1
|
Electrochemical sensing technology for liquid biopsy of circulating tumor cells-a review. Bioelectrochemistry 2021; 140:107823. [PMID: 33915341 DOI: 10.1016/j.bioelechem.2021.107823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
In recent years, a lot of new detection techniques for circulating tumor cells (CTCs) have been developed. Among them, electrochemical sensing technology has gradually developed because of its advantages of good selectivity, high sensitivity, low cost and rapid detection. Especially in the latest decade, the field of electrochemical biosensing has witnessed great progress, thanks to the merging of biosensing research area with nanotechnology, immunotechnology, nucleic acid technology, and microfluidic technology. In this review, the recent progress for the detection of CTCs according to the principle of detection was summarized and how they can contribute to the enhanced performance of such biosensors was explained. The latest electrode construction strategies such as rolling circle amplification reaction, DNA walker and microfluidic technology and their advantages were also introduced emphatically. Moreover, the main reasonswhy the existing biosensors have not been widely used clinically and the next research points were clearly put forward.
Collapse
|
2
|
de Almeida SV, Cancino-Bernardi J, de Andrade JK, Felsner ML, Zucolotto V, Galli A. Cancer immunosensor based on apo and holo transferrin binding. Mikrochim Acta 2020; 187:438. [PMID: 32651709 DOI: 10.1007/s00604-020-04420-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/30/2020] [Indexed: 01/22/2023]
Abstract
An electrochemical immunosensor was developed for the determination of apo-Tf (non-iron-bound) and holo-Tf (iron-bound) using polyclonal antibody transferrin (anti-Tf) immobilized at an electrode surface as a biorecognition platform. The monitoring was based on the anti-Tf binding with both Tf forms which allows the detection of cancer cells due to the constant iron cycle and the overexpression of anti-Tf on the cancer cell surface. The immunosensor characterization was performed using electrochemical impedance spectroscopy (EIS), which evaluated the impedimetric biorecognition of the antigens-antibody by the use of K4Fe(CN)6 redox group. The immunosensor was able to detect both forms of Tf in terms of charge transfer resistance (Rct). Analytical curves showed a limit of detection of 0.049 and 0.053 ng mL-1 for apo-Tf and holo-Tf, respectively. The immunosensor was applied to the detection of the two cancer cells A549 (lung carcinoma) and MCF-7 (breast carcinoma) and compared with BHK570, a healthy cell line. The impedimetric response of healthy cells differs significantly from that of the cancerous cells, as revealed by a Dunnett's test in 95% confidence level-ca. 102 cells mL-1-indicating the feasibility of the immunosensor to discriminate both types of cells. The indirect detection of anti-Tf based on apo-Tf and holo-Tf binding can be considered an advanced approach for cancer recognition. Graphical abstract.
Collapse
Affiliation(s)
- Sthéfane Valle de Almeida
- Chemistry Department, Campus CEDETEG, State University of Midwest Paraná, Guarapuava, Brazil.,Department of Chemistry, Federal University of São Carlos, Washington Luis Road, km 235 Monjolinho, São Carlos, SP, 13565905, Brazil
| | - Juliana Cancino-Bernardi
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, Brazil. .,Institute of Chemistry, Federal University of Alfenas, Gabriel Monteiro da Silva Street, 700 Centro, Alfenas, MG, 37130000, Brazil.
| | | | - Maria Lurdes Felsner
- Chemistry Department, Campus CEDETEG, State University of Midwest Paraná, Guarapuava, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Andressa Galli
- Chemistry Department, Campus CEDETEG, State University of Midwest Paraná, Guarapuava, Brazil
| |
Collapse
|
3
|
Sanati A, Jalali M, Raeissi K, Karimzadeh F, Kharaziha M, Mahshid SS, Mahshid S. A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials. Mikrochim Acta 2019; 186:773. [PMID: 31720840 DOI: 10.1007/s00604-019-3854-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/19/2019] [Indexed: 12/29/2022]
Abstract
This review, with 201 references, describes the recent advancement in the application of carbonaceous nanomaterials as highly conductive platforms in electrochemical biosensing. The electrochemical biosensing is described in introduction by classifying biosensors into catalytic-based and affinity-based biosensors and statistically demonstrates the most recent published works in each category. The introduction is followed by sections on electrochemical biosensors configurations and common carbonaceous nanomaterials applied in electrochemical biosensing, including graphene and its derivatives, carbon nanotubes, mesoporous carbon, carbon nanofibers and carbon nanospheres. In the following sections, carbonaceous catalytic-based and affinity-based biosensors are discussed in detail. In the category of catalytic-based biosensors, a comparison between enzymatic biosensors and non-enzymatic electrochemical sensors is carried out. Regarding the affinity-based biosensors, scholarly articles related to biological elements such as antibodies, deoxyribonucleic acids (DNAs) and aptamers are discussed in separate sections. The last section discusses recent advancements in carbonaceous screen-printed electrodes as a growing field in electrochemical biosensing. Tables are presented that give an overview on the diversity of analytes, type of materials and the sensors performance. Ultimately, general considerations, challenges and future perspectives in this field of science are discussed. Recent findings suggest that interests towards 2D nanostructured electrodes based on graphene and its derivatives are still growing in the field of electrochemical biosensing. That is because of their exceptional electrical conductivity, active surface area and more convenient production methods compared to carbon nanotubes. Graphical abstract Schematic representation of carbonaceous nanomaterials used in electrochemical biosensing. The content is classified into non-enzymatic sensors and affinity/ catalytic biosensors. Recent publications are tabulated and compared, considering materials, target, limit of detection and linear range of detection.
