1
|
Seera S, Nagarajaram HA. Effect of Disease Causing Missense Mutations on Intrinsically Disordered Regions in Proteins. Protein Pept Lett 2021; 29:254-267. [PMID: 34825861 DOI: 10.2174/0929866528666211126161200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND It is well known that disease-causing missense mutations (DCMMs) reduce the structural stability/integrity of the proteins with well-defined 3D structures, thereby impacting their molecular functions. However, it is not known in what way DCMMs affect the intrinsically disordered proteins (IDPs) that do not adopt well defined stable 3D structures. METHODS In order to investigate how DCMMs may impact intrinsically disordered regions (IDRs) in proteins, we undertook Molecular Dynamics (MD) based studies on three different examples of functionally important IDRs with known DCMMs. Our studies revealed that the functional impact of DCMMs is in reducing the conformational heterogeneity of IDRs, which is intrinsic and quintessential for their multi-faceted cellular roles. RESULTS These results are reinforced by energy landscapes of the wildtype and mutant IDRs where the former is characterized by many local minima separated by low barriers, whereas the latter are characterized by one global minimum and several local minima separated by high energy barriers. Our MD based studies also indicate that DCMMs stabilize very few structural possibilities of IDRs either by the newly formed interactions induced by the substituted side chains or by means of restricted or increased flexibilities of the backbone conformations at the mutation sites. CONCLUSION Furthermore, the structural possibilities stabilized by DCMMs do not support the native functional roles of the IDRs, thereby leading to disease conditions.
Collapse
Affiliation(s)
| | - Hampapathalu A Nagarajaram
- Laboratory of Computational Biology, Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
2
|
Gandhi NS, Blancafort P, Mancera RL. Atomistic molecular dynamics simulations of bioactive engrailed 1 interference peptides (EN1-iPeps). Oncotarget 2018; 9:22383-22397. [PMID: 29854286 PMCID: PMC5976472 DOI: 10.18632/oncotarget.25025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 03/15/2018] [Indexed: 12/21/2022] Open
Abstract
The neural-specific transcription factor Engrailed 1 - is overexpressed in basal-like breast tumours. Synthetic interference peptides - comprising a cell-penetrating peptide/nuclear localisation sequence and the Engrailed 1-specific sequence from the N-terminus have been engineered to produce a strong apoptotic response in tumour cells overexpressing EN1, with no toxicity to normal or non Engrailed 1-expressing cells. Here scaled molecular dynamics simulations were used to study the conformational dynamics of these interference peptides in aqueous solution to characterise their structure and dynamics. Transitions from disordered to α-helical conformation, stabilised by hydrogen bonds and proline-aromatic interactions, were observed throughout the simulations. The backbone of the wild-type peptide folds to a similar conformation as that found in ternary complexes of anterior Hox proteins with conserved hexapeptide motifs important for recognition of pre-B-cell leukemia Homeobox 1, indicating that the motif may possess an intrinsic preference for helical structure. The predicted NMR chemical shifts of these peptides are consistent with the Hox hexapeptides in solution and Engrailed 2 NMR data. These findings highlight the importance of aromatic residues in determining the structure of Engrailed 1 interference peptides, shedding light on the rational design strategy of molecules that could be adopted to inhibit other transcription factors overexpressed in other cancer types, potentially including other transcription factor families that require highly conserved and cooperative protein-protein partnerships for biological activity.
Collapse
Affiliation(s)
- Neha S Gandhi
- School of Mathematical Sciences and Institute for Health and Biomedical Innovation, Queensland University of Technology, Gardens Point Campus, Brisbane QLD 4000, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, Perth WA 6009, Australia
| | - Ricardo L Mancera
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, Perth WA 6845, Australia
| |
Collapse
|
3
|
Khare H, Dey D, Madhu C, Senapati D, Raghothama S, Govindaraju T, Ramakumar S. Conformational heterogeneity in tails of DNA-binding proteins is augmented by proline containing repeats. MOLECULAR BIOSYSTEMS 2017; 13:2531-2544. [PMID: 29104984 DOI: 10.1039/c7mb00412e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A cationic terminal extension or tail is a common feature of many DNA-binding proteins. We show that a particular type of tail rich in proline, alanine and lysine belongs to the class of 'flexible disorder' and consists of characteristic pentapeptide repeats. Our designed peptides, (AAKKA)1-4 and (PAKKA)1-4, represent the tails of several bacterial DNA-binding proteins. Enhanced conformational sampling of these representative peptides using accelerated molecular dynamic simulations supported by circular dichroism spectroscopy and nuclear magnetic resonance studies demonstrates the role of frequent and interspersed prolines in augmenting conformational heterogeneity of the peptide backbone. Analysis of circular variance of backbone dihedral angles indicates alternating regions of relative rigidity and flexibility along the peptide sequence due to prolines. Preferred placement of lysines in the regions of higher backbone flexibility might improve DNA-binding by conformational selection. Our results could be relevant for rational de novo design of disordered peptides.
