1
|
Salomon R, Razavi Bazaz S, Mutafopulos K, Gallego-Ortega D, Warkiani M, Weitz D, Jin D. Challenges in blood fractionation for cancer liquid biopsy: how can microfluidics assist? LAB ON A CHIP 2025; 25:1097-1127. [PMID: 39775440 DOI: 10.1039/d4lc00563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Liquid biopsy provides a minimally invasive approach to characterise the molecular and phenotypic characteristics of a patient's individual tumour by detecting evidence of cancerous change in readily available body fluids, usually the blood. When applied at multiple points during the disease journey, it can be used to monitor a patient's response to treatment and to personalise clinical management based on changes in disease burden and molecular findings. Traditional liquid biopsy approaches such as quantitative PCR, have tended to look at only a few biomarkers, and are aimed at early detection of disease or disease relapse using predefined markers. With advances in the next generation sequencing (NGS) and single-cell genomics, simultaneous analysis of both circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) is now a real possibility. To realise this, however, we need to overcome issues with current blood collection and fractionation processes. These include overcoming the need to add a preservative to the collection tube or the need to rapidly send blood tubes to a centralised processing lab with the infrastructure required to fractionate and process the blood samples. This review focuses on outlining the current state of liquid biopsy and how microfluidic blood fractionation tools can be used in cancer liquid biopsy. We describe microfluidic devices that can separate plasma for ctDNA analysis, and devices that are important in isolating the cellular component(s) in liquid biopsy, i.e., individual CTCs and CTC clusters. To facilitate a better understanding of these devices, we propose a new categorisation system based on how these devices operate. The three categories being 1) solid Interaction devices, 2) fluid Interaction devices and 3) external force/active devices. Finally, we conclude that whilst some assays and some cancers are well suited to current microfluidic techniques, new tools are necessary to support broader, clinically relevant multiomic workflows in cancer liquid biopsy.
Collapse
Affiliation(s)
- Robert Salomon
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
| | - Sajad Razavi Bazaz
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
| | - Kirk Mutafopulos
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - David Gallego-Ortega
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Majid Warkiani
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - David Weitz
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
| |
Collapse
|
2
|
Mansor M, Yang C, Chong KL, Jamrus MA, Liu K, Yu M, Ahmad MR, Ren X. Label-Free and Rapid Microfluidic Design Rules for Circulating Tumor Cell Enrichment and Isolation: A Review and Simulation Analysis. ACS OMEGA 2025; 10:6306-6322. [PMID: 40028152 PMCID: PMC11866005 DOI: 10.1021/acsomega.4c08606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 03/05/2025]
Abstract
Enriching and isolating circulating tumor cells (CTCs) have attracted significant interest due to their important role in early cancer diagnosis and prognosis, allowing for minimally invasive approaches and providing vital information about metastasis at the cellular level. This review comprehensively summarizes the recent developments in microfluidic devices for CTC enrichment and isolation. The advantages and limitations of several microfluidic devices are discussed, and the design specifications of microfluidic devices for CTC enrichment are highlighted. We also developed a set of methodologies and design rules of label-free microfluidics such as spiral, deterministic lateral displacement (DLD) and dielectrophoresis (DEP) to allow researchers to design and develop microfluidic devices systematically and effectively, promoting rapid research on design, fabrication, and experimentation.
Collapse
Affiliation(s)
- Muhammad
Asraf Mansor
- Department
of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Chun Yang
- School
of Microelectronics, Tianjin University, Tianjin 300072, China
| | - Kar Lok Chong
- Department
of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Muhammad Asyraf Jamrus
- Department
of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Kewei Liu
- Sino-German
College of Intelligent Manufacturing, Shenzhen
Technology University, Shenzhen 518118, China
| | - Miao Yu
- Department
of Research and Development, Stedical Scientific, Carlsbad, California 92010, United States
| | - Mohd Ridzuan Ahmad
- Department
of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Xiang Ren
- School
of Microelectronics, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Shi X, He Q, Tan W, Lu Y, Zhu G. Experiment study on focusing pattern prediction of particles in asymmetric contraction-expansion array channel. Electrophoresis 2024; 45:2169-2181. [PMID: 38794969 DOI: 10.1002/elps.202400042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/27/2024]
Abstract
Contraction-expansion array (CEA) microchannel is a typical structure applied on particle/cell manipulation. The prediction of the particle focusing pattern in CEA microchannel is worthwhile to be investigate deeply. Here, we demonstrated a virtual boundary method by flow field analysis and theoretical derivation. The calculating method of the virtual boundary location, related to the Reynolds number (Re) and the structure parameter RW, was proposed. Combining the approximate Poiseuille flow pattern based on the virtual boundary method with the simulation results of Dean flow, the main line pattern and the main/lateral lines pattern were predicted and validated in experiments. The transformation from the main line pattern to the main/lateral lines pattern can be facilitated by increasing Re, decreasing RW , and decreasing α. An empirical formula was derived to characterize the critical condition of the transformation. The virtual boundary method can provide a guidance for asymmetric CEA channel design and contribute to the widespread application of microfluidic particle focusing.
Collapse
Affiliation(s)
- Xin Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Qing He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Wei Tan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Yuwen Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, P. R. China
| | - Guorui Zhu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, P. R. China
| |
Collapse
|
4
|
Sharma A, Rohne F, Vasquez‐Muñoz D, Jung S, Lomadze N, Pich A, Santer S, Bekir M. Selective Segregation of Thermo-Responsive Microgels via Microfluidic Technology. SMALL METHODS 2024; 8:e2400226. [PMID: 39091063 PMCID: PMC11672189 DOI: 10.1002/smtd.202400226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Separation of equally sized particles distinguished solely by material properties remains still a very challenging task. Here a simple separation of differently charged, thermo-responsive polymeric particles (for example microgels) but equal in size, via the combination of pressure-driven microfluidic flow and precise temperature control is proposed. The separation principle relies on forcing thermo-responsive microgels to undergo the volume phase transition during heating and therefore changing its size and correspondingly the change in drift along a pressure driven shear flow. Different thermo-responsive particle types such as different grades of ionizable groups inside the polymer matrix have different temperature regions of volume phase transition temperature (VPTT). This enables selective control of collapsed versus swollen microgels, and accordingly, this physical principle provides a simple method for fractioning a binary mixture with at least one thermo-responsive particle, which is achieved by elution times in the sense of particle chromatography. The concepts are visualized in experimental studies, with an intend to improve the purification strategy of the broad distribution of charged microgels into fractioning to more narrow distribution microgels distinguished solely by slight differences in net charge.
Collapse
Affiliation(s)
- Anjali Sharma
- Institute of Physics and AstronomyUniversity of Potsdam14476PotsdamGermany
| | - Fabian Rohne
- Institute of Physics and AstronomyUniversity of Potsdam14476PotsdamGermany
| | | | - Se‐Hyeong Jung
- DWI‐Leibniz Institute for Interactive Materials e.V.52074AachenGermany
| | - Nino Lomadze
- Institute of Physics and AstronomyUniversity of Potsdam14476PotsdamGermany
| | - Andrij Pich
- DWI‐Leibniz Institute for Interactive Materials e.V.52074AachenGermany
- Functional and Interactive PolymersInstitute of Technical and Macromolecular Chemistry, or, Laboratory for Soft Materials and InterfacesDepartment of MaterialsFederal Institute of Technology ZurichAachen Maastricht Institute for Biobased Materials (AMIBM) Maastricht UniversityGeleen6167 RDThe Netherlands
| | - Svetlana Santer
- Institute of Physics and AstronomyUniversity of Potsdam14476PotsdamGermany
| | - Marek Bekir
- Institute of Physics and AstronomyUniversity of Potsdam14476PotsdamGermany
| |
Collapse
|
5
|
Chen D, Huang Q, Ni Z, Xiang N. Elasto-inertial particle focusing in sinusoidal microfluidic channels. Electrophoresis 2024; 45:2191-2201. [PMID: 38813845 DOI: 10.1002/elps.202400070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Dean flow existing in sinusoidal channels could enhance the throughput and efficiency for elasto-inertial particle focusing. However, the fundamental mechanisms of elasto-inertial focusing in sinusoidal channels are still unclear. This work employs four microfluidic devices with symmetric and asymmetric sinusoidal channels to explore the elasto-inertial focusing mechanisms over a wide range of flow rates. The effects of rheological property, flow rate, sinusoidal channel curvature, particle size, and asymmetric geometry on particle focusing performance are investigated. It is intriguing to find that the Dean flow makes a substantial contribution to the particle elasto-inertial focusing. The results illustrate that a better particle focusing performance and a faster focusing process are obtained in the sinusoidal channel with a small curvature radius due to stronger Dean flow. In addition, the particle focusing performance is also related to particle diameter and rheological properties, the larger particles show a better focusing performance than smaller particles, and the smaller flow rate is required for particles to achieve stable focusing at the outlet in the higher concentration of polyvinylpyrrolidone solutions. Our work offers an increased knowledge of the mechanisms of elasto-inertial focusing in sinusoidal channels. Ultimately, these results provide supportive guidelines into the design and development of sinusoidal elasto-inertial microfluidic devices for high-performance focusing.
Collapse
Affiliation(s)
- Dalin Chen
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Qiang Huang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| |
Collapse
|
6
|
Zheng K, Liu Z, Pang Y, Wang X, Zhao S, Zheng N, Cai F, Zhang C. Predictive Model for Cell Positioning during Periodic Lateral Migration in Spiral Microchannels. Anal Chem 2024; 96:18230-18238. [PMID: 39436732 DOI: 10.1021/acs.analchem.4c04456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The periodic lateral migration of submicrometer cells is the primary factor leading to low precision in a spiral microchannel during cell isolation. In this study, a mathematical predictive model (PM) is derived for the lateral position of cells during the periodic lateral migration process. We analyze the relationship of migration period, migration width, and starting point of lateral migration with microchannel structure and flow conditions and determine the empirical coefficients in PM. Results indicate that the aspect ratio of the microchannel and the Reynolds number (Re) are key factors that influence the periodicity of the cell lateral migration. The lateral migration width is jointly affected by Re, the cell blockage ratio, and the microchannel curvature radius. The inlet structure of the microchannel and the ratio of the cell sample to the sheath flow rate are critical parameters for regulating the initial position. Moreover, the structure of the pressure field at the inlet constrains the distribution range of the starting point of the lateral migration. Regardless of whether the particles/cells undergo 0.5, 1, or multiple lateral migration cycles, the lateral positions predicted by PM align well with the experimental observations, thus verifying the accuracy of PM. This research helps to elucidate the characteristics of periodic lateral migration of cells in spiral microchannels and can provide practical guidance for the development and optimization of miniature spiral microchannel chips for precise cell isolation.