Collapse
Affiliation(s)
- Alireza Sanati
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.,Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada
| | - Mahsa Jalali
- Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada
| | - Keyvan Raeissi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Fathallah Karimzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Sahar Sadat Mahshid
- Sunnybrook Research Institute, Sunnybrook Hospital, Toronto, Ontario, M4N 3M5, Canada.
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada.
| |
Collapse
|
4
|
Zhou YG, Kermansha L, Zhang L, Mohamadi RM. Miniaturized Electrochemical Sensors to Facilitate Liquid Biopsy for Detection of Circulating Tumor Markers. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
5
|
Seenivasan R, Warrick JW, Rodriguez CI, Mattison W, Beebe DJ, Setaluri V, Gunasekaran S. Integrating Electrochemical Immunosensing and Cell Adhesion Technologies for Cancer Cell Detection and Enumeration. Electrochim Acta 2018; 286:205-211. [PMID: 31130739 PMCID: PMC6530932 DOI: 10.1016/j.electacta.2018.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We have successfully integrated techniques for controlling cell adhesion and performing electrochemical differential pulse voltammetry (DPV) through the use of digitally controlled microfluidics and patterned transparent indium tin oxide electrode arrays to enable rapid and sensitive enumeration of cancer cells in a scalable microscale format. This integrated approach leverages a dual-working electrode (WE) surface to improve the specificity of the detection system. Here, one of the WE surfaces is functionalized with anti-Melanocortin 1 Receptor antibodies specific to melanoma cancer cells, while the other WE acts as a control (i.e., without antibody), for detecting non-specific interactions between cells and the electrode. The method is described and shown to provide effective detection of melanoma cells at concentrations ranging between 25 to 300 cells per 20 μL sample volume after a 5 min incubation and 15 s of DPV measurements. The estimated limit of detection was ~17 cells. The sensitivity and specificity of the assay were quantified using addition of large fractions of non-target cells and resulted in a detection reproducibility of ~97%. The proposed approach demonstrates a unique integration of electrochemical sensing and microfluidic cell adhesion technologies with multiple advantages such as label-free detection, short detection times, and low sample volumes. Next steps for this platform include testing with patient samples and use of other cell-surface biomarkers for detection and enumeration of circulating tumor cells in prostate, breast, and colon cancer.
Collapse
Affiliation(s)
- Rajesh Seenivasan
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jay W. Warrick
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Carlos I. Rodriguez
- Department of Dermatology, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William Mattison
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Vijayasaradhi Setaluri
- Department of Dermatology, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sundaram Gunasekaran
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Mahato K, Kumar A, Maurya PK, Chandra P. Shifting paradigm of cancer diagnoses in clinically relevant samples based on miniaturized electrochemical nanobiosensors and microfluidic devices. Biosens Bioelectron 2018; 100:411-428. [DOI: 10.1016/j.bios.2017.09.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/03/2017] [Accepted: 09/03/2017] [Indexed: 02/08/2023]
|
7
|
Balta S, Aydogan C, Demir B, Geyik C, Ciftci M, Guler E, Odaci Demirkol D, Timur S, Yagci Y. Functional Surfaces Constructed with Hyperbranched Copolymers as Optical Imaging and Electrochemical Cell Sensing Platforms. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sebila Balta
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
| | - Cansu Aydogan
- Faculty of Science and Letters; Department of Chemistry; Istanbul Technical University; Maslak 34469 Istanbul Turkey
| | - Bilal Demir
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
| | - Caner Geyik
- Institute of Drug Abuse; Toxicology and Pharmaceutical Sciences; Ege University; 35100 Bornova Izmir Turkey
| | - Mustafa Ciftci
- Faculty of Science and Letters; Department of Chemistry; Istanbul Technical University; Maslak 34469 Istanbul Turkey
| | - Emine Guler
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
- Institute of Drug Abuse; Toxicology and Pharmaceutical Sciences; Ege University; 35100 Bornova Izmir Turkey
- Ege Life Sciences (EGE-LS); Cigli 35620 Izmir Turkey
| | - Dilek Odaci Demirkol
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
| | - Suna Timur
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
- Central Research Testing and Analysis Laboratory Research and Application Center; Ege University; Bornova 35100 Izmir Turkey
| | - Yusuf Yagci
- Faculty of Science and Letters; Department of Chemistry; Istanbul Technical University; Maslak 34469 Istanbul Turkey
- Faculty of Science; Chemistry Department; King Abdulaziz University; Jeddah 21589 Saudi Arabia
| |
Collapse
|
8
|