Collapse
Affiliation(s)
- Harshavardhan Khare
- Department of Physics, Indian Institute of Science, Bengaluru 560012, India.
| | | | | | | | | | | | | |
Collapse
|
4
|
López-Contreras L, Hernández-Ramírez VI, Herrera-Martínez M, Montaño S, Constantino-Jonapa LA, Chávez-Munguía B, Talamás-Rohana P. Structural and functional characterization of the divergent Entamoeba Src using Src inhibitor-1. Parasit Vectors 2017; 10:500. [PMID: 29047404 PMCID: PMC5648430 DOI: 10.1186/s13071-017-2461-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022] Open
Abstract
Background The abundant number of kinases that Entamoeba histolytica possesses allows us to assume that the regulation of cellular functions by phosphorylation-dephosphorylation processes is very important. However, the kinases responsible for the phosphorylation in Entamoeba spp. vary in the structure of their domains and, therefore, could be responsible for the unusual biological characteristics of this parasite. In higher eukaryotes, Src kinases share conserved structural domains and are very important in the regulation of the actin cytoskeleton. In both Entamoeba histolytica and Entamoeba invadens, the major Src kinase homologue of higher eukaryotes lacks SH3 and SH2 domains, but does have KELCH domains; the latter are part of actin cross-linking proteins in higher eukaryotic cells. Methods The function of the EhSrc protein kinase of Entamoeba spp. was evaluated using Src inhibitor-1, microscopy assays, Src kinase activity and western blot. In addition, to define the potential inhibitory mechanism of Src-inhibitor-1 for the amoebic EhSrc protein kinase, molecular dynamic simulations using NAnoscale Molecular Dynamics (NAMD2) program and docking studies were performed with MOE software. Results We demonstrate that Src inhibitor-1 is able to prevent the activity of EhSrc protein kinase, most likely by binding to the catalytic domain, which affects cell morphology via the disruption of actin cytoskeleton remodeling and the formation of phagocytic structures without an effect on cell adhesion. Furthermore, in E. invadens, Src inhibitor-1 inhibited the encystment process by blocking RhoA GTPase activity, a small GTPase protein of Rho family. Conclusions Even though the EhSrc molecule of Entamoeba is not a typical Src, because its divergent amino acid sequence, it is a critical factor in the biology of this parasite via the regulation of actin cytoskeleton remodeling via RhoA GTPase activation. Based on this, we conclude that EhSrc could become a target molecule for the future design of drugs that can prevent the transmission of the disease. Electronic supplementary material The online version of this article (10.1186/s13071-017-2461-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luilli López-Contreras
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Camino a Tilcuatla s/n Municipio de San Agustín Tlaxiaca. C.P, 42160, Pachuca de Soto, Hidalgo, Mexico
| | - Verónica Ivonne Hernández-Ramírez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N, Avenida Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360, CDMX, CP, Mexico
| | - Mayra Herrera-Martínez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N, Avenida Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360, CDMX, CP, Mexico
| | - Sarita Montaño
- Facultad de Ciencias Químico Biológicas de la Universidad Autónoma de Sinaloa, Calz. de las Américas Norte 2771, Burócrata, 80030, Culiacán de Rosales, Sinaloa, Mexico
| | - Luis Alejandro Constantino-Jonapa
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N, Avenida Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360, CDMX, CP, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N, Avenida Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360, CDMX, CP, Mexico
| | - Patricia Talamás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N, Avenida Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360, CDMX, CP, Mexico.
