Engl 2013; 52:8908-11. [PMID: 23832572 PMCID: PMC3879160 DOI: 10.1002/anie.201301524] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/03/2013] [Indexed: 01/06/2023]
Affiliation(s)
- Slawomir Jakiela
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland, Fax: (+48) 22 343 33 33
| | - Tomasz S. Kaminski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland, Fax: (+48) 22 343 33 33
| | - Olgierd Cybulski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland, Fax: (+48) 22 343 33 33
| | - Douglas B. Weibel
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland, Fax: (+48) 22 343 33 33, Homepage: http://pepe.ichf.edu.pl/pgarstecki/index.html
| |
Collapse
|
41
|
Jakiela S, Kaminski TS, Cybulski O, Weibel DB, Garstecki P. Bacterial Growth and Adaptation in Microdroplet Chemostats. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|