Seenivasan R, Singh CK, Warrick JW, Ahmad N, Gunasekaran S. Microfluidic-integrated patterned ITO immunosensor for rapid detection of prostate-specific membrane antigen biomarker in prostate cancer. Biosens Bioelectron 2017; 95:160-167. [DOI: 10.1016/j.bios.2017.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/30/2017] [Accepted: 04/10/2017] [Indexed: 11/15/2022]
|
9
|
Non-Invasive Breast Cancer Diagnosis through Electrochemical Biosensing at Different Molecular Levels. SENSORS 2017; 17:s17091993. [PMID: 28858236 PMCID: PMC5620508 DOI: 10.3390/s17091993] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/15/2017] [Accepted: 08/29/2017] [Indexed: 01/06/2023]
Abstract
The rapid and accurate determination of specific circulating biomarkers at different molecular levels with non- or minimally invasive methods constitutes a major challenge to improve the breast cancer outcomes and life quality of patients. In this field, electrochemical biosensors have demonstrated to be promising alternatives against more complex conventional strategies to perform fast, accurate and on-site determination of circulating biomarkers at low concentrations in minimally treated body fluids. In this article, after discussing briefly the relevance and current challenges associated with the determination of breast cancer circulating biomarkers, an updated overview of the electrochemical affinity biosensing strategies emerged in the last 5 years for this purpose is provided highlighting the great potentiality of these methodologies. After critically discussing the most interesting features of the electrochemical strategies reported so far for the single or multiplexed determination of such biomarkers with demonstrated applicability in liquid biopsy analysis, existing challenges still to be addressed and future directions in this field will be pointed out.
Collapse
|
10
|
A Single-Use, In Vitro Biosensor for the Detection of T-Tau Protein, A Biomarker of Neuro-Degenerative Disorders, in PBS and Human Serum Using Differential Pulse Voltammetry (DPV). BIOSENSORS-BASEL 2017; 7:bios7010010. [PMID: 28218731 PMCID: PMC5371783 DOI: 10.3390/bios7010010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/08/2017] [Accepted: 02/14/2017] [Indexed: 12/24/2022]
Abstract
A single-use, in vitro biosensor for the detection of T-Tau protein in phosphate-buffer saline (PBS) and undiluted human serum was designed, manufactured, and tested. Differential pulse voltammetry (DPV) served as the transduction mechanism. This biosensor consisted of three electrodes: working, counter, and reference electrodes fabricated on a PET sheet. Both working and counter electrodes were thin gold film, 10 nm in thickness. Laser ablation technique was used to define the size and structure of the biosensor. The biosensor was produced using cost-effective roll-to-roll process. Self-assembled monolayers (SAM) of 3-mercaptopropionic acid (MPA) were employed to covalently immobilize the anti-T-Tau (T-Tau antibody) on the gold working electrode. A carbodiimide conjugation approach using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC) and N–hydroxysuccinimide (NHS) cross-linked anti-T-Tau to the carboxylic groups on one end of the MPA. A T-Tau protein ladder with six isoforms was used in this study. The anti-T-Tau concentration used was 500,000 pg/mL. The T-Tau protein concentration ranged from 1000 pg/mL to 100,000 pg/mL. DPV measurements showed excellent responses, with a good calibration curve. Thus, a practical tool for simple detection of T-Tau protein, a biomarker of neuro-degenerative disorders, has been successfully developed. This tool could also be extended to detect other biomarkers for neuro-degenerative disorders, such as P-Tau protein and β-amyloid 42.
Collapse
|
11
|
Advances in Micro- and Nanotechnologies for Stem Cell-Based Translational Applications. STEM CELL BIOLOGY AND REGENERATIVE MEDICINE 2017. [DOI: 10.1007/978-3-319-29149-9_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Hinman SS, Cheng Q. Bioinspired Assemblies and Plasmonic Interfaces for Electrochemical Biosensing. J Electroanal Chem (Lausanne) 2016; 781:136-146. [PMID: 28163664 PMCID: PMC5283611 DOI: 10.1016/j.jelechem.2016.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electrochemical biosensing represents a collection of techniques that may be utilized for capture and detection of biomolecules in both simple and complex media. While the instrumentation and technological aspects play important roles in detection capabilities, the interfacial design aspects are of equal importance, and often, those inspired by nature produce the best results. This review highlights recent material designs, recognition schemes, and method developments as they relate to targeted electrochemical analysis for biological systems. This includes the design of electrodes functionalized with peptides, proteins, nucleic acids, and lipid membranes, along with nanoparticle mediated signal amplification mechanisms. The topic of hyphenated surface plasmon resonance assays is also discussed, as this technique may be performed concurrently with complementary and/or confirmatory measurements. Together, smart materials and experimental designs will continue to pave the way for complete biomolecular analyses of complex and technically challenging systems.