| |
Collapse
|
5
|
Saini RK, Shuaib S, Goyal B. Molecular insights into Aβ42protofibril destabilization with a fluorinated compound D744: A molecular dynamics simulation study. J Mol Recognit 2017; 30. [DOI: 10.1002/jmr.2656] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Rajneet Kaur Saini
- Department of Chemistry, School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib Punjab India
| | - Suniba Shuaib
- Department of Chemistry, School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib Punjab India
| | - Bhupesh Goyal
- Department of Chemistry, School of Basic and Applied Sciences; Sri Guru Granth Sahib World University; Fatehgarh Sahib Punjab India
| |
Collapse
|
6
|
Saravanan KM, Selvaraj S. Dihedral angle preferences of amino acid residues forming various non-local interactions in proteins. J Biol Phys 2017; 43:265-278. [PMID: 28577238 PMCID: PMC5471173 DOI: 10.1007/s10867-017-9451-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 04/13/2017] [Indexed: 12/22/2022] Open
Abstract
In theory, a polypeptide chain can adopt a vast number of conformations, each corresponding to a set of backbone rotation angles. Many of these conformations are excluded due to steric overlaps. Ramachandran and coworkers were the first to look into this problem by plotting backbone dihedral angles in a two-dimensional plot. The conformational space in the Ramachandran map is further refined by considering the energetic contributions of various non-bonded interactions. Alternatively, the conformation adopted by a polypeptide chain may also be examined by investigating interactions between the residues. Since the Ramachandran map essentially focuses on local interactions (residues closer in sequence), out of interest, we have analyzed the dihedral angle preferences of residues that make non-local interactions (residues far away in sequence and closer in space) in the folded structures of proteins. The non-local interactions have been grouped into different types such as hydrogen bond, van der Waals interactions between hydrophobic groups, ion pairs (salt bridges), and ππ-stacking interactions. The results show the propensity of amino acid residues in proteins forming local and non-local interactions. Our results point to the vital role of different types of non-local interactions and their effect on dihedral angles in forming secondary and tertiary structural elements to adopt their native fold.
Collapse
Affiliation(s)
- Konda Mani Saravanan
- Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600 025, India
| | - Samuel Selvaraj
- Centre of Advanced Study in Crystallography & Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600 025, India.
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
7
|
Cozza C, Neira JL, Florencio FJ, Muro-Pastor MI, Rizzuti B. Intrinsically disordered inhibitor of glutamine synthetase is a functional protein with random-coil-like pK a values. Protein Sci 2017; 26:1105-1115. [PMID: 28295918 DOI: 10.1002/pro.3157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 01/22/2023]
Abstract
The sequential action of glutamine synthetase (GS) and glutamate synthase (GOGAT) in cyanobacteria allows the incorporation of ammonium into carbon skeletons. In the cyanobacterium Synechocystis sp. PCC 6803, the activity of GS is modulated by the interaction with proteins, which include a 65-residue-long intrinsically disordered protein (IDP), the inactivating factor IF7. This interaction is regulated by the presence of charged residues in both IF7 and GS. To understand how charged amino acids can affect the binding of an IDP with its target and to provide clues on electrostatic interactions in disordered states of proteins, we measured the pKa values of all IF7 acidic groups (Glu32, Glu36, Glu38, Asp40, Asp58, and Ser65, the backbone C-terminus) at 100 mM NaCl concentration, by using NMR spectroscopy. We also obtained solution structures of IF7 through molecular dynamics simulation, validated them on the basis of previous experiments, and used them to obtain theoretical estimates of the pKa values. Titration values for the two Asp and three Glu residues of IF7 were similar to those reported for random-coil models, suggesting the lack of electrostatic interactions around these residues. Furthermore, our results suggest the presence of helical structure at the N-terminus of the protein and of conformational changes at acidic pH values. The overall experimental and in silico findings suggest that local interactions and conformational equilibria do not play a role in determining the electrostatic features of the acidic residues of IF7.