Collapse
Affiliation(s)
- Kai Zheng
- College of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhaomiao Liu
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, China
| | - Yan Pang
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, China
| | - Xiang Wang
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, China
| | - Siyu Zhao
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, China
| | - Nan Zheng
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, China
| | - Fanming Cai
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, China
| | - Chenchen Zhang
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
7
|
Dash HR. Advancements in differentiation between sperm cells and epithelial cells for efficient forensic DNA analysis in sexual assault cases. Int J Legal Med 2024; 138:2209-2227. [PMID: 38995400 DOI: 10.1007/s00414-024-03285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Most of the sexual assault casework samples are of mixed sources. Forensic DNA laboratories are always in the requirement of a precise technique for the efficient separation of sperm and non-sperm DNA from mixed samples. Since the introduction of the differential extraction technique in 1985, it has seen significant advancements in the form of either chemicals used or modification of incubation times. Several automated and semi-automated techniques have also adopted the fundamentals of conventional differential extraction techniques. However, lengthy incubation, several manual steps, and carryover over non-sperm material in sperm fraction are some of the major limitations of this technique. Advanced cell separation techniques have shown huge promise in separating sperm cells from a mixture based on their size, shape, composition, and membrane structure and antigens present on sperm membranes. Such advanced techniques such as DEParray, ADE, FACS, LCM, HOT and their respective pros and cons have been discussed in this article. As current-day forensic techniques should be as per the line of Olympic slogan i.e., faster, higher, stronger, the advanced cell separation techniques show a huge potential to be implemented in the casework samples.
Collapse
Affiliation(s)
- Hirak Ranjan Dash
- National Forensic Sciences University, Delhi Campus, Sector-3, 110085, Rohini, New Delhi, India.
| |
Collapse
|
8
|
Cai J, Chen B, He M, Yuan G, Hu B. An Integrated Inertial-Magnetophoresis Microfluidic Chip Online-Coupled with ICP-MS for Rapid Separation and Precise Detection of Circulating Tumor Cells. Anal Chem 2024; 96:14222-14229. [PMID: 39159467 DOI: 10.1021/acs.analchem.4c02876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Circulating tumor cells (CTCs) are recognized as promising targets for liquid biopsy, which play an important role in early diagnosis and efficacy monitoring of cancer. However, due to the extreme scarcity of CTCs and partial size overlap between CTCs and white blood cells (WBCs), the separation and detection of CTCs from blood remain a big challenge. To address this issue, we fabricated a microfluidic chip by integrating a passive contraction-expansion array (CEA) inertial sorting zone and an active magnetophoresis zone with the trapezoidal groove and online coupled it with inductively coupled plasma mass spectrometry (ICP-MS) for rapid separation and precise detection of MCF-7 cells (as a model CTC) in blood samples. In the integrated microfluidic chip, most of the small-sized WBCs can be rapidly removed in the circular CEA inertial sorter, while the rest of the magnetically labeled WBCs can be further captured in the trapezoidal groove under the magnetic field. As a result, the rapid separation of MCF-7 cells from blood samples was achieved with an average recovery of 91.6% at a sample flow rate of 200 μL min-1. The developed online integrated inertial-magnetophoresis microfluidic chip-ICP-MS system has been applied for the detection of CTCs in real clinical blood samples with a fast analysis speed (5 min per 1 mL blood). CTCs were detected in all 24 blood samples from patients with different types of cancer, exhibiting excellent application potential in clinical diagnosis.
Collapse
Affiliation(s)
- Jing Cai
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Guolin Yuan
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Shen F, Gao J, Zhang J, Ai M, Gao H, Liu Z. Vortex sorting of rare particles/cells in microcavities: A review. BIOMICROFLUIDICS 2024; 18:021504. [PMID: 38571909 PMCID: PMC10987199 DOI: 10.1063/5.0174938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Microfluidics or lab-on-a-chip technology has shown great potential for the separation of target particles/cells from heterogeneous solutions. Among current separation methods, vortex sorting of particles/cells in microcavities is a highly effective method for trapping and isolating rare target cells, such as circulating tumor cells, from flowing samples. By utilizing fluid forces and inertial particle effects, this passive method offers advantages such as label-free operation, high throughput, and high concentration. This paper reviews the fundamental research on the mechanisms of focusing, trapping, and holding of particles in this method, designs of novel microcavities, as well as its applications. We also summarize the challenges and prospects of this technique with the hope to promote its applications in medical and biological research.
Collapse
Affiliation(s)
- Feng Shen
- Authors to whom correspondence should be addressed: and
| | - Jie Gao
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Jie Zhang
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Mingzhu Ai
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Hongkai Gao
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Zhaomiao Liu
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
10
|
Shi Q, Wu J, Chen H, Xu X, Yang YB, Ding M. Inertial migration of polymer micelles in a square microchannel. SOFT MATTER 2024; 20:1760-1766. [PMID: 38295375 DOI: 10.1039/d3sm01304a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Using a hybrid simulation approach that combines a lattice-Boltzmann method for fluid flow and a molecular dynamics model for polymers, we investigate the inertial migration of star-like and crew-cut polymer micelles in a square microchannel. It is found that they exhibit two types of equilibrium positions, which shift further away from the center of the microchannel when the Reynolds number (Re) increases, as can be observed for soft particles. What differs from the behaviors of soft particles is that here, the blockage ratio is no longer the decisive factor. When the sizes are the same, the star-like micelles are always relatively closer to the microchannel wall as they gradually transition from spherical to disc-like with the increase of Re. In comparison, the crew-cut micelles are only transformed into an ellipsoid. Conversely, when the hydrophobic core sizes are the same, the equilibrium position of the star-like micelles becomes closer to that of the crew-cut micelles. Our results demonstrate that for polymer micelles with a core-shell structure, the equilibrium position is no longer solely determined by their overall dimensions but depends on the core and shell's specific dimensions, especially the hydrophobic core size. This finding opens up a new approach for achieving the separation of micelles in inertial migration.
Collapse
Affiliation(s)
- Qingfeng Shi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jintang Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Haisong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiaolong Xu
- School of Environmental and Chemical Engineering, Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, China
| | - Yong-Biao Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Mingming Ding
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| |
Collapse
|
11
|
Li Q, Wang Y, Gao W, Qian G, Chen X, Liu Y, Yu S. A microfluidic device for enhanced capture and high activity release of heterogeneous CTCs from whole blood. Talanta 2024; 266:125007. [PMID: 37556952 DOI: 10.1016/j.talanta.2023.125007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Circulating tumor cells (CTCs) are tumor cells that spontaneously detach from the primary focus, and early detection and characterization of CTCs is vital for cancer diagnosis and appropriate treatment. Current methods commonly use EpCAM to capture CTCs, but this results in a loss of information on other CTC subsets (EpCAM-negative cells) due to the heterogeneity of CTCs. Here, we report a novel microfluidic device that integrates the capture and release of heterogeneous CTCs directly from whole blood. A spiral chip was designed for the separation of differently sized cells, and larger CTCs were effectively separated from smaller blood cells with a 98% recovery rate. CD146-containing magnetic beads were used to complement the EpCAM-based CTC capture methods, and the capture efficiency of Fe3O4@Gelatin@CD146/EpCAM increased by 20% over Fe3O4@Gelatin@EpCAM. Finally, MMP-9 was employed to release CTCs with high efficiency and less damage by degrading gelatins on the surface of Fe3O4. The established method was successfully applied to CTC capture and release in a simulated patient's whole blood. The developed method achieved enhanced capture and high activity release of heterogeneous CTCs with less interference by blood cells, which contributes to the early detection and clinical downstream analysis of CTCs.
Collapse
Affiliation(s)
- Qiaoyu Li
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China; Institute of Mass Spectrometry, School of Material Science and Chemical Engineering; Ningbo University, Ningbo, Zhejiang, 315211, China; Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yanlin Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China; Institute of Mass Spectrometry, School of Material Science and Chemical Engineering; Ningbo University, Ningbo, Zhejiang, 315211, China; Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Wenjing Gao
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering; Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Guoqing Qian
- Department of Infectious Diseases, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xueqin Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yushan Liu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Shaoning Yu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China; Institute of Mass Spectrometry, School of Material Science and Chemical Engineering; Ningbo University, Ningbo, Zhejiang, 315211, China; Department of Chemistry, Fudan University, Shanghai 200438, China.
| |
Collapse
|
12
|
Shen S, Bai H, Wang X, Chan H, Niu Y, Li W, Tian C, Li X. High-Throughput Blood Plasma Extraction in a Dimension-Confined Double-Spiral Channel. Anal Chem 2023; 95:16649-16658. [PMID: 37917001 DOI: 10.1021/acs.analchem.3c03002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Microfluidic technologies enabling the control of secondary flow are essential for the successful separation of blood cells, a process that is beneficial for a wide range of medical research and clinical diagnostics. Herein, we introduce a dimension-confined microfluidic device featuring a double-spiral channel designed to regulate secondary flows, thereby enabling high-throughput isolation of blood for plasma extraction. By integrating a sequence of micro-obstacles within the double-spiral microchannels, the stable and enhanced Dean-like secondary flow across each loop can be generated. This setup consequently prompts particles of varying diameters (3, 7, 10, and 15 μm) to form different focusing states. Crucially, this system is capable of effectively separating blood cells of different sizes with a cell throughput of (2.63-3.36) × 108 cells/min. The concentration of blood cells in outlet 2 increased 3-fold, from 1.46 × 108 to 4.37 × 108, while the number of cells, including platelets, exported from outlets 1 and 3 decreased by a factor of 608. The engineering approach manipulating secondary flow for plasma extraction points to simplicity in fabrication, ease of operation, insensitivity to cell size, high throughput, and separation efficiency, which has potential utility in propelling the development of miniaturized diagnostic devices in the field of biomedical science.