Collapse
Affiliation(s)
- Samuel S. Hinman
- Environmental Toxicology, University of California – Riverside, Riverside, CA 92521, USA
| | - Quan Cheng
- Environmental Toxicology, University of California – Riverside, Riverside, CA 92521, USA
- Department of Chemistry, University of California – Riverside, Riverside, CA 92521, USA
| |
Collapse
|
13
|
Pallela R, Chandra P, Noh HB, Shim YB. An amperometric nanobiosensor using a biocompatible conjugate for early detection of metastatic cancer cells in biological fluid. Biosens Bioelectron 2016; 85:883-890. [DOI: 10.1016/j.bios.2016.05.092] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/20/2016] [Accepted: 05/30/2016] [Indexed: 12/25/2022]
|
14
|
Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev 2016; 116:9001-90. [DOI: 10.1021/acs.chemrev.6b00220] [Citation(s) in RCA: 555] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahmoud Labib
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | | | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
15
|
Molazemhosseini A, Magagnin L, Vena P, Liu CC. Single-Use Disposable Electrochemical Label-Free Immunosensor for Detection of Glycated Hemoglobin (HbA1c) Using Differential Pulse Voltammetry (DPV). SENSORS 2016; 16:s16071024. [PMID: 27376299 PMCID: PMC4970074 DOI: 10.3390/s16071024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 12/13/2022]
Abstract
A single-use disposable in vitro electrochemical immunosensor for the detection of HbA1c in undiluted human serum using differential pulse voltammetry (DPV) was developed. A three-electrode configuration electrochemical biosensor consisted of 10-nm-thin gold film working and counter electrodes and a thick-film printed Ag/AgCl reference electrode was fabricated on a polyethylene terephthalate (PET) substrate. Micro-fabrication techniques including sputtering vapor deposition and thick-film printing were used to fabricate the biosensor. This was a roll-to-roll cost-effective manufacturing process making the single-use disposable in vitro HbA1c biosensor a reality. Self-assembled monolayers of 3-Mercaptopropionic acid (MPA) were employed to covalently immobilize anti-HbA1c on the surface of gold electrodes. Electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) confirmed the excellent coverage of MPA-SAM and the upward orientation of carboxylic groups. The hindering effect of HbA1c on the ferricyanide/ferrocyanide electron transfer reaction was exploited as the HbA1c detection mechanism. The biosensor showed a linear range of 7.5–20 µg/mL of HbA1c in 0.1 M PBS. Using undiluted human serum as the test medium, the biosensor presented an excellent linear behavior (R2 = 0.999) in the range of 0.1–0.25 mg/mL of HbA1c. The potential application of this biosensor for in vitro measurement of HbA1c for diabetic management was demonstrated.
Collapse
Affiliation(s)
- Alireza Molazemhosseini
- Dipartimento Chimica Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| | - Luca Magagnin
- Dipartimento Chimica Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| | - Pasquale Vena
- Dipartimento Chimica Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| | - Chung-Chiun Liu
- Department of Chemical & Biomolecular Engineering and Electronics Design Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
16
|
Zhou YG, Mohamadi RM, Poudineh M, Kermanshah L, Ahmed S, Safaei TS, Stojcic J, Nam RK, Sargent EH, Kelley SO. Interrogating Circulating Microsomes and Exosomes Using Metal Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:727-32. [PMID: 26707703 DOI: 10.1002/smll.201502365] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/09/2015] [Indexed: 05/24/2023]
Abstract
A chip-based approach for electrochemical characterization and detection of microsomes and exosomes based on direct electro-oxidation of metal nanoparticles (MNPs) that specifically recognize surface markers of these vesicles is reported. It is found that exosomes and microsomes derived from prostate cancer cells can be identified by their surface proteins EpCAM and PSMA, suggesting the potential of exosomes and microsomes for use as diagnostic biomarkers.