Collapse
Affiliation(s)
- Concetta Cozza
- Molecular Biophysics Laboratory, Department of Physics, University of Calabria, Rende, Italy
| | - José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Unidad Asociada IQFR-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Seville, Spain
| | - M Isabel Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Seville, Spain
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Rende, Italy
| |
Collapse
|
8
|
Ilizaliturri-Flores I, Correa-Basurto J, Bello M, Rosas-Trigueros JL, Zamora-López B, Benítez-Cardoza CG, Zamorano-Carrillo A. Mapping the intrinsically disordered properties of the flexible loop domain of Bcl-2: a molecular dynamics simulation study. J Mol Model 2016; 22:98. [PMID: 27037822 DOI: 10.1007/s00894-016-2940-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 02/22/2016] [Indexed: 02/07/2023]
Abstract
Most of the B-cell lymphoma-2 (Bcl-2) protein structure has been elucidated; however, the conformation of its flexible loop domain (FLD) has not yet been experimentally predicted. Its high flexibility under physiological conditions is the reason. FLD behaves as an intrinsically disordered region (IDR) and can adopt regular structures in particular conditions associated with the control of Bcl-2's anti-apoptotic functions. In a previous contribution, we analyzed an engineered Bcl-2 construct (Bcl-2-Δ22Σ3) submitted to 25-ns MD and reported a disordered-to-helix transitions in a region of FLD (rFLD, residues 60-77). However, the conformational preferences in solution of rFLD in the nanosecond to microsecond scale were not analyzed. Herein, an average model was obtained for the native Bcl-2 protein by homology modeling and MD simulation techniques. From this, only the atomic coordinates corresponding to the rFLD were simulated for 1 μs by MD at 310 K. In concordance with previous studies, a disordered-to-helix transitions were exhibited, implying that this "interconversion of folding" in the rFLD suggest a possible set of conformations encoded in its sequence. Principal component analysis (PCA) showed that most of the conformational fluctuation of Bcl-2 is provided by rFLD. Dihedral PCA (dPCA) offered information about all the conformations of rFLD in the μs of the simulation, characterizing a dPCA-based free energy landscape of rFLD, and a conformational ensemble of fast interconverting conformations as other IDRs. Furthermore, despite the conformational heterogeneity of rFLD, the analysis of the dihedral angles (Φ, Ψ) showed that this region does not randomly explore the conformational space in solution.
Collapse
Affiliation(s)
| | - José Correa-Basurto
- Lab de Modelado Molecular y Diseño de Fármacos. ESM-IPN, Ciudad de México, Mexico
| | - Martiniano Bello
- Lab de Modelado Molecular y Diseño de Fármacos. ESM-IPN, Ciudad de México, Mexico
| | - Jorge L Rosas-Trigueros
- Lab Transdisciplinario de Investigación en Sistemas Evolutivos, ESCOM-IPN, Ciudad de México, Mexico
| | | | | | | |
Collapse
|
9
|
Neira JL, Rizzuti B, Iovanna JL. Determinants of the pKa values of ionizable residues in an intrinsically disordered protein. Arch Biochem Biophys 2016; 598:18-27. [PMID: 27046343 DOI: 10.1016/j.abb.2016.03.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/24/2016] [Accepted: 03/31/2016] [Indexed: 12/12/2022]
Abstract
Intrinsically disordered proteins (IDPs) are prevalent in eukaryotes; in humans, they are often associated with diseases. The protein NUPR1 is a multifunctional IDP involved in the development and progression of pancreatic cancer; therefore, it constitutes a target for drug design. In an effort to contribute to the understanding of the conformational features of NUPR1 and to provide clues on amino acid interactions in disordered states of proteins, we measured the pKa values of all its acidic groups (aspartic and glutamic residues, and backbone C terminus) by using NMR spectroscopy at low (100 mM) and high (500 mM) NaCl concentration. At low ionic strength, the pKa values were similar to those reported for random-coil models, except for Glu18 and Asp19, suggesting electrostatic interactions around these residues. Molecular modelling and simulation indicate an additional, significant role of nearby proline residues in determining the polypeptide conformational features and water accessibility in the region around Glu18, modulating the titration properties of these amino acids. In the other acidic residues of NUPR1, the small deviations of pKa values (compared to those expected for a random-coil) are likely due to electrostatic interactions with charged adjacent residues, which should be reduced at high NaCl concentrations. In fact, at high ionic strength, the pKa values of the aspartic residues were similar to those in a random coil, but there were still small differences for those of glutamic acids, probably due to hydrogen-bond formation. The overall findings suggest that local interactions and hydrophobic effects play a major role in determining the electrostatic features of NUPR1, whereas long-range charge contributions appear to be of lesser importance.
Collapse
Affiliation(s)
- José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Biocomputation and Complex Systems Physics Institute, 50009 Zaragoza, Spain.
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, 87036 Rende, Italy.