Collapse
Affiliation(s)
- Shaofei Shen
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Hanjie Bai
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Xin Wang
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Henryk Chan
- Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield S10 2TN, U.K
| | - Yanbing Niu
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Weiwen Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen 529000, Guangdong, P. R. China
| | - Chang Tian
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, Anhui, P. R. China
| | - Xiaoping Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen 529000, Guangdong, P. R. China
| |
Collapse
|
13
|
Wong YC, Dai C, Xian Q, Yan Z, Zhang Z, Wen W. Flow study of Dean's instability in high aspect ratio microchannels. Sci Rep 2023; 13:17896. [PMID: 37857780 PMCID: PMC10587195 DOI: 10.1038/s41598-023-44969-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
Dean's flow and Dean's instability have always been important concepts in the inertial microfluidics. Curved channels are widely used for applications like mixing and sorting but are limited to Dean's flow only. This work first reports the Dean's instability flow in high aspect ratio channels on the deka-microns level for [Formula: see text]. A new channel geometry (the tortuous channel), which creates a rolled-up velocity profile, is presented and studied experimentally and numerically along with other three typical channel geometries at Dean's flow condition and Dean's instability condition. The tortuous channel generates a higher De environment at the same Re compared to the other channels and allows easier Dean's instability creation. We further demonstrate the use of multiple vortexes for mixing. The mixing efficiency is considered among different channel patterns and the tortuous channel outperforms the others. This work offers more understanding of the creation of Dean's instability at high aspect ratio channels and the effect of channel geometry on it. Ultimately, it demonstrates the potential for applications like mixing and cell sorting.
Collapse
Affiliation(s)
- Yu Ching Wong
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Cheng Dai
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Qingyue Xian
- Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Zhaoxu Yan
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Ziyi Zhang
- Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
- Thrust of Advanced Materials, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China.
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China.
| |
Collapse
|
14
|
Wang S, Xu Q, Zhang Z, Chen S, Jiang Y, Feng Z, Wang D, Jiang X. Reverse flow enhanced inertia pinched flow fractionation. LAB ON A CHIP 2023; 23:4324-4333. [PMID: 37702391 DOI: 10.1039/d3lc00473b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Particle separation plays a critical role in many biochemical analyses. In this article, we report a method of reverse flow enhanced inertia pinched flow fractionation (RF-iPFF) for particle separation. RF-iPFF separates particles by size based on the flow-induced inertial lift, and in the abruptly broadened segment, reverse flow is utilized to further enhance the separation distance between particles of different sizes. The separation performance can be significantly improved by reverse flow. Generally, compared with the case without reverse flow, this RF-iPFF technique can increase the particle throughput by about 10 times. To demonstrate the advantages of RF-iPFF, RF-iPFF was compared with traditional iPFF through a control experiment. RF-iPFF consistently outperformed iPFF across various conditions we studied. In addition, we use tumor cells spiked into the human whole blood to evaluate the separation performance of RF-iPFF.
Collapse
Affiliation(s)
- Saijie Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Quanchen Xu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Zhihan Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Shengbo Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Yizhou Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zhuowei Feng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Dou Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
15
|
Esan A, Vanholsbeeck F, Swift S, McGoverin CM. Continuous separation of bacterial cells from large debris using a spiral microfluidic device. BIOMICROFLUIDICS 2023; 17:044104. [PMID: 37576440 PMCID: PMC10415021 DOI: 10.1063/5.0159254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
With the global increase in food exchange, rapid identification and enumeration of bacteria has become crucial for protecting consumers from bacterial contamination. Efficient analysis requires the separation of target particles (e.g., bacterial cells) from food and/or sampling matrices to prevent matrix interference with the detection and analysis of target cells. However, studies on the separation of bacteria-sized particles and defined particles, such as bacterial cells, from heterogeneous debris, such as meat swab suspensions, are limited. In this study, we explore the use of passive-based inertial microfluidics to separate bacterial cells from debris, such as fascia, muscle tissues, and cotton fibers, extracted from ground meat and meat swabs-a novel approach demonstrated for the first time. Our objective is to evaluate the recovery efficiency of bacterial cells from large debris obtained from ground meat and meat swab suspensions using a spiral microfluidic device. In this study, we establish the optimal flow rates and Dean number for continuous bacterial cell and debris separation and a methodology to determine the percentage of debris removed from the sample suspension. Our findings demonstrate an average recovery efficiency of ∼ 80% for bacterial cells separated from debris in meat swab suspensions, while the average recovery efficiency from ground beef suspensions was ∼ 70%. Furthermore, approximately 50% of the debris in the ground meat suspension were separated from bacterial cells.
Collapse
Affiliation(s)
| | | | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
16
|
High-throughput isolation of cancer cells in spiral microchannel by changing the direction, magnitude and location of the maximum velocity. Sci Rep 2023; 13:3213. [PMID: 36828913 PMCID: PMC9958115 DOI: 10.1038/s41598-023-30275-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Circulating tumor cells (CTCs) are scarce cancer cells that rarely spread from primary or metastatic tumors inside the patient's bloodstream. Determining the genetic characteristics of these paranormal cells provides significant data to guide cancer staging and treatment. Cell focusing using microfluidic chips has been implemented as an effective method for enriching CTCs. The distinct equilibrium positions of particles with different diameters across the microchannel width in the simulation showed that it was possible to isolate and concentrate breast cancer cells (BCCs) from WBCs at a moderate Reynolds number. Therefore we demonstrate high throughput isolation of BCCs using a passive, size-based, label-free microfluidic method based on hydrodynamic forces by an unconventional (combination of long loops and U-turn) spiral microfluidic device for isolating both CTCs and WBCs with high efficiency and purity (more than 90%) at a flow rate about 1.7 mL/min, which has a high throughput compared to similar ones. At this golden flow rate, up to 92% of CTCs were separated from the cell suspension. Its rapid processing time, simplicity, and potential ability to collect CTCs from large volumes of patient blood allow the practical use of this method in many applications.
Collapse
|
17
|
Cheng Y, Zhang S, Qin L, Zhao J, Song H, Yuan Y, Sun J, Tian F, Liu C. Poly(ethylene oxide) Concentration Gradient-Based Microfluidic Isolation of Circulating Tumor Cells. Anal Chem 2023; 95:3468-3475. [PMID: 36725367 DOI: 10.1021/acs.analchem.2c05257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Circulating tumor cells (CTCs) have emerged as promising circulating biomarkers for non-invasive cancer diagnosis and management. Isolation and detection of CTCs in clinical samples are challenging due to the extreme rarity and high heterogeneity of CTCs. Here, we describe a poly(ethylene oxide) (PEO) concentration gradient-based microfluidic method for rapid, label-free, highly efficient isolation of CTCs directly from whole blood samples. Stable concentration gradients of PEO were formed within the microchannel by co-injecting the side fluid (blood sample spiked with 0.025% PEO) and center fluid (0.075% PEO solution). The competition between the elastic lift force and the inertial lift force enabled size-based separation of large CTCs and small blood cells based on their distinct migration patterns. The microfluidic device could process 1 mL of blood sample in 30 min, with a separation efficiency of >90% and an enrichment ratio of >700 for tumor cells. The isolated CTCs from blood samples were enumerated by immunofluorescence staining, allowing for discrimination of breast cancer patients from healthy donors with an accuracy of 84.2%. The concentration gradient-based microfluidic separation provides a powerful tool for label-free isolation of CTCs for a wide range of clinical applications.
Collapse
Affiliation(s)
- Yangchang Cheng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohua Zhang
- Department of Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Lili Qin
- Department of Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Junxiang Zhao
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Song
- Department of Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Yang Yuan
- Department of Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Tian
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Analysis of circulating tumour cells separation in a curved microchannel under a high gravitational field. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2022.118235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Hasanzadeh Kafshgari M, Hayden O. Advances in analytical microfluidic workflows for differential cancer diagnosis. NANO SELECT 2023. [DOI: 10.1002/nano.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Morteza Hasanzadeh Kafshgari
- Heinz‐Nixdorf‐Chair of Biomedical Electronics Campus Klinikum München rechts der Isar TranslaTUM Technical University of Munich Munich Germany
| | - Oliver Hayden
- Heinz‐Nixdorf‐Chair of Biomedical Electronics Campus Klinikum München rechts der Isar TranslaTUM Technical University of Munich Munich Germany
| |
Collapse
|
20
|
Xiang N, Ni Z. Inertial microfluidics: current status, challenges, and future opportunities. LAB ON A CHIP 2022; 22:4792-4804. [PMID: 36263793 DOI: 10.1039/d2lc00722c] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inertial microfluidics uses the hydrodynamic effects induced at finite Reynolds numbers to achieve passive manipulation of particles, cells, or fluids and offers the advantages of high-throughput processing, simple channel geometry, and label-free and external field-free operation. Since its proposal in 2007, inertial microfluidics has attracted increasing interest and is currently widely employed as an important sample preparation protocol for single-cell detection and analysis. Although great success has been achieved in the inertial microfluidics field, its performance and outcome can be further improved. From this perspective, herein, we reviewed the current status, challenges, and opportunities of inertial microfluidics concerning the underlying physical mechanisms, available simulation tools, channel innovation, multistage, multiplexing, or multifunction integration, rapid prototyping, and commercial instrument development. With an improved understanding of the physical mechanisms and the development of novel channels, integration strategies, and commercial instruments, improved inertial microfluidic platforms may represent a new foundation for advancing biomedical research and disease diagnosis.