Collapse
Affiliation(s)
- Yi-Ge Zhou
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Reza M Mohamadi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Mahla Poudineh
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| | - Leyla Kermanshah
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Sharif Ahmed
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Tina Saberi Safaei
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| | - Jessica Stojcic
- Division of Urology, Sunnybrook Research Institute, University of Toronto, Toronto, ON, M4M 3M5, Canada
| | - Robert K Nam
- Division of Urology, Sunnybrook Research Institute, University of Toronto, Toronto, ON, M4M 3M5, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| | - Shana O Kelley
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3M2, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 3M2, Canada
| |
Collapse
|
17
|
Green BJ, Saberi Safaei T, Mepham A, Labib M, Mohamadi RM, Kelley SO. Beyond the Capture of Circulating Tumor Cells: Next-Generation Devices and Materials. Angew Chem Int Ed Engl 2015; 55:1252-65. [PMID: 26643151 DOI: 10.1002/anie.201505100] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 12/22/2022]
Abstract
Over the last decade, significant progress has been made towards the development of approaches that enable the capture of rare circulating tumor cells (CTCs) from the blood of cancer patients, a critical capability for noninvasive tumor profiling. These advances have leveraged new insights in materials chemistry and microfluidics and allowed the capture and enumeration of CTCs with unprecedented sensitivity. However, it has become increasingly clear that simply capturing and counting tumor cells launched into the bloodstream may not provide the information needed to advance our understanding of the biology of these rare cells, or to allow us to better exploit them in medicine. A variety of advances have now emerged demonstrating that more information can be extracted from CTCs with next-generation devices and materials featuring tailored physical and chemical properties. In this Minireview, the last ten years of work in this area will be discussed, with an emphasis on the groundbreaking work of the last five years, during which the focus has moved beyond the simple capture of CTCs and gravitated towards approaches that enable in-depth analysis.
Collapse
Affiliation(s)
- Brenda J Green
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Tina Saberi Safaei
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Adam Mepham
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Mahmoud Labib
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Reza M Mohamadi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Shana O Kelley
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada. .,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada. .,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
Green BJ, Saberi Safaei T, Mepham A, Labib M, Mohamadi RM, Kelley SO. Profilierung zirkulierender Tumorzellen mit Apparaturen und Materialien der nächsten Generation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Brenda J. Green
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON Kanada
| | - Tina Saberi Safaei
- Department of Electrical and Computer Engineering; University of Toronto; Toronto ON Kanada
| | - Adam Mepham
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON Kanada
| | - Mahmoud Labib
- Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto ON Kanada
| | - Reza M. Mohamadi
- Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto ON Kanada
| | - Shana O. Kelley
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON Kanada
- Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto ON Kanada
- Department of Biochemistry; University of Toronto; Toronto ON Kanada
| |
Collapse
|
19
|
Safaei TS, Mohamadi RM, Sargent EH, Kelley SO. In Situ Electrochemical ELISA for Specific Identification of Captured Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:14165-9. [PMID: 25938818 DOI: 10.1021/acsami.5b02404] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Circulating tumor cells (CTCs) are cancer cells disseminated from a tumor into the bloodstream. Their presence in patient blood samples has been associated with metastatic disease. Here, we report a simple system that enables the isolation and detection of these rare cancer cells. By developing a sensitive electrochemical ELISA method integrated within a microfluidic cell capture system, were we able to reliably detect very low levels of cancer cells in whole blood. Our results indicate that the new system provides the clinically relevant specificity and sensitivity needed for a convenient, point-of-need assay for cancer cell counting.
Collapse
Affiliation(s)
- Tina Saberi Safaei
- †Department of Electrical and Computer Engineering, Faculty of Applied Science and Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Reza M Mohamadi
- ‡Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Edward H Sargent
- †Department of Electrical and Computer Engineering, Faculty of Applied Science and Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Shana O Kelley
- ‡Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
- §Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street Toronto, Ontario M5S 3G9, Canada
- ⊥Department of Biochemistry, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
20
|
Wang T, Liu J, Gu X, Li D, Wang J, Wang E. Label-free electrochemical aptasensor constructed by layer-by-layer technology for sensitive and selective detection of cancer cells. Anal Chim Acta 2015; 882:32-7. [DOI: 10.1016/j.aca.2015.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 01/20/2023]
|
21
|
Lin CW, Wei KC, Liao SS, Huang CY, Sun CL, Wu PJ, Lu YJ, Yang HW, Ma CCM. A reusable magnetic graphene oxide-modified biosensor for vascular endothelial growth factor detection in cancer diagnosis. Biosens Bioelectron 2015; 67:431-7. [DOI: 10.1016/j.bios.2014.08.080] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/12/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
|
22
|
Cancino-Bernardi J, Marangoni VS, Faria HAM, Zucolotto V. Detection of Leukemic Cells by using Jacalin as the Biorecognition Layer: A New Strategy for the Detection of Circulating Tumor Cells. ChemElectroChem 2015. [DOI: 10.1002/celc.201500080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
An electrochemical immunosensing method for detecting melanoma cells. Biosens Bioelectron 2015; 68:508-515. [PMID: 25636023 DOI: 10.1016/j.bios.2015.01.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/09/2015] [Indexed: 01/06/2023]
Abstract
An electrochemical immunosensing method was developed to detect melanoma cells based on the affinity between cell surface melanocortin 1 receptor (MC1R) antigen and anti-MC1R antibody (MC1R-Ab). The MC1R-Abs were immobilized in amino-functionalized silica nanoparticles (n-SiNPs)-polypyrrole (PPy) nanocomposite modified on working electrode surface of screen-printed electrode (SPE). Cyclic voltammetry was employed, with the help of redox mediator ([Fe(CN)6](3-)), to measure the change in anodic oxidation peak current arising due to the specific interaction between MC1R antigens and MC1R-Abs when the target melanoma cells are present in the sample. Various factors affecting the sensor performance, such as the amount of MC1R-Abs loaded, incubation time with the target melanoma cells, the presence of interfering non-melanoma cells, were tested and optimized over different expected melanoma cell loads in the range of 50-7500 cells/2.5 mL. The immunosensor is highly sensitive (20 cells/mL), specific, and reproducible, and the antibody-loaded electrode in ready-to-use stage is stable over two weeks. Thus, in conjunction with a microfluidic lab-on-a-chip device our electrochemical immunosensing approach may be suitable for highly sensitive, selective, and rapid detection of circulating tumor cells (CTCs) in blood samples.