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| |
Collapse
|
10
|
Espinoza-Fonseca LM, Kelekar A. High-resolution structural characterization of Noxa, an intrinsically disordered protein, by microsecond molecular dynamics simulations. MOLECULAR BIOSYSTEMS 2016; 11:1850-6. [PMID: 25855872 DOI: 10.1039/c5mb00170f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
High-resolution characterization of the structure and dynamics of intrinsically disordered proteins (IDPs) remains a challenging task. Consequently, a detailed understanding of the structural and functional features of IDPs remains limited, as very few full-length disordered proteins have been structurally characterized. We have performed microsecond-long molecular dynamics (MD) simulations of Noxa, the smallest member of the large Bcl-2 family of apoptosis regulating proteins, to characterize in atomic-level detail the structural features of a disordered protein. A 2.5 μs MD simulation starting from an unfolded state of the protein revealed the formation of a central antiparallel β-sheet structure flanked by two disordered segments at the N- and C-terminal ends. This topology is in reasonable agreement with protein disorder predictions and available experimental data. We show that this fold plays an essential role in the intracellular function and regulation of Noxa. We demonstrate that unbiased MD simulations in combination with a modern force field reveal structural and functional features of disordered proteins at atomic-level resolution.
Collapse
Affiliation(s)
- L Michel Espinoza-Fonseca
- Department of Biochemistry, Molecular Biology and Biophysics University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
11
|
Cino EA, Choy WY, Karttunen M. Characterization of the Free State Ensemble of the CoRNR Box Motif by Molecular Dynamics Simulations. J Phys Chem B 2016; 120:1060-8. [DOI: 10.1021/acs.jpcb.5b11565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Elio A. Cino
- Department
of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Wing-Yiu Choy
- Department
of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Mikko Karttunen
- Department of Mathematics and Computer Science & the Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MetaForum, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
12
|
Menon S, Sengupta N. Perturbations in inter-domain associations may trigger the onset of pathogenic transformations in PrP(C): insights from atomistic simulations. MOLECULAR BIOSYSTEMS 2016; 11:1443-53. [PMID: 25855580 DOI: 10.1039/c4mb00689e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conversion of the predominantly α-helical cellular prion protein (PrP(C)) to the misfolded β-sheet enriched Scrapie form (PrP(Sc)) is a critical event in prion pathogenesis. However, the conformational triggers that lead to the isoform conversion (PrP(C) to PrP(Sc)) remain obscure, and conjectures about the role of unusually hydrophilic, short helix H1 of the C-terminal globular domain in the transition are varied. Helix H1 is anchored to helix H3 via a few stabilizing polar interactions. We have employed fully atomistic molecular dynamics simulations to study the effects triggered by a minor perturbation in the network of these non-bonded interactions in PrP(C). The elimination of just one of the key H1-H3 hydrogen bonds led to a cascade of conformational changes that are consistent with those observed in partially unfolded intermediates of PrP(C), with pathogenic mutations and in low pH environments. Our analyses reveal that the perturbation results in the enhanced conformational flexibility of the protein. The resultant enhancement in the dynamics leads to overall increased solvent exposure of the hydrophobic core residues and concomitant disruption of the H1-H3 inter-domain salt bridge network. This study lends credence to the hypothesis that perturbing the cooperativity of the stabilizing interactions in the PrP(C) globular domain can critically affect its dynamics and may lead to structural transitions of pathological relevance.
Collapse
Affiliation(s)
- Sneha Menon
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
| | | |
Collapse
|
13
|
Karim CB, Espinoza-Fonseca LM, James ZM, Hanse EA, Gaynes JS, Thomas DD, Kelekar A. Structural Mechanism for Regulation of Bcl-2 protein Noxa by phosphorylation. Sci Rep 2015; 5:14557. [PMID: 26411306 PMCID: PMC4585961 DOI: 10.1038/srep14557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
We showed previously that phosphorylation of Noxa, a 54-residue Bcl-2 protein, at serine 13 (Ser13) inhibited its ability to promote apoptosis through interactions with canonical binding partner, Mcl-1. Using EPR spectroscopy, molecular dynamics (MD) simulations and binding assays, we offer evidence that a structural alteration caused by phosphorylation partially masks Noxa’s BH3 domain, inhibiting the Noxa-Mcl-1 interaction. EPR of unphosphorylated Noxa, with spin-labeled amino acid TOAC incorporated within the BH3 domain, revealed equilibrium between ordered and dynamically disordered states. Mcl-1 further restricted the ordered component for non-phosphorylated Noxa, but left the pSer13 Noxa profile unchanged. Microsecond MD simulations indicated that the BH3 domain of unphosphorylated Noxa is housed within a flexible loop connecting two antiparallel β-sheets, flanked by disordered N- and C-termini and Ser13 phosphorylation creates a network of salt-bridges that facilitate the interaction between the N-terminus and the BH3 domain. EPR showed that a spin label inserted near the N-terminus was weakly immobilized in unphosphorylated Noxa, consistent with a solvent-exposed helix/loop, but strongly constrained in pSer13 Noxa, indicating a more ordered peptide backbone, as predicted by MD simulations. Together these studies reveal a novel mechanism by which phosphorylation of a distal serine inhibits a pro-apoptotic BH3 domain and promotes cell survival.