Collapse
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
21
|
Rodríguez‐Pena A, Armendariz E, Oyarbide A, Morales X, Ortiz‐Espinosa S, Ruiz‐Fernández de Córdoba B, Cochonneau D, Cornago I, Heymann D, Argemi J, D'Avola D, Sangro B, Lecanda F, Pio R, Cortés‐Domínguez I, Ortiz‐de‐Solórzano C. Design and validation of a tunable inertial microfluidic system for the efficient enrichment of circulating tumor cells in blood. Bioeng Transl Med 2022; 7:e10331. [PMID: 36176621 PMCID: PMC9472016 DOI: 10.1002/btm2.10331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 11/08/2022] Open
Abstract
The analysis of circulating tumor cells (CTCs) in blood is a powerful noninvasive alternative to conventional tumor biopsy. Inertial-based separation is a promising high-throughput, marker-free sorting strategy for the enrichment and isolation of CTCs. Here, we present and validate a double spiral microfluidic device that efficiently isolates CTCs with a fine-tunable cut-off value of 9 μm and a separation range of 2 μm. We designed the device based on computer simulations that introduce a novel, customized inertial force term, and provide practical fabrication guidelines. We validated the device using calibration beads, which allowed us to refine the simulations and redesign the device. Then we validated the redesigned device using blood samples and a murine model of metastatic breast cancer. Finally, as a proof of principle, we tested the device using peripheral blood from a patient with hepatocellular carcinoma, isolating more than 17 CTCs/ml, with purity/removal values of 96.03% and 99.99% of white blood cell and red blood cells, respectively. These results confirm highly efficient CTC isolation with a stringent cut-off value and better separation results than the state of the art.
Collapse
Affiliation(s)
- Alejandro Rodríguez‐Pena
- Program in Solid TumorsCenter for Applied Medical Research (CIMA)PamplonaSpain
- Oncology DivisionNavarra's Health Research Institute (IDISNA)PamplonaSpain
| | | | - Alvaro Oyarbide
- Program in Solid TumorsCenter for Applied Medical Research (CIMA)PamplonaSpain
- Oncology DivisionNavarra's Health Research Institute (IDISNA)PamplonaSpain
| | - Xabier Morales
- Program in Solid TumorsCenter for Applied Medical Research (CIMA)PamplonaSpain
- Oncology DivisionNavarra's Health Research Institute (IDISNA)PamplonaSpain
| | - Sergio Ortiz‐Espinosa
- Program in Solid TumorsCenter for Applied Medical Research (CIMA)PamplonaSpain
- Oncology DivisionNavarra's Health Research Institute (IDISNA)PamplonaSpain
- Department of Biochemistry and Genetics, School of SciencesUniversity of NavarraPamplonaSpain
| | - Borja Ruiz‐Fernández de Córdoba
- Program in Solid TumorsCenter for Applied Medical Research (CIMA)PamplonaSpain
- Oncology DivisionNavarra's Health Research Institute (IDISNA)PamplonaSpain
| | - Denis Cochonneau
- Institut de Cancérologie de l'Ouest, “Tumor Heterogeneity and Precision Medicine” Lab., Blvd Jacques MonodSaint‐HerblainFrance
| | - Iñaki Cornago
- Automotive and Mechatronics R&D Foundation (Naitec)PamplonaSpain
| | - Dominique Heymann
- Institut de Cancérologie de l'Ouest, “Tumor Heterogeneity and Precision Medicine” Lab., Blvd Jacques MonodSaint‐HerblainFrance
- Nantes Université, CNRS, US2B, UMR 6286NantesFrance
| | - Josepmaría Argemi
- Liver Unit, Clinica Universitaria de NavarraPamplona (Navarra)Spain
- Centro de Investigación Biomédica en Red de Enfermedades hepáticas y Digestivas (CIBEREHD)Spain
| | - Delia D'Avola
- Liver Unit, Clinica Universitaria de NavarraPamplona (Navarra)Spain
- Centro de Investigación Biomédica en Red de Enfermedades hepáticas y Digestivas (CIBEREHD)Spain
| | - Bruno Sangro
- Liver Unit, Clinica Universitaria de NavarraPamplona (Navarra)Spain
- Centro de Investigación Biomédica en Red de Enfermedades hepáticas y Digestivas (CIBEREHD)Spain
| | - Fernando Lecanda
- Program in Solid TumorsCenter for Applied Medical Research (CIMA)PamplonaSpain
- Oncology DivisionNavarra's Health Research Institute (IDISNA)PamplonaSpain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC)MadridSpain
- Department of Pathology, Anatomy and PhysiologyUniversity of NavarraPamplonaSpain
| | - Ruben Pio
- Program in Solid TumorsCenter for Applied Medical Research (CIMA)PamplonaSpain
- Oncology DivisionNavarra's Health Research Institute (IDISNA)PamplonaSpain
- Department of Biochemistry and Genetics, School of SciencesUniversity of NavarraPamplonaSpain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC)MadridSpain
| | - Iván Cortés‐Domínguez
- Program in Solid TumorsCenter for Applied Medical Research (CIMA)PamplonaSpain
- Oncology DivisionNavarra's Health Research Institute (IDISNA)PamplonaSpain
| | - Carlos Ortiz‐de‐Solórzano
- Program in Solid TumorsCenter for Applied Medical Research (CIMA)PamplonaSpain
- Oncology DivisionNavarra's Health Research Institute (IDISNA)PamplonaSpain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC)MadridSpain
| |
Collapse
|
22
|
Cha H, Fallahi H, Dai Y, Yadav S, Hettiarachchi S, McNamee A, An H, Xiang N, Nguyen NT, Zhang J. Tuning particle inertial separation in sinusoidal channels by embedding periodic obstacle microstructures. LAB ON A CHIP 2022; 22:2789-2800. [PMID: 35587546 DOI: 10.1039/d2lc00197g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inertial microfluidics functions solely based on the fluid dynamics at relatively high flow speed. Thus, channel geometry is the critical design parameter that contributes to the performance of the device. Four basic channel geometries (i.e., straight, expansion-contraction, spiral and serpentine) have been proposed and extensively studied. To further enhance the performance, innovative channel design through combining two or more geometries is promising. This work explores embedding periodic concave and convex obstacle microstructures in sinusoidal channels and investigates their influence on particle inertial focusing and separation. The concave obstacles could significantly enhance the Dean flow and tune the flow range for particle inertial focusing and separation. Based on this finding, we propose a cascaded device by connecting two sinusoidal channels consecutively for rare cell separation. The concave obstacles are embedded in the second channel to adapt its operational flow rates and enable the functional operation of both channels. Polystyrene beads and breast cancer cells (T47D) spiking in the blood were respectively processed by the proposed device. The results indicate an outstanding separation performance, with 3 to 4 orders of magnitude enhancement in purity for samples with a primary cancer cells ratio of 0.01% and 0.001%, respectively. Embedding microstructures as obstacles brings more flexibility to the design of inertial microfluidic devices, offering a feasible new way to combine two or more serial processing units for high-performance separation.
Collapse
Affiliation(s)
- Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hedieh Fallahi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Sharda Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Samith Hettiarachchi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Antony McNamee
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia
| | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nan Xiang
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
23
|
Sierra-Agudelo J, Rodriguez-Trujillo R, Samitier J. Microfluidics for the Isolation and Detection of Circulating Tumor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:389-412. [PMID: 35761001 DOI: 10.1007/978-3-031-04039-9_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nowadays, liquid biopsy represents one of the most promising techniques for early diagnosis, monitoring, and therapy screening of cancer. This novel methodology includes, among other techniques, the isolation, capture, and analysis of circulating tumor cells (CTCs). Nonetheless, the identification of CTC from whole blood is challenging due to their extremely low concentration (1-100 per ml of whole blood), and traditional methods result insufficient in terms of purity, recovery, throughput and/or viability of the processed sample. In this context, the development of microfluidic devices for detecting and isolating CTCs offers a wide range of new opportunities due to their excellent properties for cell manipulation and the advantages to integrate and bring different laboratory processes into the microscale improving the sensitivity, portability, reducing cost and time. This chapter explores current and recent microfluidic approaches that have been developed for the analysis and detection of CTCs, which involve cell capture methods based on affinity binding and label-free methods and detection based on electrical, chemical, and optical sensors. All the exposed technologies seek to overcome the limitations of commercial systems for the analysis and isolation of CTCs, as well as to provide extended analysis that will allow the development of novel and more efficient diagnostic tools.
Collapse
Affiliation(s)
- Jessica Sierra-Agudelo
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Romen Rodriguez-Trujillo
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. .,Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain.
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
24
|
Wang D, Dong R, Wang X, Jiang X. Flexible Electronic Catheter Based on Nanofibers for the In Vivo Elimination of Circulating Tumor Cells. ACS NANO 2022; 16:5274-5283. [PMID: 35302351 DOI: 10.1021/acsnano.1c09807] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Clearing circulating tumor cells (CTCs) that are closely related to cancer metastasis and recurrence in peripheral blood helps to reduce the probability of cancer recurrence and metastasis. However, conventional therapies aiming at killing CTCs always cause damage to normal blood cells, tissues, and organs. Here, we report a flexible electronic catheter that can capture and kill CTCs via irreversible electroporation (IRE) with high efficiency. The flexible electronic catheter is assembled from nanofibers (NFs) with liquid metal-polymer conductor (MPC) electrodes. The NFs were modified with an epithelial cellular adhesion molecule (EpCAM) antibody on the surface to improve specific biorecognition and cell adhesion. Whole-body blood can be screened by the catheter repeatedly, during which the EpCAM antibody on a nanofiber can enrich CTCs to the surface of the catheter. Taking advantage of the high specific surface area, the capture efficiency of NF-based catheters for CTCs is 25 times higher than previously reported cases. Furthermore, the number of nonspecifically captured WBCs is less than 10 per mm2 areas of the catheter, compared to their original large number of 4-11 × 106 mL-1 of whole blood, showing good specificity of the flexible electronic catheter. The flexible and biocompatible MPC electrodes have a high killing efficiency of 100% for the captured CTCs in a rabbit model. No noticeable hematologic index and morphological changes of the vessels and major organs were observed, indicating that this electronic catheter had good biocompatibility. The present functional electronic catheter offers an alternative strategy for improving the efficiency of clinical cancer therapy.