Collapse
|
24
|
Wan Y, Zhou YG, Poudineh M, Safaei TS, Mohamadi RM, Sargent EH, Kelley SO. Highly Specific Electrochemical Analysis of Cancer Cells using Multi-Nanoparticle Labeling. Angew Chem Int Ed Engl 2014; 53:13145-9. [DOI: 10.1002/anie.201407982] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/08/2014] [Indexed: 11/11/2022]
|
25
|
Wan Y, Zhou YG, Poudineh M, Safaei TS, Mohamadi RM, Sargent EH, Kelley SO. Highly Specific Electrochemical Analysis of Cancer Cells using Multi-Nanoparticle Labeling. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407982] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Gedi V, Kim YP. Detection and characterization of cancer cells and pathogenic bacteria using aptamer-based nano-conjugates. SENSORS (BASEL, SWITZERLAND) 2014; 14:18302-27. [PMID: 25268922 PMCID: PMC4239906 DOI: 10.3390/s141018302] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/08/2014] [Accepted: 09/02/2014] [Indexed: 12/30/2022]
Abstract
Detection and characterization of cells using aptamers and aptamer-conjugated nanoprobes has evolved a great deal over the past few decades. This evolution has been driven by the easy selection of aptamers via in vitro cell-SELEX, permitting sensitive discrimination between target and normal cells, which includes pathogenic prokaryotic and cancerous eukaryotic cells. Additionally, when the aptamer-based strategies are used in conjunction with nanomaterials, there is the potential for cell targeting and therapeutic effects with improved specificity and sensitivity. Here we review recent advances in aptamer-based nano-conjugates and their applications for detecting cancer cells and pathogenic bacteria. The multidisciplinary research utilized in this field will play an increasingly significant role in clinical medicine and drug discovery.
Collapse
Affiliation(s)
- Vinayakumar Gedi
- Department of Life Science, Hanyang University, Seoul 133-791, Korea.
| | - Young-Pil Kim
- Department of Life Science, Hanyang University, Seoul 133-791, Korea.
| |
Collapse
|
27
|
Sage AT, Besant JD, Lam B, Sargent EH, Kelley SO. Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes. Acc Chem Res 2014; 47:2417-25. [PMID: 24961296 DOI: 10.1021/ar500130m] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Electrochemical sensors have the potential to achieve sensitive, specific, and low-cost detection of biomolecules--a capability that is ever more relevant to the diagnosis and monitored treatment of disease. The development of devices for clinical diagnostics based on electrochemical detection could provide a powerful solution for the routine use of biomarkers in patient treatment and monitoring and may overcome the many issues created by current methods, including the long sample-to-answer times, high cost, and limited prospects for lab-free use of traditional polymerase chain reaction, microarrays, and gene-sequencing technologies. In this Account, we summarize the advances in electrochemical biomolecular detection, focusing on a new and integrated platform that exploits the bottom-up fabrication of multiplexed electrochemical sensors composed of electrodeposited noble metals. We trace the evolution of these sensors from gold nanoelectrode ensembles to nanostructured microelectrodes (NMEs) and discuss the effects of surface morphology and size on assay performance. The development of a novel electrocatalytic assay based on Ru(3+) adsorption and Fe(3+) amplification at the electrode surface as a means to enable ultrasensitive analyte detection is discussed. Electrochemical measurements of changes in hybridization events at the electrode surface are performed using a simple potentiostat, which enables integration into a portable, cost-effective device. We summarize the strategies for proximal sample processing and detection in addition to those that enable high degrees of sensor multiplexing capable of measuring 100 different analytes on a single chip. By evaluating the cost and performance of various sensor substrates, we explore the development of practical lab-on-a-chip prototype devices. By functionalizing the NMEs with capture probes specific to nucleic acid, small molecule, and protein targets, we can successfully detect a wide variety of analytes at clinically relevant concentrations and speeds. Using this platform, we have achieved attomolar detection levels of nucleic acids with overall assay times as short as 2 min. We also describe the adaptation of the sensing platform to allow for the measurement of uncharged analytes--a challenge for reporter systems that rely on the charge of an analyte. Furthermore, the capabilities of this system have been applied to address the many current and important clinical challenges involving the detection of pathogenic species, including both bacterial and viral infections and cancer biomarkers. This novel electrochemical platform, which achieves large molecular-to-electrical amplification by means of its unique redox-cycling readout strategy combined with rapid and efficient analyte capture that is aided by nanostructured microelectrodes, achieves excellent specificity and sensitivity in clinical samples in which analytes are present at low concentrations in complex matrices.