Collapse
Affiliation(s)
- Christine B Karim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - L Michel Espinoza-Fonseca
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Zachary M James
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Eric A Hanse
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Jeffrey S Gaynes
- College of Biological Sciences, University of Minnesota, Minneapolis, MN 55455
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Ameeta Kelekar
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
14
|
Baruah A, Rani P, Biswas P. Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads. Sci Rep 2015; 5:11740. [PMID: 26138206 PMCID: PMC4490338 DOI: 10.1038/srep11740] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/26/2015] [Indexed: 12/17/2022] Open
Abstract
This work quantitatively characterizes intrinsic disorder in proteins in terms of
sequence composition and backbone conformational entropy. Analysis of the normalized
relative composition of the amino acid triads highlights a distinct boundary between
globular and disordered proteins. The conformational entropy is calculated from the
dihedral angles of the middle amino acid in the amino acid triad for the
conformational ensemble of the globular, partially and completely disordered
proteins relative to the non-redundant database. Both Monte Carlo (MC) and Molecular
Dynamics (MD) simulations are used to characterize the conformational ensemble of
the representative proteins of each group. The results show that the globular
proteins span approximately half of the allowed conformational states in the
Ramachandran space, while the amino acid triads in disordered proteins sample the
entire range of the allowed dihedral angle space following Flory’s
isolated-pair hypothesis. Therefore, only the sequence information in terms of the
relative amino acid triad composition may be sufficient to predict protein disorder
and the backbone conformational entropy, even in the absence of well-defined
structure. The predicted entropies are found to agree with those calculated using
mutual information expansion and the histogram method.
Collapse
Affiliation(s)
- Anupaul Baruah
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Pooja Rani
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Parbati Biswas
- Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
15
|
Kovalskyy DB, Ivanov DN. Recognition of the HIV capsid by the TRIM5α restriction factor is mediated by a subset of pre-existing conformations of the TRIM5α SPRY domain. Biochemistry 2014; 53:1466-76. [PMID: 24506064 DOI: 10.1021/bi4014962] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The binding of the TRIM5α restriction factor to the HIV capsid is mediated by the C-terminal SPRY domain of TRIM5α. Atomic-level details of this host-pathogen interaction, which involves mobile variable loops of the SPRY domain, remain unclear. Some of the key determinants of restriction are encompassed by the long and disordered v1 loop of the SPRY domain. We applied molecular modeling to elucidate the conformational repertoire of the v1 loop and its role in the interaction with the capsid. All-atom replica exchange molecular dynamics revealed multiple transient, interconverting states of the v1 loop consistent with the intrinsic disorder observed experimentally. The docking of the SPRY conformations representing 10 most populated states onto the high-resolution model of the assembled HIV-1 capsid revealed that a subset of v1 conformations produced plausible binding poses, in which the SPRY domain binds close to the pseudo-2-fold symmetry axis and the v1 loop spans the interhexamer gap. Such binding mode is well supported by the NMR binding data and known escape mutants. We speculate that the binding mode that involves interaction of the capsid with a subset of preexisting SPRY conformations arising from the intrinsic disorder of the v1 loop may explain the remarkable ability of TRIM5α to resist viral evasion by mutagenesis and to restrict divergent retroviruses.