Collapse
Affiliation(s)
- Dou Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Ruihua Dong
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xuedong Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
25
|
Shiri F, Feng H, Petersen KE, Sant H, Bardi GT, Schroeder LA, Merchant ML, Gale BK, Hood JL. Separation of U87 glioblastoma cell-derived small and medium extracellular vesicles using elasto-inertial flow focusing (a spiral channel). Sci Rep 2022; 12:6146. [PMID: 35414673 PMCID: PMC9005724 DOI: 10.1038/s41598-022-10129-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 04/01/2022] [Indexed: 11/09/2022] Open
Abstract
Nanoscale and microscale cell-derived extracellular vesicle types and subtypes are of significant interest to researchers in biology and medicine. Extracellular vesicles (EVs) have diagnostic and therapeutic potential in terms of biomarker and nanomedicine applications. To enable such applications, EVs must be isolated from biological fluids or separated from other EV types. Developing methods to fractionate EVs is of great importance to EV researchers. Our goal was to begin to develop a device that would separate medium EVs (mEVs, traditionally termed microvesicles or shedding vesicles) and small EVs (sEVs, traditionally termed exosomes) by elasto-inertial effect. We sought to develop a miniaturized technology that works similar to and provides the benefits of differential ultracentrifugation but is more suitable for EV-based microfluidic applications. The aim of this study was to determine whether we could use elasto-inertial focusing to re-isolate and recover U87 mEVs and sEVs from a mixture of mEVs and sEVs isolated initially by one round of differential ultracentrifugation. The studied spiral channel device can continuously process 5 ml of sample fluid per hour. Using the channel, sEVs and mEVs were recovered and re-isolated from a mixture of U87 glioma cell-derived mEVs and sEVs pre-isolated by one round of differential ultracentrifugation. Following two passes through the spiral channel, approximately 55% of sEVs were recovered with 6% contamination by mEVs (the recovered sEVs contained 6% of the total mEVs). In contrast, recovery of U87 mEVs and sEVs re-isolated using a typical second centrifugation wash step was only 8% and 53%, respectively. The spiral channel also performed similar to differential ultracentrifugation in reisolating sEVs while significantly improving mEV reisolation from a mixture of U87 sEVs and mEVs. Ultimately this technology can also be coupled to other microfluidic EV isolation methods in series and/or parallel to improve isolation and minimize loss of EV subtypes.
Collapse
Affiliation(s)
- Farhad Shiri
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Haidong Feng
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Kevin E Petersen
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Himanshu Sant
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Gina T Bardi
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Luke A Schroeder
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Michael L Merchant
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Bruce K Gale
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Joshua L Hood
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA.
- Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
- Hepatobiology and Toxicology COBRE, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
26
|
Altay R, Yapici MK, Koşar A. A Hybrid Spiral Microfluidic Platform Coupled with Surface Acoustic Waves for Circulating Tumor Cell Sorting and Separation: A Numerical Study. BIOSENSORS 2022; 12:bios12030171. [PMID: 35323441 PMCID: PMC8946654 DOI: 10.3390/bios12030171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 05/28/2023]
Abstract
The separation of circulating tumor cells (CTCs) from blood samples is crucial for the early diagnosis of cancer. During recent years, hybrid microfluidics platforms, consisting of both passive and active components, have been an emerging means for the label-free enrichment of circulating tumor cells due to their advantages such as multi-target cell processing with high efficiency and high sensitivity. In this study, spiral microchannels with different dimensions were coupled with surface acoustic waves (SAWs). Numerical simulations were conducted at different Reynolds numbers to analyze the performance of hybrid devices in the sorting and separation of CTCs from red blood cells (RBCs) and white blood cells (WBCs). Overall, in the first stage, the two-loop spiral microchannel structure allowed for the utilization of inertial forces for passive separation. In the second stage, SAWs were introduced to the device. Thus, five nodal pressure lines corresponding to the lateral position of the five outlets were generated. According to their physical properties, the cells were trapped and lined up on the corresponding nodal lines. The results showed that three different cell types (CTCs, RBCs, and WBCs) were successfully focused and collected from the different outlets of the microchannels by implementing the proposed multi-stage hybrid system.
Collapse
Affiliation(s)
- Rana Altay
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (R.A.); (M.K.Y.)
| | - Murat Kaya Yapici
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (R.A.); (M.K.Y.)
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Ali Koşar
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (R.A.); (M.K.Y.)
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
27
|
Tang H, Niu J, Jin H, Lin S, Cui D. Geometric structure design of passive label-free microfluidic systems for biological micro-object separation. MICROSYSTEMS & NANOENGINEERING 2022; 8:62. [PMID: 35685963 PMCID: PMC9170746 DOI: 10.1038/s41378-022-00386-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/27/2022] [Accepted: 03/18/2022] [Indexed: 05/05/2023]
Abstract
Passive and label-free microfluidic devices have no complex external accessories or detection-interfering label particles. These devices are now widely used in medical and bioresearch applications, including cell focusing and cell separation. Geometric structure plays the most essential role when designing a passive and label-free microfluidic chip. An exquisitely designed geometric structure can change particle trajectories and improve chip performance. However, the geometric design principles of passive and label-free microfluidics have not been comprehensively acknowledged. Here, we review the geometric innovations of several microfluidic schemes, including deterministic lateral displacement (DLD), inertial microfluidics (IMF), and viscoelastic microfluidics (VEM), and summarize the most creative innovations and design principles of passive and label-free microfluidics. We aim to provide a guideline for researchers who have an interest in geometric innovations of passive label-free microfluidics.
Collapse
Affiliation(s)
- Hao Tang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
| | - Jiaqi Niu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
| | - Han Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, 28 Jiangchuan Easternroad, Shanghai, 200241 China
| | - Shujing Lin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, 28 Jiangchuan Easternroad, Shanghai, 200241 China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, 28 Jiangchuan Easternroad, Shanghai, 200241 China
| |
Collapse
|
28
|
Xiang N, Ni Z. Electricity-free hand-held inertial microfluidic sorter for size-based cell sorting. Talanta 2021; 235:122807. [PMID: 34517664 DOI: 10.1016/j.talanta.2021.122807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/07/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022]
Abstract
Conventional batch-top cell sorters are often bulky and expensive, and miniaturized microfluidic sorters available mostly require field generators and electricity-powered pumping systems. Therefore, the development of a low-cost, portable cell sorter that can be used in low resource settings is essential. In this study, we propose such an electricity-free hand-held inertial microfluidic sorter that can be used for the high-efficiency sorting of differently sized cells in a continuous and passive manner. The proposed hand-held sorter is composed of a wheel-shaped all-in-one syringe inertial microfluidic sorter (i-sorter) with flow stabilizer units and two spring-driven mechanical syringe drivers. The release of the compression spring in the mechanical syringe driver through a one-click operation provides the flow driving force. Passive flow stabilizer units in the i-sorter enable flow-rate-sensitive inertial cell separation for the unstable driving flow rate generated by the low-cost mechanical syringe driver. We successfully achieved sorting of differently sized particles and high-efficiency separation of rare tumor cells from the blood using the fabricated prototype. Our hand-held inertial microfluidic cell sorter has many advantages, including low device cost, simple electricity-free operation, compactness, and portability; additionally, samples do not need to be pre-labelled. Therefore, it has potential for use in low-resource settings.
Collapse
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| |
Collapse
|
29
|
Zhang Y, Li Y, Tan Z. A review of enrichment methods for circulating tumor cells: from single modality to hybrid modality. Analyst 2021; 146:7048-7069. [PMID: 34709247 DOI: 10.1039/d1an01422f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circulating tumor cell (CTC) analysis as a liquid biopsy can be used for early diagnosis of cancer, evaluating cancer progression, and assessing treatment efficacy. The enrichment of CTCs from patient blood is important for CTC analysis due to the extreme rarity of CTCs. This paper updates recent advances in CTC enrichment methods. We first review single-modality methods, including biophysical and biochemical methods. Hybrid-modality methods, combining at least two single-modality methods, are gaining increasing popularity for their improved performance. Then this paper reviews hybrid-modality methods, which are categorized into integrated and sequenced hybrid-modality methods. The state of the art indicates that the CTC capture efficiencies of integrated hybrid-modality methods can reach 85% or higher by taking advantage of the superimposed and enhanced capture effects from multiple single-modality methods. Moreover, a hybrid method integrating biophysical with biochemical methods is characterized by both high processing rate and high specificity.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1.
| | - Yifu Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1.
| | - Zhongchao Tan
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1.
| |
Collapse
|
30
|
Xu X, Huang X, Sun J, Wang R, Yao J, Han W, Wei M, Chen J, Guo J, Sun L, Yin M. Recent progress of inertial microfluidic-based cell separation. Analyst 2021; 146:7070-7086. [PMID: 34761757 DOI: 10.1039/d1an01160j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell separation has consistently been a pivotal technology of sample preparation in biomedical research. Compared with conventional bulky cell separation technologies applied in the clinic, cell separation based on microfluidics can accurately manipulate the displacement of liquid or cells at the microscale, which has great potential in point-of-care testing (POCT) applications due to small device size, low cost, low sample consumption, and high operating accuracy. Among various microfluidic cell separation technologies, inertial microfluidics has attracted great attention due to its simple structure and high throughput. In recent years, many researchers have explored the principles and applications of inertial microfluidics and developed different channel structures, including straight channels, curved channels, and multistage channels. However, the recently developed multistage channels have not been discussed and classified in detail compared with more widely discussed straight and curved channels. Therefore, in this review, a comprehensive and detailed review of recent progress in the multistage channel is presented. According to the channel structure, the inertial microfluidic separation technology is divided into (i) straight channel, (ii) curved channel, (iii) composite channel, and (iv) integrated device. The structural development of straight and curved channels is discussed in detail. And based on straight and curved channels, the multistage cell separation structures are reviewed, with a special focus on a variety of latest structures and related innovations of composite and integrated channels. Finally, the future prospects for the existing challenges in the development of inertial microfluidic cell separation technology are presented.