Collapse
Affiliation(s)
- Andrew T. Sage
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Justin D. Besant
- Institute
for Biomedical and Biomaterials Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Brian Lam
- Institute
for Biomedical and Biomaterials Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Edward H. Sargent
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G4
| | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3M2
- Institute
for Biomedical and Biomaterials Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
- Department
of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
28
|
Yang HW, Lin CW, Hua MY, Liao SS, Chen YT, Chen HC, Weng WH, Chuang CK, Pang ST, Ma CCM. Combined detection of cancer cells and a tumor biomarker using an immunomagnetic sensor for the improvement of prostate-cancer diagnosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:3662-3666. [PMID: 24648414 DOI: 10.1002/adma.201305842] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/07/2014] [Indexed: 06/03/2023]
Affiliation(s)
- Hung-Wei Yang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsin-chu, 30013, Taiwan, R.O.C
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Doran S, Murtezi E, Barlas FB, Timur S, Yagci Y. One-Pot Photo-Induced Sequential CuAAC and Thiol–Ene Click Strategy for Bioactive Macromolecular Synthesis. Macromolecules 2014. [DOI: 10.1021/ma5007039] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Seán Doran
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Maslak, 34469 Istanbul, Turkey
| | - Eljesa Murtezi
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Maslak, 34469 Istanbul, Turkey
| | - Firat Baris Barlas
- Department
of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Suna Timur
- Department
of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Yusuf Yagci
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Maslak, 34469 Istanbul, Turkey
- Center
of Excellence for Advanced Materials Research (CEAMR) and Chemistry
Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
30
|
Costa C, Abal M, López-López R, Muinelo-Romay L. Biosensors for the detection of circulating tumour cells. SENSORS 2014; 14:4856-75. [PMID: 24618729 PMCID: PMC4003971 DOI: 10.3390/s140304856] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 01/28/2014] [Accepted: 02/28/2014] [Indexed: 12/14/2022]
Abstract
Metastasis is the cause of most cancer deaths. Circulating tumour cells (CTCs) are cells released from the primary tumour into the bloodstream that are considered the main promoters of metastasis. Therefore, these cells are targets for understanding tumour biology and improving clinical management of the disease. Several techniques have emerged in recent years to isolate, detect, and characterise CTCs. As CTCs are a rare event, their study requires multidisciplinary considerations of both biological and physical properties. In addition, as isolation of viable cells may give further insights into metastatic development, cell recovery must be done with minimal cell damage. The ideal system for CTCs analysis must include maximum efficiency of detection in real time. In this sense, new approaches used to enrich CTCs from clinical samples have provided an important improvement in cell recovery. However, this progress should be accompanied by more efficient strategies of cell quantification. A range of biosensor platforms are being introduced into the technology for CTCs quantification with promising results. This review provides an update on recent progress in CTCs identification using different approaches based on sensor signaling.
Collapse
Affiliation(s)
- Clotilde Costa
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Trav. Choupana s/n 15706 Santiago de Compostela, Spain.
| | - Miguel Abal
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Trav. Choupana s/n 15706 Santiago de Compostela, Spain.
| | - Rafael López-López
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Trav. Choupana s/n 15706 Santiago de Compostela, Spain.
| | - Laura Muinelo-Romay
- Unity of CTCs analysis Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), Trav. Choupana s/n 15706 Santiago de Compostela, Spain.
| |
Collapse
|
31
|
Stefan-van Staden RI, Moldoveanu I, Surdu-Bob CC, Stanciu-Gavan C. Engineered nanoporous gold microspheres for stochastic sensing. RSC Adv 2014. [DOI: 10.1039/c4ra08987a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Engineered nanoporous gold microsphere-based stochastic sensors detect carcynoembrionic antigen at a concentration as low as 16 ng mL−1 in whole blood samples.