Collapse
Affiliation(s)
- Dmytro B Kovalskyy
- Department of Biochemistry and Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio , 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
| | | |
Collapse
|
16
|
Cino EA, Choy WY, Karttunen M. Conformational Biases of Linear Motifs. J Phys Chem B 2013; 117:15943-57. [DOI: 10.1021/jp407536p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elio A. Cino
- Department
of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Wing-Yiu Choy
- Department
of Biochemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Mikko Karttunen
- Department
of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
17
|
Mao AH, Lyle N, Pappu RV. Describing sequence-ensemble relationships for intrinsically disordered proteins. Biochem J 2013; 449:307-18. [PMID: 23240611 PMCID: PMC4074364 DOI: 10.1042/bj20121346] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intrinsically disordered proteins participate in important protein-protein and protein-nucleic acid interactions and control cellular phenotypes through their prominence as dynamic organizers of transcriptional, post-transcriptional and signalling networks. These proteins challenge the tenets of the structure-function paradigm and their functional mechanisms remain a mystery given that they fail to fold autonomously into specific structures. Solving this mystery requires a first principles understanding of the quantitative relationships between information encoded in the sequences of disordered proteins and the ensemble of conformations they sample. Advances in quantifying sequence-ensemble relationships have been facilitated through a four-way synergy between bioinformatics, biophysical experiments, computer simulations and polymer physics theories. In the present review we evaluate these advances and the resultant insights that allow us to develop a concise quantitative framework for describing the sequence-ensemble relationships of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Albert H. Mao
- Medical Scientist Training Program, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130, U.S.A
- Computational & Molecular Biophysics Program, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130, U.S.A
| | - Nicholas Lyle
- Computational & Systems Biology Program, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130, U.S.A
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130, U.S.A
| |
Collapse
|
18
|
Using simulations to provide the framework for experimental protein folding studies. Arch Biochem Biophys 2012; 531:128-35. [PMID: 23266569 DOI: 10.1016/j.abb.2012.12.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 12/27/2022]
Abstract
Molecular dynamics simulations are a powerful theoretical tool to model the protein folding process in atomistic details under realistic conditions. Combined with a number of experimental techniques, simulations provide a detailed picture of how a protein folds or unfolds in the presence of explicit solvent and other molecular species, such as cosolvents, osmolytes, cofactors, active binding partners or inert crowding agents. The denaturing effects of temperature, pressure and external mechanical forces can also be probed. Qualitative and quantitative agreement with experiment contributes to a comprehensive molecular picture of protein states along the folding/unfolding pathway. The variety of systems examined reveals key features of the protein folding process.
Collapse
|
19
|
Lambrughi M, Papaleo E, Testa L, Brocca S, De Gioia L, Grandori R. Intramolecular interactions stabilizing compact conformations of the intrinsically disordered kinase-inhibitor domain of Sic1: a molecular dynamics investigation. Front Physiol 2012. [PMID: 23189058 PMCID: PMC3504315 DOI: 10.3389/fphys.2012.00435] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cyclin-dependent kinase inhibitors (CKIs) are key regulatory proteins of the eukaryotic cell cycle, which modulate cyclin-dependent kinase (Cdk) activity. CKIs perform their inhibitory effect by the formation of ternary complexes with a target kinase and its cognate cyclin. These regulators generally belong to the class of intrinsically disordered proteins (IDPs), which lack a well-defined and organized three-dimensional (3D) structure in their free state, undergoing folding upon binding to specific partners. Unbound IDPs are not merely random-coil structures, but can present intrinsically folded structural units (IFSUs) and collapsed conformations. These structural features can be relevant to protein function in vivo. The yeast CKI Sic1 is a 284-amino acid IDP that binds to Cdk1 in complex with the Clb5,6 cyclins, preventing phosphorylation of G1 substrates and, therefore, entrance to the S phase. Sic1 degradation, triggered by multiple phosphorylation events, promotes cell-cycle progression. Previous experimental studies pointed out a propensity of Sic1 and its isolated domains to populate both extended and compact conformations. The present contribution provides models for compact conformations of the Sic1 kinase-inhibitory domain (KID) by all-atom molecular dynamics (MD) simulations in explicit solvent and in the absence of interactors. The results are integrated by spectroscopic and spectrometric data. Helical IFSUs are identified, along with networks of intramolecular interactions. The results identify a group of putative hub residues and networks of electrostatic interactions, which are likely to be involved in the stabilization of the globular states.
Collapse
Affiliation(s)
- Matteo Lambrughi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milan, Italy
| | | | | | | | | | | |
Collapse
|