Collapse
Affiliation(s)
- Xuefeng Xu
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Xiwei Huang
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jingjing Sun
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Renjie Wang
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jiangfan Yao
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Wentao Han
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Maoyu Wei
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jin Chen
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jinhong Guo
- School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lingling Sun
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Ming Yin
- The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
31
|
Li BW, Wei K, Liu QQ, Sun XG, Su N, Li WM, Shang MY, Li JM, Liao D, Li J, Lu WP, Deng SL, Huang Q. Enhanced Separation Efficiency and Purity of Circulating Tumor Cells Based on the Combined Effects of Double Sheath Fluids and Inertial Focusing. Front Bioeng Biotechnol 2021; 9:750444. [PMID: 34778227 PMCID: PMC8578950 DOI: 10.3389/fbioe.2021.750444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022] Open
Abstract
Circulating tumor cells (CTCs) play a crucial role in solid tumor metastasis, but obtaining high purity and viability CTCs is a challenging task due to their rarity. Although various works using spiral microchannels to isolate CTCs have been reported, the sorting purity of CTCs has not been significantly improved. Herein, we developed a novel double spiral microchannel for efficient separation and enrichment of intact and high-purity CTCs based on the combined effects of two-stage inertial focusing and particle deflection. Particle deflection relies on the second sheath to produce a deflection of the focused sample flow segment at the end of the first-stage microchannel, allowing larger particles to remain focused and entered the second-stage microchannel while smaller particles moved into the first waste channel. The deflection of the focused sample flow segment was visualized. Testing by a binary mixture of 10.4 and 16.5 μm fluorescent microspheres, it showed 16.5 μm with separation efficiency of 98% and purity of 90% under the second sheath flow rate of 700 μl min−1. In biological experiments, the average purity of spiked CTCs was 74% at a high throughput of 1.5 × 108 cells min−1, and the recovery was more than 91%. Compared to the control group, the viability of separated cells was 99%. Finally, we validated the performance of the double spiral microchannel using clinical cancer blood samples. CTCs with a concentration of 2–28 counts ml−1 were separated from all 12 patients’ peripheral blood. Thus, our device could be a robust and label-free liquid biopsy platform in inertial microfluidics for successful application in clinical trials.
Collapse
Affiliation(s)
- Bo-Wen Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Kun Wei
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Qi-Qi Liu
- Department of Nursing, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xian-Ge Sun
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Ning Su
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Wen-Man Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Mei-Yun Shang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Jin-Mi Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Liao
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Jin Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei-Ping Lu
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Shao-Li Deng
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
32
|
Mehran A, Rostami P, Saidi MS, Firoozabadi B, Kashaninejad N. High-Throughput, Label-Free Isolation of White Blood Cells from Whole Blood Using Parallel Spiral Microchannels with U-Shaped Cross-Section. BIOSENSORS 2021; 11:bios11110406. [PMID: 34821622 PMCID: PMC8615462 DOI: 10.3390/bios11110406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 06/12/2023]
Abstract
Rapid isolation of white blood cells (WBCs) from whole blood is an essential part of any WBC examination platform. However, most conventional cell separation techniques are labor-intensive and low throughput, require large volumes of samples, need extensive cell manipulation, and have low purity. To address these challenges, we report the design and fabrication of a passive, label-free microfluidic device with a unique U-shaped cross-section to separate WBCs from whole blood using hydrodynamic forces that exist in a microchannel with curvilinear geometry. It is shown that the spiral microchannel with a U-shaped cross-section concentrates larger blood cells (e.g., WBCs) in the inner cross-section of the microchannel by moving smaller blood cells (e.g., RBCs and platelets) to the outer microchannel section and preventing them from returning to the inner microchannel section. Therefore, it overcomes the major limitation of a rectangular cross-section where secondary Dean vortices constantly enforce particles throughout the entire cross-section and decrease its isolation efficiency. Under optimal settings, we managed to isolate more than 95% of WBCs from whole blood under high-throughput (6 mL/min), high-purity (88%), and high-capacity (360 mL of sample in 1 h) conditions. High efficiency, fast processing time, and non-invasive WBC isolation from large blood samples without centrifugation, RBC lysis, cell biomarkers, and chemical pre-treatments make this method an ideal choice for downstream cell study platforms.
Collapse
Affiliation(s)
- Amirhossein Mehran
- School of Mechanical Engineering, Sharif University of Technology, Tehran 11155, Iran; (A.M.); (P.R.); (M.S.S.)
| | - Peyman Rostami
- School of Mechanical Engineering, Sharif University of Technology, Tehran 11155, Iran; (A.M.); (P.R.); (M.S.S.)
| | - Mohammad Said Saidi
- School of Mechanical Engineering, Sharif University of Technology, Tehran 11155, Iran; (A.M.); (P.R.); (M.S.S.)
| | - Bahar Firoozabadi
- School of Mechanical Engineering, Sharif University of Technology, Tehran 11155, Iran; (A.M.); (P.R.); (M.S.S.)
| | - Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| |
Collapse
|
33
|
Shi X, Tan W, Lu Y, Cao W, Zhu G. A needle tip CCEA microfluidic device based on enhanced Dean flow for cell washing. MICROSYSTEMS & NANOENGINEERING 2021; 7:81. [PMID: 34721889 PMCID: PMC8519928 DOI: 10.1038/s41378-021-00311-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Particle/cell washing is an essential technique in biological and clinical manipulations. Herein, we propose a novel circular contraction-expansion array (CCEA) microdevice. It can be directly connected to a needle tip without connection tubes. Its small size and centrosymmetric structure are beneficial to low sample consumption, high connection stability, and a wide application range. Computational fluid dynamics (CFD) simulation results show that the CCEA structure can produce a stronger Dean flow and lead to faster particle/cell focusing than the circle structure and CEA structure with the same length. Experimentally, an optimal flow rate ratio of 1:3 and an optimal total flow rate of 120 μL/min were found to ensure a stable fluid distribution. Under these conditions, rapid focusing of 10-20 μm particles with high efficiencies was achieved. Compared with a normal CEA device using tubes, the particle loss rate could be reduced from 64 to 7% when washing 500 μL of a rare sample. Cell suspensions with concentrations from 3 × 105/mL to 1 × 103/mL were tested. The high cell collection efficiency (>85% for three cell lines) and stable waste removal efficiency (>80%) reflected the universality of the CCEA microfluidic device. After the washing, the cell activities of H1299 cells and MCF-7 cells were calculated to be 93.8 and 97.5%, respectively. This needle-tip CCEA microfluidic device showed potential in basic medical research and clinical diagnosis.
Collapse
Affiliation(s)
- Xin Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
| | - Wei Tan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
| | - Yuwen Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
| | - Wenfeng Cao
- Tianjin Tumor Hospital, Tianjin Medical University, Tianjin, 300070 China
| | - Guorui Zhu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
| |
Collapse
|
34
|
Stone NE, Voigt AP, Mullins RF, Sulchek T, Tucker BA. Microfluidic processing of stem cells for autologous cell replacement. Stem Cells Transl Med 2021; 10:1384-1393. [PMID: 34156760 PMCID: PMC8459636 DOI: 10.1002/sctm.21-0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 12/18/2022] Open
Abstract
Autologous photoreceptor cell replacement is one of the most promising approaches currently under development for the treatment of inherited retinal degenerative blindness. Unlike endogenous stem cell populations, induced pluripotent stem cells (iPSCs) can be differentiated into both rod and cone photoreceptors in high numbers, making them ideal for this application. That said, in addition to photoreceptor cells, state of the art retinal differentiation protocols give rise to all of the different cell types of the normal retina, the majority of which are not required and may in fact hinder successful photoreceptor cell replacement. As such, following differentiation photoreceptor cell enrichment will likely be required. In addition, to prevent the newly generated photoreceptor cells from suffering the same fate as the patient's original cells, correction of the patient's disease-causing genetic mutations will be necessary. In this review we discuss literature pertaining to the use of different cell sorting and transfection approaches with a focus on the development and use of novel next generation microfluidic devices. We will discuss how gold standard strategies have been used, the advantages and disadvantages of each, and how novel microfluidic platforms can be incorporated into the clinical manufacturing pipeline to reduce the complexity, cost, and regulatory burden associated with clinical grade production of photoreceptor cells for autologous cell replacement.
Collapse
Affiliation(s)
- Nicholas E. Stone
- The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Andrew P. Voigt
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Robert F. Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Todd Sulchek
- The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Budd A. Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
35
|
Li R, Gong Z, Liu Y, Zhao X, Guo S. Detection of circulating tumor cells and single cell extraction technology: principle, effect and application prospect. NANO FUTURES 2021; 5:032002. [DOI: 10.1088/2399-1984/ac1325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
36
|
Combination of inertial focusing and magnetoporetic separation in a novel microdevice. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0795-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Dean migration of unfocused micron sized particles in low aspect ratio spiral microchannels. Biomed Microdevices 2021; 23:40. [PMID: 34309731 DOI: 10.1007/s10544-021-00575-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2021] [Indexed: 10/20/2022]
Abstract
We present an analysis of the microfluidic Dean migration of 2.5 µm particles, which do not meet focus criterion, in tall and low aspect ratio microchannels. We demonstrate the use of such low aspect ratio and tall spirals (h > 50 µm) for isolating high concentration (> 106 particles or cells/mL) micron sized particles without an initial off-chip dilution step. We specifically show the need for a sheath fluid for isolation and systematically analyze the particle stream profile (i.e. thickness and distance from the channel wall) as a function of downstream channel length and curvature ratio, with changes in the fluid velocity and the flow rate ratio of particles to sheath fluid (FRR). We also show that the width of the particle stream can control the particle migration and that a threshold stream width and Dean drag is necessary to initiate the particle stream migration from the channel wall. We then propose a design guide based on the selection of optimum curvatures, flow velocities and the FRRs required for achieving a narrow particle stream through a particular outlet. Finally, we use the design guide to demonstrate the isolation of bacteria from bladder epithelial cells.