Collapse
Affiliation(s)
- Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB Bucharest
- National Institute of Research for Electrochemistry and Condensed Matter
- Bucharest, Romania
- Faculty of Applied Chemistry and Material Science
- Politehnica University of Bucharest
| | - Iuliana Moldoveanu
- Laboratory of Electrochemistry and PATLAB Bucharest
- National Institute of Research for Electrochemistry and Condensed Matter
- Bucharest, Romania
- Faculty of Applied Chemistry and Material Science
- Politehnica University of Bucharest
| | - Carmen Cristina Surdu-Bob
- Low Temperature Plasma Laboratory
- National Institute for Lasers
- Plasma and Radiation Physics (NILPRP)
- Magurele, Romania
| | - Camelia Stanciu-Gavan
- Department of Surgery 4
- University of Medicine and Pharmacy “Carol Davila”
- Bucharest, Romania
| |
Collapse
|
32
|
Barlas FB, Ag Seleci D, Ozkan M, Demir B, Seleci M, Aydin M, Tasdelen MA, Zareie HM, Timur S, Ozcelik S, Yagci Y. Folic acid modified clay/polymer nanocomposites for selective cell adhesion. J Mater Chem B 2014; 2:6412-6421. [DOI: 10.1039/c4tb00850b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A promising material, a folic acid modified poly(epsilon-caprolactone)/clay nanocomposite that allows selective cell adhesion and proliferation, was synthesized and characterized as a cell culture and biosensing platform.
Collapse
Affiliation(s)
- F. B. Barlas
- Department of Biochemistry
- Faculty of Science
- Ege University
- Izmir, Turkey
| | - D. Ag Seleci
- Department of Biochemistry
- Faculty of Science
- Ege University
- Izmir, Turkey
| | - M. Ozkan
- Department of Chemistry
- Faculty of Science
- Izmir Institute of Technology
- Izmir, Turkey
| | - B. Demir
- Department of Biochemistry
- Faculty of Science
- Ege University
- Izmir, Turkey
| | - M. Seleci
- Department of Biochemistry
- Faculty of Science
- Ege University
- Izmir, Turkey
| | - M. Aydin
- Department of Chemistry
- Istanbul Technical University
- Istanbul 34469, Turkey
| | - M. A. Tasdelen
- Department of Chemistry
- Istanbul Technical University
- Istanbul 34469, Turkey
- Department of Polymer Engineering
- Faculty of Engineering
| | - H. M. Zareie
- Department of Materials Science and Engineering
- Izmir Institute of Technology
- Izmir, Turkey
- Institute for Nanoscale Technology
- University of Technology
| | - S. Timur
- Department of Biochemistry
- Faculty of Science
- Ege University
- Izmir, Turkey
- Ege University
| | - S. Ozcelik
- Department of Chemistry
- Faculty of Science
- Izmir Institute of Technology
- Izmir, Turkey
| | - Y. Yagci
- Department of Chemistry
- Istanbul Technical University
- Istanbul 34469, Turkey
- Center of Excellence for Advanced Materials Research (CEAMR)
- Department of Chemistry
| |
Collapse
|
33
|
Arya SK, Lim B, Rahman ARA. Enrichment, detection and clinical significance of circulating tumor cells. LAB ON A CHIP 2013; 13:1995-2027. [PMID: 23625167 DOI: 10.1039/c3lc00009e] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Circulating Tumor Cells (CTCs) are shed from primary or secondary tumors into blood circulation. Accessing and analyzing these cells provides a non-invasive alternative to tissue biopsy. CTCs are estimated to be as few as 1 cell among a few million WBCs and few billion RBCs in 1 ml of patient blood and are rarely found in healthy individuals. CTCs are FDA approved for prognosis of the major cancers, namely, Breast, Colon and Prostate. Currently, more than 400 clinical trials are ongoing to establish their clinical significance beyond prognosis, such as, therapy selection and companion diagnostics. Understanding the clinical relevance of CTCs typically involves isolation, detection and molecular characterization of cells, ideally at single cell level. The need for highly reliable, standardized and robust methodologies for isolating and analyzing CTCs has been widely expressed by clinical thought leaders. In the last decade, numerous academic and commercial technology platforms for isolation and analysis of CTCs have been reported. A recent market report highlighted the presence of more than 100 companies offering products and services related to CTCs. This review aims to capture the state of the art and examines the technical merits and limitations of contemporary technologies for clinical use.
Collapse
Affiliation(s)
- Sunil K Arya
- Bioelectronics Programme, Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), 11 Science Park Road, Singapore Science Park II, Singapore 117685.
| | | | | |
Collapse
|