Collapse
|
38
|
Su J, Chen X, Zhu Y, Hu G. Machine learning assisted fast prediction of inertial lift in microchannels. LAB ON A CHIP 2021; 21:2544-2556. [PMID: 33998624 DOI: 10.1039/d1lc00225b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Inertial effect has been extensively used in manipulating both engineered particles and biocolloids in microfluidic platforms. The design of inertial microfluidic devices largely relies on precise prediction of particle migration that is determined by the inertial lift acting on the particle. In spite of being the only means to accurately obtain the lift forces, direct numerical simulation (DNS) often consumes high computational cost and even becomes impractical when applied to microchannels with complex geometries. Herein, we proposed a fast numerical algorithm in conjunction with machine learning techniques for the analysis and design of inertial microfluidic devices. A database of inertial lift forces was first generated by conducting DNS over a wide range of operating parameters in straight microchannels with three types of cross-sectional shapes, including rectangular, triangular and semicircular shapes. A machine learning assisted model was then developed to gain the inertial lift distribution, by simply specifying the cross-sectional shape, Reynolds number and particle blockage ratio. The resultant inertial lift was integrated into the Lagrangian tracking method to quickly predict the particle trajectories in two types of microchannels in practical devices and yield good agreement with experimental observations. Our database and the associated codes allow researchers to expedite the development of the inertial microfluidic devices for particle manipulation.
Collapse
Affiliation(s)
- Jinghong Su
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China. and The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China and School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Chen
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yongzheng Zhu
- The State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China and School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqing Hu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
39
|
Danyuo Y, Obayemi JD, Salifu AA, Oyewole OK, Azeko ST, Ani CJ, Dozie-Nwachukwu S, Yirijor J, Abade-Abugre M, Odusanya OS, McBagonluri F, Soboyejo WO. Cell-surface interactions on gold-coated polydimethylsiloxane nanocomposite structures: Localized laser heating on cell viability. J Biomed Mater Res A 2021; 109:2611-2624. [PMID: 34180577 DOI: 10.1002/jbm.a.37254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022]
Abstract
This article presents the results of cell-surface interactions on polydimethylsiloxane (PDMS)-based substrates coated with nanoscale gold (Au) thin films. The surfaces of PDMS and PDMS-magnetite (MNP)-based substrates were treated with UV-ozone, prior to thermal vapor deposition (sputter-coated) of thin films of titanium (Ti) onto the substrates to improve the adhesion of Au coatings. The thin layer of Ti was thermally evaporated to improve interfacial adhesion, which was enhanced by a 40-nm thick film microwrinkled/buckled wavy layer of Au, that was coated to enhance cell-surface interactions and protein absorption. Cell-surface interactions were studied on the hybrid surfaces using a combination of optical and fluorescence microscopy. Consequently, cell proliferation and surface cytotoxicity (of the sputter-coated PDMS surfaces) were elucidated by characterizing the metabolic activity in the presence of breast cancer and normal breast cells. The photothermal conversion efficiency associated with laser-materials interactions with the PDMS/PDMS-magnetite-based composites was shown to have an optimum efficiency of ~31.8%. The implications of the results are discussed for potential applications of PDMS nanocomposites in implantable biomedical devices.
Collapse
Affiliation(s)
- Yiporo Danyuo
- Department of Mechanical Engineering, Ashesi University, 1 University Avenue, Berekuso, Ghana.,Department of Materials Science and Engineering, African University of Science and Technology, FCT, Abuja, Nigeria
| | - John David Obayemi
- Department of Mechanical Engineering, Higgins Labs, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Ali Azeko Salifu
- Department of Mechanical Engineering, Higgins Labs, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Oluwaseun Kehinde Oyewole
- Department of Mechanical Engineering, Higgins Labs, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Salifu Tahiru Azeko
- Department of Mechanical Engineering, Tamale Technical University, Tamale, Northern Region, Ghana
| | - Chukwuemeka Joseph Ani
- Department of Theoretical and Applied Physics, African University of Science and Technology (AUST), FCT, Abuja, Nigeria.,Department of Electrical and Electronics Engineering, Nile University of Nigeria, FCT, Abuja, Nigeria
| | - Stella Dozie-Nwachukwu
- Department of Materials Science and Engineering, African University of Science and Technology, FCT, Abuja, Nigeria.,Biotechnology Advance Research Centre, Sheda Science and Technology Complex (SHESTCO), FCT, Abuja, Nigeria
| | - John Yirijor
- Department of Mechanical Engineering, Academic City University College, Accra, Ghana
| | - Miriam Abade-Abugre
- Department of Mechanical Engineering, Ashesi University, 1 University Avenue, Berekuso, Ghana
| | - Olushola Segun Odusanya
- Department of Materials Science and Engineering, African University of Science and Technology, FCT, Abuja, Nigeria.,Biotechnology Advance Research Centre, Sheda Science and Technology Complex (SHESTCO), FCT, Abuja, Nigeria
| | - Fred McBagonluri
- Department of Mechanical Engineering, Academic City University College, Accra, Ghana
| | - Winston Oluwole Soboyejo
- Department of Mechanical Engineering, Higgins Labs, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
40
|
Fallahi H, Yadav S, Phan HP, Ta H, Zhang J, Nguyen NT. Size-tuneable isolation of cancer cells using stretchable inertial microfluidics. LAB ON A CHIP 2021; 21:2008-2018. [PMID: 34008666 DOI: 10.1039/d1lc00082a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Inertial microfluidics is a simple, low cost, efficient size-based separation technique which is being widely investigated for rare-cell isolation and detection. Due to the fixed geometrical dimensions of the current rigid inertial microfluidic systems, most of them are only capable of isolating and separating cells with certain types and sizes. Herein, we report the design, fabrication, and validation of a stretchable inertial microfluidic device with a tuneable separation threshold that can be used for heterogenous mixtures of particles and cells. Stretchability allows for the fine-tuning of the critical sorting size, resulting in a high separation resolution that makes the separation of cells with small size differences possible. We validated the tunability of the separation threshold by stretching the length of a microchannel to separate the particle sizes of interest. We also evaluated the focusing efficiency, flow behaviour, and the positions of cancer cells and white blood cells (WBCs) in an elongated channel, separately. In addition, the performance of the device was verified by isolating cancer cells from WBCs which revealed a high recovery rate and purity. The stretchable chip showed promising results in the separation of cells with comparable sizes. Further validation of the chip using whole blood spiked with cancer cells delivered a 98.6% recovery rate with 90% purity. Elongating a stretchable microfluidic chip enables onsite modification of the dimensions of a microchannel leading to a precise tunability of the separation threshold as well as a high separation resolution.
Collapse
Affiliation(s)
- Hedieh Fallahi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Sharda Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hoang-Phuong Phan
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hang Ta
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
41
|
Batcho EC, Miller S, Cover TL, McClain MS, Marasco C, Bell CS, Giorgio TD. Inertial-based Fluidic Platform for Rapid Isolation of Blood-borne Pathogens. Mil Med 2021; 186:129-136. [PMID: 33499487 DOI: 10.1093/milmed/usaa442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/18/2020] [Accepted: 10/14/2020] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Bacterial sepsis is a life-threatening disease and a significant clinical problem caused by host responses to a microbial infection. Sepsis is a leading cause of death worldwide and, importantly, a significant cause of morbidity and mortality in combat settings, placing a considerable burden on military personnel and military health budgets. The current method of treating sepsis is restricted to pathogen identification, which can be prolonged, and antibiotic administration, which is, initially, often suboptimal. The clinical trials that have been performed to evaluate bacterial separation as a sepsis therapy have been unsuccessful, and new approaches are needed to address this unmet clinical need. MATERIALS AND METHODS An inertial-based, scalable spiral microfluidic device has been created to overcome these previous deficiencies through successful separation of infection-causing pathogens from the bloodstream, serving as a proof of principle for future adaptations. Fluorescent imaging of fluorescent microspheres mimicking the sizes of bacteria cells and blood cells as well as fluorescently stained Acinetobacter baumannii were used to visualize flow within the spiral. The particles were imaged when flowing at a constant volumetric rate of 0.2 mL min-1 through the device. The same device was functionalized with colistin and exposed to flowing A. baumannii at 0.2 mL h-1. RESULTS Fluorescent imaging within the channel under a constant volumetric flow rate demonstrated that smaller, bacteria-sized microspheres accumulated along the inner wall of the channel, whereas larger blood cell-sized microspheres accumulated within the center of the channel. Additionally, fluorescently stained A. baumannii displayed accumulation along the channel walls in agreement with calculated performance. Nearly 106 colony-forming units of A. baumannii were extracted with 100% capture efficiency from flowing phosphate-buffered saline at 0.2 mL h-1 in this device; this is at least one order of magnitude more bacteria than present in the blood of a human at the onset of sepsis. CONCLUSIONS This type of bacterial separation device potentially provides an ideal approach for treating soldiers in combat settings. It eliminates the need for immediate pathogen identification and determination of antimicrobial susceptibility, making it suitable for rapid use within low-resource environments. The overall simplicity and durability of this design also supports its broad translational potential to improve military mortality rates and overall patient outcomes.
Collapse
Affiliation(s)
- Erin C Batcho
- Vanderbilt University Department of Biomedical Engineering, Nashville, TN, 37232
| | - Sinead Miller
- Vanderbilt University Department of Biomedical Engineering, Nashville, TN, 37232
| | - Timothy L Cover
- Vanderbilt University Medical Center, Nashville, TN, 37232.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, 37212
| | - Mark S McClain
- Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Christina Marasco
- Vanderbilt University Department of Biomedical Engineering, Nashville, TN, 37232
| | - Charleson S Bell
- Vanderbilt University Department of Biomedical Engineering, Nashville, TN, 37232
| | - Todd D Giorgio
- Vanderbilt University Department of Biomedical Engineering, Nashville, TN, 37232
| |
Collapse
|
42
|
Huang D, Xiang N. Rapid and precise tumor cell separation using the combination of size-dependent inertial and size-independent magnetic methods. LAB ON A CHIP 2021; 21:1409-1417. [PMID: 33605279 DOI: 10.1039/d0lc01223h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Circulating tumor cells (CTCs) play a significant role in cancer diagnosis and treatment monitoring. One of the major challenges in isolating and detecting rare CTCs from blood is that white blood cells (WBCs) have a size overlap with the target CTCs. To address this issue, we constructed a three-stage i-Mag device integrated with passive inertial microfluidics and active magnetophoresis, enabling rapid and precise separation of tumor cells from blood. The first-stage spiral inertial sorter was applied to rapidly remove small-sized red blood cells (RBCs), and then the second-stage serpentine inertial focuser and the third-stage magnetic sorter were used for removing the magnetically labeled WBCs size-independently, to significantly purify the captured tumor cells. Then, the separation performance of our i-Mag device was explored. The results indicated rapid and precise separation of breast cancer cells from diluted whole blood at a high separation efficiency of 93.84% and at a high purity of 51.47%. The purity of the collected tumor cells could be further improved to 93.60% when the blood dilution ratio was increased. We also successfully applied our i-Mag device for the isolation and detection of trace tumor cells. Our i-Mag device has numerous advantages, such as enabling high-throughput processing and high-precision separation, requiring easy manufacturing at a low cost, and providing tumor antigen-independent operation. We believe that the i-Mag device has great potential to act as a precise tool for separating various bioparticles.
Collapse
Affiliation(s)
- Di Huang
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, P.R. China
| | | |
Collapse
|
43
|
Kung YC, Niazi KR, Chiou PY. Tunnel dielectrophoresis for ultra-high precision size-based cell separation. LAB ON A CHIP 2021; 21:1049-1060. [PMID: 33313615 DOI: 10.1039/d0lc00853b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In molecular and cellular biological research, cell isolation and sorting are required for accurate investigation of cell populations of specific physical or biological characteristics. By employing unique cell properties to distinguish between heterogeneous cell populations, rapid and accurate sorting with high efficiency is possible. Dielectrophoresis-based cell manipulation has significant promise for separation of cells based on their physical properties and is used in diverse areas ranging from cellular diagnostics to therapeutic applications. In this study, we present a microfluidic device that can achieve label-free and size-based cell separation with high size differential resolution from a mono-cellular population or complex sample matrices. It was realized by using the tunnel dielectrophoresis (TDEP) technique to manipulate the spatial position of individual cells three dimensionally with high resolution. Cells were processed in high speed flows in high ionic strength buffers. A mixture of different sizes of polystyrene micro-particles with a size difference as small as 1 μm can be separated with high purity (>90%). For the first time, high-pass, low-pass, and band-pass filtering within a mono-cellular mammalian cell population were demonstrated with a tunable bandwidth as small as 3 μm. In addition, leukocyte subtype separation was demonstrated by sorting monocytes out of peripheral blood mononuclear cells (PBMCs) from whole blood with high purity (>85%). Its ability to deliver real-time adjustable cut-off threshold size-based cell sorting and its capability to provide an arbitrary cell size pick-up band could potentially enable many research and clinical applications.
Collapse
Affiliation(s)
- Yu-Chun Kung
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, USA.
| | | | | |
Collapse
|
44
|
Continuous microfluidic 3D focusing enabling microflow cytometry for single-cell analysis. Talanta 2021; 221:121401. [DOI: 10.1016/j.talanta.2020.121401] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
|
45
|
|
46
|
Huang D, Man J, Jiang D, Zhao J, Xiang N. Inertial microfluidics: Recent advances. Electrophoresis 2020; 41:2166-2187. [PMID: 33027533 DOI: 10.1002/elps.202000134] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 02/24/2024]
Abstract
Inertial microfluidics has attracted significant attentions in last decade due to its superior advantages of high throughput, label- and external field-free operation, simplicity, and low cost. A wide variety of channel geometry designs were demonstrated for focusing, concentrating, isolating, or separating of various bioparticles such as blood components, circulating tumor cells, bacteria, and microalgae. In this review, we first briefly introduce the physics of inertial migration and Dean flow for allowing the readers with diverse backgrounds to have a better understanding of the fundamental mechanisms of inertial microfluidics. Then, we present a comprehensive review of the recent advances and applications of inertial microfluidic devices according to different channel geometries ranging from straight channels, curved channels to contraction-expansion-array channels. Finally, the challenges and future perspective of inertial microfluidics are discussed. Owing to its superior benefit for particle manipulation, the inertial microfluidics will play a more important role in biology and medicine applications.
Collapse
Affiliation(s)
- Di Huang
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Jiaxiang Man
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Di Jiang
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Jiyun Zhao
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Nan Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| |
Collapse
|
47
|
Pei H, Li L, Han Z, Wang Y, Tang B. Recent advances in microfluidic technologies for circulating tumor cells: enrichment, single-cell analysis, and liquid biopsy for clinical applications. LAB ON A CHIP 2020; 20:3854-3875. [PMID: 33107879 DOI: 10.1039/d0lc00577k] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Circulating tumor cells (CTCs) detach from primary or metastatic lesions and circulate in the peripheral blood, which is considered to be the cause of distant metastases. CTC analysis in the form of liquid biopsy, enumeration and molecular analysis provide significant clinical information for cancer diagnosis, prognosis and therapeutic strategies. Despite the great clinical value, CTC analysis has not yet entered routine clinical practice due to lack of efficient technologies to perform CTC isolation and single-cell analysis. Taking the rarity and inherent heterogeneity of CTCs into account, reliable methods for CTC isolation and detection are in urgent demand for obtaining valuable information on cancer metastasis and progression from CTCs. Microfluidic technology, featuring microfabricated structures, can precisely control fluids and cells at the micrometer scale, thus making itself a particularly suitable method for rare CTC manipulation. Besides the enrichment function, microfluidic chips can also realize the analysis function by integrating multiple detection technologies. In this review, we have summarized the recent progress in CTC isolation and detection using microfluidic technologies, with special attention to emerging direct enrichment and enumeration in vivo. Further, few insights into single CTC molecular analysis are also demonstrated. We have provided a review of potential clinical applications of CTCs, ranging from early screening and diagnosis, tumor progression and prognosis, treatment and resistance monitoring, to therapeutic evaluation. Through this review, we conclude that the clinical utility of CTCs will be expanded as the isolation and analysis techniques are constantly improving.
Collapse
Affiliation(s)
- Haimeng Pei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | |
Collapse
|
48
|
Tang W, Zhu S, Jiang D, Zhu L, Yang J, Xiang N. Channel innovations for inertial microfluidics. LAB ON A CHIP 2020; 20:3485-3502. [PMID: 32910129 DOI: 10.1039/d0lc00714e] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Inertial microfluidics has gained significant attention since first being proposed in 2007 owing to the advantages of simplicity, high throughput, precise manipulation, and freedom from an external field. Superior performance in particle focusing, filtering, concentrating, and separating has been demonstrated. As a passive technology, inertial microfluidics technology relies on the unconventional use of fluid inertia in an intermediate Reynolds number range to induce inertial migration and secondary flow, which depend directly on the channel structure, leading to particle migration to the lateral equilibrium position or trapping in a specific cavity. With the advances in micromachining technology, many channel structures have been designed and fabricated in the past decade to explore the fundamentals and applications of inertial microfluidics. However, the channel innovations for inertial microfluidics have not been discussed comprehensively. In this review, the inertial particle manipulations and underlying physics in conventional channels, including straight, spiral, sinusoidal, and expansion-contraction channels, are briefly described. Then, recent innovations in channel structure for inertial microfluidics, especially channel pattern modification and unconventional cross-sectional shape, are reviewed. Finally, the prospects for future channel innovations in inertial microfluidic chips are also discussed. The purpose of this review is to provide guidance for the continued study of innovative channel designs to improve further the accuracy and throughput of inertial microfluidics.
Collapse
Affiliation(s)
- Wenlai Tang
- School of Electrical and Automation Engineering, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing, 210023, China.
| | | | | | | | | | | |
Collapse
|
49
|
Jeon H, Jundi B, Choi K, Ryu H, Levy BD, Lim G, Han J. Fully-automated and field-deployable blood leukocyte separation platform using multi-dimensional double spiral (MDDS) inertial microfluidics. LAB ON A CHIP 2020; 20:3612-3624. [PMID: 32990714 DOI: 10.1039/d0lc00675k] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A fully-automated and portable leukocyte separation platform was developed based on a new type of inertial microfluidic device, multi-dimensional double spiral (MDDS) device, as an alternative to centrifugation. By combining key innovations in inertial microfluidic device designs and check-valve-based recirculation processes, highly purified and concentrated WBCs (up to >99.99% RBC removal, ∼80% WBC recovery, >85% WBC purity, and ∼12-fold concentrated WBCs compared to the input sample) were achieved in less than 5 minutes, with high reliability and repeatability (coefficient of variation, CV < 5%). Using this, one can harvest up to 0.4 million of intact WBCs from 50 μL of human peripheral blood (50 μL), without any cell damage or phenotypic changes in a fully-automated operation. Alternatively, hand-powered operation is demonstrated with comparable separation efficiency and speed, which eliminates the need for electricity altogether for truly field-friendly sample preparation. The proposed platform is therefore highly deployable for various point-of-care applications, including bedside assessment of the host immune response and blood sample processing in resource-limited environments.
Collapse
Affiliation(s)
- Hyungkook Jeon
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. and Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Bakr Jundi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kyungyong Choi
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Hyunryul Ryu
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
| | - Bruce D Levy
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Geunbae Lim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jongyoon Han
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA and Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| |
Collapse
|
50
|
Lee D, Choi YH, Lee W. Enhancement of inflection point focusing and rare-cell separations from untreated whole blood. LAB ON A CHIP 2020; 20:2861-2871. [PMID: 32647850 DOI: 10.1039/d0lc00309c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Inertial microfluidic systems have been widely used for particle or cell separation applications, especially for rare-cell enrichment and separation from blood due to the high throughput and simplicity of the systems. However, most of the separation techniques using inertial microfluidic systems require dilution of blood samples or RBC lysis to achieve a high separation efficiency, which can adversely affect the throughput and/or analysis of the collected sample. We developed a cell separation technique compatible with untreated whole blood by inflection point focusing, that is, an inertial focusing phenomenon toward inflection points of the velocity profile. We generated a strong shear-gradient lift force by varying the velocity profile in a channel cross-section with the combined effect of the channel geometry and the co-flows of two liquids with different viscosities. The natural viscosity of blood leads to a lagging flow region in the middle of the channel where larger particles and cells can be extracted to the side flow region, which enables a highly efficient separation scheme with an unprecedented high throughput.
Collapse
Affiliation(s)
- Dongwoo Lee
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | | | | |
Collapse
|